Retro68/gcc/gcc/tree-vect-patterns.c
Wolfgang Thaller aaf905ce07 add gcc 4.70
2012-03-28 01:13:14 +02:00

2630 lines
83 KiB
C

/* Analysis Utilities for Loop Vectorization.
Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
Free Software Foundation, Inc.
Contributed by Dorit Nuzman <dorit@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"
#include "basic-block.h"
#include "gimple-pretty-print.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "cfgloop.h"
#include "expr.h"
#include "optabs.h"
#include "params.h"
#include "tree-data-ref.h"
#include "tree-vectorizer.h"
#include "recog.h"
#include "diagnostic-core.h"
/* Pattern recognition functions */
static gimple vect_recog_widen_sum_pattern (VEC (gimple, heap) **, tree *,
tree *);
static gimple vect_recog_widen_mult_pattern (VEC (gimple, heap) **, tree *,
tree *);
static gimple vect_recog_dot_prod_pattern (VEC (gimple, heap) **, tree *,
tree *);
static gimple vect_recog_pow_pattern (VEC (gimple, heap) **, tree *, tree *);
static gimple vect_recog_over_widening_pattern (VEC (gimple, heap) **, tree *,
tree *);
static gimple vect_recog_widen_shift_pattern (VEC (gimple, heap) **,
tree *, tree *);
static gimple vect_recog_vector_vector_shift_pattern (VEC (gimple, heap) **,
tree *, tree *);
static gimple vect_recog_sdivmod_pow2_pattern (VEC (gimple, heap) **,
tree *, tree *);
static gimple vect_recog_mixed_size_cond_pattern (VEC (gimple, heap) **,
tree *, tree *);
static gimple vect_recog_bool_pattern (VEC (gimple, heap) **, tree *, tree *);
static vect_recog_func_ptr vect_vect_recog_func_ptrs[NUM_PATTERNS] = {
vect_recog_widen_mult_pattern,
vect_recog_widen_sum_pattern,
vect_recog_dot_prod_pattern,
vect_recog_pow_pattern,
vect_recog_over_widening_pattern,
vect_recog_widen_shift_pattern,
vect_recog_vector_vector_shift_pattern,
vect_recog_sdivmod_pow2_pattern,
vect_recog_mixed_size_cond_pattern,
vect_recog_bool_pattern};
static inline void
append_pattern_def_seq (stmt_vec_info stmt_info, gimple stmt)
{
gimple_seq_add_stmt_without_update (&STMT_VINFO_PATTERN_DEF_SEQ (stmt_info),
stmt);
}
static inline void
new_pattern_def_seq (stmt_vec_info stmt_info, gimple stmt)
{
STMT_VINFO_PATTERN_DEF_SEQ (stmt_info) = NULL;
append_pattern_def_seq (stmt_info, stmt);
}
/* Function widened_name_p
Check whether NAME, an ssa-name used in USE_STMT,
is a result of a type-promotion, such that:
DEF_STMT: NAME = NOP (name0)
where the type of name0 (HALF_TYPE) is smaller than the type of NAME.
If CHECK_SIGN is TRUE, check that either both types are signed or both are
unsigned. */
static bool
widened_name_p (tree name, gimple use_stmt, tree *half_type, gimple *def_stmt,
bool check_sign)
{
tree dummy;
gimple dummy_gimple;
loop_vec_info loop_vinfo;
stmt_vec_info stmt_vinfo;
tree type = TREE_TYPE (name);
tree oprnd0;
enum vect_def_type dt;
tree def;
stmt_vinfo = vinfo_for_stmt (use_stmt);
loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
if (!vect_is_simple_use (name, use_stmt, loop_vinfo, NULL, def_stmt, &def,
&dt))
return false;
if (dt != vect_internal_def
&& dt != vect_external_def && dt != vect_constant_def)
return false;
if (! *def_stmt)
return false;
if (!is_gimple_assign (*def_stmt))
return false;
if (gimple_assign_rhs_code (*def_stmt) != NOP_EXPR)
return false;
oprnd0 = gimple_assign_rhs1 (*def_stmt);
*half_type = TREE_TYPE (oprnd0);
if (!INTEGRAL_TYPE_P (type) || !INTEGRAL_TYPE_P (*half_type)
|| ((TYPE_UNSIGNED (type) != TYPE_UNSIGNED (*half_type)) && check_sign)
|| (TYPE_PRECISION (type) < (TYPE_PRECISION (*half_type) * 2)))
return false;
if (!vect_is_simple_use (oprnd0, *def_stmt, loop_vinfo,
NULL, &dummy_gimple, &dummy, &dt))
return false;
return true;
}
/* Helper to return a new temporary for pattern of TYPE for STMT. If STMT
is NULL, the caller must set SSA_NAME_DEF_STMT for the returned SSA var. */
static tree
vect_recog_temp_ssa_var (tree type, gimple stmt)
{
tree var = create_tmp_var (type, "patt");
add_referenced_var (var);
var = make_ssa_name (var, stmt);
return var;
}
/* Function vect_recog_dot_prod_pattern
Try to find the following pattern:
type x_t, y_t;
TYPE1 prod;
TYPE2 sum = init;
loop:
sum_0 = phi <init, sum_1>
S1 x_t = ...
S2 y_t = ...
S3 x_T = (TYPE1) x_t;
S4 y_T = (TYPE1) y_t;
S5 prod = x_T * y_T;
[S6 prod = (TYPE2) prod; #optional]
S7 sum_1 = prod + sum_0;
where 'TYPE1' is exactly double the size of type 'type', and 'TYPE2' is the
same size of 'TYPE1' or bigger. This is a special case of a reduction
computation.
Input:
* STMTS: Contains a stmt from which the pattern search begins. In the
example, when this function is called with S7, the pattern {S3,S4,S5,S6,S7}
will be detected.
Output:
* TYPE_IN: The type of the input arguments to the pattern.
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
WIDEN_DOT_PRODUCT <x_t, y_t, sum_0>
Note: The dot-prod idiom is a widening reduction pattern that is
vectorized without preserving all the intermediate results. It
produces only N/2 (widened) results (by summing up pairs of
intermediate results) rather than all N results. Therefore, we
cannot allow this pattern when we want to get all the results and in
the correct order (as is the case when this computation is in an
inner-loop nested in an outer-loop that us being vectorized). */
static gimple
vect_recog_dot_prod_pattern (VEC (gimple, heap) **stmts, tree *type_in,
tree *type_out)
{
gimple stmt, last_stmt = VEC_index (gimple, *stmts, 0);
tree oprnd0, oprnd1;
tree oprnd00, oprnd01;
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
tree type, half_type;
gimple pattern_stmt;
tree prod_type;
loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_info);
tree var;
if (!is_gimple_assign (last_stmt))
return NULL;
type = gimple_expr_type (last_stmt);
/* Look for the following pattern
DX = (TYPE1) X;
DY = (TYPE1) Y;
DPROD = DX * DY;
DDPROD = (TYPE2) DPROD;
sum_1 = DDPROD + sum_0;
In which
- DX is double the size of X
- DY is double the size of Y
- DX, DY, DPROD all have the same type
- sum is the same size of DPROD or bigger
- sum has been recognized as a reduction variable.
This is equivalent to:
DPROD = X w* Y; #widen mult
sum_1 = DPROD w+ sum_0; #widen summation
or
DPROD = X w* Y; #widen mult
sum_1 = DPROD + sum_0; #summation
*/
/* Starting from LAST_STMT, follow the defs of its uses in search
of the above pattern. */
if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
return NULL;
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
{
/* Has been detected as widening-summation? */
stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
type = gimple_expr_type (stmt);
if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR)
return NULL;
oprnd0 = gimple_assign_rhs1 (stmt);
oprnd1 = gimple_assign_rhs2 (stmt);
half_type = TREE_TYPE (oprnd0);
}
else
{
gimple def_stmt;
if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
return NULL;
oprnd0 = gimple_assign_rhs1 (last_stmt);
oprnd1 = gimple_assign_rhs2 (last_stmt);
if (!types_compatible_p (TREE_TYPE (oprnd0), type)
|| !types_compatible_p (TREE_TYPE (oprnd1), type))
return NULL;
stmt = last_stmt;
if (widened_name_p (oprnd0, stmt, &half_type, &def_stmt, true))
{
stmt = def_stmt;
oprnd0 = gimple_assign_rhs1 (stmt);
}
else
half_type = type;
}
/* So far so good. Since last_stmt was detected as a (summation) reduction,
we know that oprnd1 is the reduction variable (defined by a loop-header
phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
Left to check that oprnd0 is defined by a (widen_)mult_expr */
if (TREE_CODE (oprnd0) != SSA_NAME)
return NULL;
prod_type = half_type;
stmt = SSA_NAME_DEF_STMT (oprnd0);
/* It could not be the dot_prod pattern if the stmt is outside the loop. */
if (!gimple_bb (stmt) || !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
return NULL;
/* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
inside the loop (in case we are analyzing an outer-loop). */
if (!is_gimple_assign (stmt))
return NULL;
stmt_vinfo = vinfo_for_stmt (stmt);
gcc_assert (stmt_vinfo);
if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def)
return NULL;
if (gimple_assign_rhs_code (stmt) != MULT_EXPR)
return NULL;
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
{
/* Has been detected as a widening multiplication? */
stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
if (gimple_assign_rhs_code (stmt) != WIDEN_MULT_EXPR)
return NULL;
stmt_vinfo = vinfo_for_stmt (stmt);
gcc_assert (stmt_vinfo);
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_internal_def);
oprnd00 = gimple_assign_rhs1 (stmt);
oprnd01 = gimple_assign_rhs2 (stmt);
}
else
{
tree half_type0, half_type1;
gimple def_stmt;
tree oprnd0, oprnd1;
oprnd0 = gimple_assign_rhs1 (stmt);
oprnd1 = gimple_assign_rhs2 (stmt);
if (!types_compatible_p (TREE_TYPE (oprnd0), prod_type)
|| !types_compatible_p (TREE_TYPE (oprnd1), prod_type))
return NULL;
if (!widened_name_p (oprnd0, stmt, &half_type0, &def_stmt, true))
return NULL;
oprnd00 = gimple_assign_rhs1 (def_stmt);
if (!widened_name_p (oprnd1, stmt, &half_type1, &def_stmt, true))
return NULL;
oprnd01 = gimple_assign_rhs1 (def_stmt);
if (!types_compatible_p (half_type0, half_type1))
return NULL;
if (TYPE_PRECISION (prod_type) != TYPE_PRECISION (half_type0) * 2)
return NULL;
}
half_type = TREE_TYPE (oprnd00);
*type_in = half_type;
*type_out = type;
/* Pattern detected. Create a stmt to be used to replace the pattern: */
var = vect_recog_temp_ssa_var (type, NULL);
pattern_stmt = gimple_build_assign_with_ops3 (DOT_PROD_EXPR, var,
oprnd00, oprnd01, oprnd1);
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "vect_recog_dot_prod_pattern: detected: ");
print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
}
/* We don't allow changing the order of the computation in the inner-loop
when doing outer-loop vectorization. */
gcc_assert (!nested_in_vect_loop_p (loop, last_stmt));
return pattern_stmt;
}
/* Handle widening operation by a constant. At the moment we support MULT_EXPR
and LSHIFT_EXPR.
For MULT_EXPR we check that CONST_OPRND fits HALF_TYPE, and for LSHIFT_EXPR
we check that CONST_OPRND is less or equal to the size of HALF_TYPE.
Otherwise, if the type of the result (TYPE) is at least 4 times bigger than
HALF_TYPE, and there is an intermediate type (2 times smaller than TYPE)
that satisfies the above restrictions, we can perform a widening opeartion
from the intermediate type to TYPE and replace a_T = (TYPE) a_t;
with a_it = (interm_type) a_t; */
static bool
vect_handle_widen_op_by_const (gimple stmt, enum tree_code code,
tree const_oprnd, tree *oprnd,
VEC (gimple, heap) **stmts, tree type,
tree *half_type, gimple def_stmt)
{
tree new_type, new_oprnd, tmp;
gimple new_stmt;
loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (vinfo_for_stmt (stmt));
struct loop *loop = LOOP_VINFO_LOOP (loop_info);
if (code != MULT_EXPR && code != LSHIFT_EXPR)
return false;
if (((code == MULT_EXPR && int_fits_type_p (const_oprnd, *half_type))
|| (code == LSHIFT_EXPR
&& compare_tree_int (const_oprnd, TYPE_PRECISION (*half_type))
!= 1))
&& TYPE_PRECISION (type) == (TYPE_PRECISION (*half_type) * 2))
{
/* CONST_OPRND is a constant of HALF_TYPE. */
*oprnd = gimple_assign_rhs1 (def_stmt);
return true;
}
if (TYPE_PRECISION (type) < (TYPE_PRECISION (*half_type) * 4)
|| !gimple_bb (def_stmt)
|| !flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|| !vinfo_for_stmt (def_stmt))
return false;
/* TYPE is 4 times bigger than HALF_TYPE, try widening operation for
a type 2 times bigger than HALF_TYPE. */
new_type = build_nonstandard_integer_type (TYPE_PRECISION (type) / 2,
TYPE_UNSIGNED (type));
if ((code == MULT_EXPR && !int_fits_type_p (const_oprnd, new_type))
|| (code == LSHIFT_EXPR
&& compare_tree_int (const_oprnd, TYPE_PRECISION (new_type)) == 1))
return false;
/* Use NEW_TYPE for widening operation. */
if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)))
{
new_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt));
/* Check if the already created pattern stmt is what we need. */
if (!is_gimple_assign (new_stmt)
|| gimple_assign_rhs_code (new_stmt) != NOP_EXPR
|| TREE_TYPE (gimple_assign_lhs (new_stmt)) != new_type)
return false;
VEC_safe_push (gimple, heap, *stmts, def_stmt);
*oprnd = gimple_assign_lhs (new_stmt);
}
else
{
/* Create a_T = (NEW_TYPE) a_t; */
*oprnd = gimple_assign_rhs1 (def_stmt);
tmp = create_tmp_var (new_type, NULL);
add_referenced_var (tmp);
new_oprnd = make_ssa_name (tmp, NULL);
new_stmt = gimple_build_assign_with_ops (NOP_EXPR, new_oprnd, *oprnd,
NULL_TREE);
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)) = new_stmt;
VEC_safe_push (gimple, heap, *stmts, def_stmt);
*oprnd = new_oprnd;
}
*half_type = new_type;
return true;
}
/* Function vect_recog_widen_mult_pattern
Try to find the following pattern:
type a_t, b_t;
TYPE a_T, b_T, prod_T;
S1 a_t = ;
S2 b_t = ;
S3 a_T = (TYPE) a_t;
S4 b_T = (TYPE) b_t;
S5 prod_T = a_T * b_T;
where type 'TYPE' is at least double the size of type 'type'.
Also detect unsgigned cases:
unsigned type a_t, b_t;
unsigned TYPE u_prod_T;
TYPE a_T, b_T, prod_T;
S1 a_t = ;
S2 b_t = ;
S3 a_T = (TYPE) a_t;
S4 b_T = (TYPE) b_t;
S5 prod_T = a_T * b_T;
S6 u_prod_T = (unsigned TYPE) prod_T;
and multiplication by constants:
type a_t;
TYPE a_T, prod_T;
S1 a_t = ;
S3 a_T = (TYPE) a_t;
S5 prod_T = a_T * CONST;
A special case of multiplication by constants is when 'TYPE' is 4 times
bigger than 'type', but CONST fits an intermediate type 2 times smaller
than 'TYPE'. In that case we create an additional pattern stmt for S3
to create a variable of the intermediate type, and perform widen-mult
on the intermediate type as well:
type a_t;
interm_type a_it;
TYPE a_T, prod_T, prod_T';
S1 a_t = ;
S3 a_T = (TYPE) a_t;
'--> a_it = (interm_type) a_t;
S5 prod_T = a_T * CONST;
'--> prod_T' = a_it w* CONST;
Input/Output:
* STMTS: Contains a stmt from which the pattern search begins. In the
example, when this function is called with S5, the pattern {S3,S4,S5,(S6)}
is detected. In case of unsigned widen-mult, the original stmt (S5) is
replaced with S6 in STMTS. In case of multiplication by a constant
of an intermediate type (the last case above), STMTS also contains S3
(inserted before S5).
Output:
* TYPE_IN: The type of the input arguments to the pattern.
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
WIDEN_MULT <a_t, b_t>
*/
static gimple
vect_recog_widen_mult_pattern (VEC (gimple, heap) **stmts,
tree *type_in, tree *type_out)
{
gimple last_stmt = VEC_pop (gimple, *stmts);
gimple def_stmt0, def_stmt1;
tree oprnd0, oprnd1;
tree type, half_type0, half_type1;
gimple pattern_stmt;
tree vectype, vectype_out = NULL_TREE;
tree dummy;
tree var;
enum tree_code dummy_code;
int dummy_int;
VEC (tree, heap) *dummy_vec;
bool op1_ok;
if (!is_gimple_assign (last_stmt))
return NULL;
type = gimple_expr_type (last_stmt);
/* Starting from LAST_STMT, follow the defs of its uses in search
of the above pattern. */
if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR)
return NULL;
oprnd0 = gimple_assign_rhs1 (last_stmt);
oprnd1 = gimple_assign_rhs2 (last_stmt);
if (!types_compatible_p (TREE_TYPE (oprnd0), type)
|| !types_compatible_p (TREE_TYPE (oprnd1), type))
return NULL;
/* Check argument 0. */
if (!widened_name_p (oprnd0, last_stmt, &half_type0, &def_stmt0, false))
return NULL;
/* Check argument 1. */
op1_ok = widened_name_p (oprnd1, last_stmt, &half_type1, &def_stmt1, false);
if (op1_ok)
{
oprnd0 = gimple_assign_rhs1 (def_stmt0);
oprnd1 = gimple_assign_rhs1 (def_stmt1);
}
else
{
if (TREE_CODE (oprnd1) == INTEGER_CST
&& TREE_CODE (half_type0) == INTEGER_TYPE
&& vect_handle_widen_op_by_const (last_stmt, MULT_EXPR, oprnd1,
&oprnd0, stmts, type,
&half_type0, def_stmt0))
half_type1 = half_type0;
else
return NULL;
}
/* Handle unsigned case. Look for
S6 u_prod_T = (unsigned TYPE) prod_T;
Use unsigned TYPE as the type for WIDEN_MULT_EXPR. */
if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (half_type0))
{
tree lhs = gimple_assign_lhs (last_stmt), use_lhs;
imm_use_iterator imm_iter;
use_operand_p use_p;
int nuses = 0;
gimple use_stmt = NULL;
tree use_type;
if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (half_type1))
return NULL;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
{
if (is_gimple_debug (USE_STMT (use_p)))
continue;
use_stmt = USE_STMT (use_p);
nuses++;
}
if (nuses != 1 || !is_gimple_assign (use_stmt)
|| gimple_assign_rhs_code (use_stmt) != NOP_EXPR)
return NULL;
use_lhs = gimple_assign_lhs (use_stmt);
use_type = TREE_TYPE (use_lhs);
if (!INTEGRAL_TYPE_P (use_type)
|| (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (use_type))
|| (TYPE_PRECISION (type) != TYPE_PRECISION (use_type)))
return NULL;
type = use_type;
last_stmt = use_stmt;
}
if (!types_compatible_p (half_type0, half_type1))
return NULL;
/* Pattern detected. */
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "vect_recog_widen_mult_pattern: detected: ");
/* Check target support */
vectype = get_vectype_for_scalar_type (half_type0);
vectype_out = get_vectype_for_scalar_type (type);
if (!vectype
|| !vectype_out
|| !supportable_widening_operation (WIDEN_MULT_EXPR, last_stmt,
vectype_out, vectype,
&dummy, &dummy, &dummy_code,
&dummy_code, &dummy_int, &dummy_vec))
return NULL;
*type_in = vectype;
*type_out = vectype_out;
/* Pattern supported. Create a stmt to be used to replace the pattern: */
var = vect_recog_temp_ssa_var (type, NULL);
pattern_stmt = gimple_build_assign_with_ops (WIDEN_MULT_EXPR, var, oprnd0,
oprnd1);
if (vect_print_dump_info (REPORT_DETAILS))
print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
VEC_safe_push (gimple, heap, *stmts, last_stmt);
return pattern_stmt;
}
/* Function vect_recog_pow_pattern
Try to find the following pattern:
x = POW (y, N);
with POW being one of pow, powf, powi, powif and N being
either 2 or 0.5.
Input:
* LAST_STMT: A stmt from which the pattern search begins.
Output:
* TYPE_IN: The type of the input arguments to the pattern.
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
x = x * x
or
x = sqrt (x)
*/
static gimple
vect_recog_pow_pattern (VEC (gimple, heap) **stmts, tree *type_in,
tree *type_out)
{
gimple last_stmt = VEC_index (gimple, *stmts, 0);
tree fn, base, exp = NULL;
gimple stmt;
tree var;
if (!is_gimple_call (last_stmt) || gimple_call_lhs (last_stmt) == NULL)
return NULL;
fn = gimple_call_fndecl (last_stmt);
if (fn == NULL_TREE || DECL_BUILT_IN_CLASS (fn) != BUILT_IN_NORMAL)
return NULL;
switch (DECL_FUNCTION_CODE (fn))
{
case BUILT_IN_POWIF:
case BUILT_IN_POWI:
case BUILT_IN_POWF:
case BUILT_IN_POW:
base = gimple_call_arg (last_stmt, 0);
exp = gimple_call_arg (last_stmt, 1);
if (TREE_CODE (exp) != REAL_CST
&& TREE_CODE (exp) != INTEGER_CST)
return NULL;
break;
default:
return NULL;
}
/* We now have a pow or powi builtin function call with a constant
exponent. */
*type_out = NULL_TREE;
/* Catch squaring. */
if ((host_integerp (exp, 0)
&& tree_low_cst (exp, 0) == 2)
|| (TREE_CODE (exp) == REAL_CST
&& REAL_VALUES_EQUAL (TREE_REAL_CST (exp), dconst2)))
{
*type_in = TREE_TYPE (base);
var = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL);
stmt = gimple_build_assign_with_ops (MULT_EXPR, var, base, base);
return stmt;
}
/* Catch square root. */
if (TREE_CODE (exp) == REAL_CST
&& REAL_VALUES_EQUAL (TREE_REAL_CST (exp), dconsthalf))
{
tree newfn = mathfn_built_in (TREE_TYPE (base), BUILT_IN_SQRT);
*type_in = get_vectype_for_scalar_type (TREE_TYPE (base));
if (*type_in)
{
gimple stmt = gimple_build_call (newfn, 1, base);
if (vectorizable_function (stmt, *type_in, *type_in)
!= NULL_TREE)
{
var = vect_recog_temp_ssa_var (TREE_TYPE (base), stmt);
gimple_call_set_lhs (stmt, var);
return stmt;
}
}
}
return NULL;
}
/* Function vect_recog_widen_sum_pattern
Try to find the following pattern:
type x_t;
TYPE x_T, sum = init;
loop:
sum_0 = phi <init, sum_1>
S1 x_t = *p;
S2 x_T = (TYPE) x_t;
S3 sum_1 = x_T + sum_0;
where type 'TYPE' is at least double the size of type 'type', i.e - we're
summing elements of type 'type' into an accumulator of type 'TYPE'. This is
a special case of a reduction computation.
Input:
* LAST_STMT: A stmt from which the pattern search begins. In the example,
when this function is called with S3, the pattern {S2,S3} will be detected.
Output:
* TYPE_IN: The type of the input arguments to the pattern.
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
WIDEN_SUM <x_t, sum_0>
Note: The widening-sum idiom is a widening reduction pattern that is
vectorized without preserving all the intermediate results. It
produces only N/2 (widened) results (by summing up pairs of
intermediate results) rather than all N results. Therefore, we
cannot allow this pattern when we want to get all the results and in
the correct order (as is the case when this computation is in an
inner-loop nested in an outer-loop that us being vectorized). */
static gimple
vect_recog_widen_sum_pattern (VEC (gimple, heap) **stmts, tree *type_in,
tree *type_out)
{
gimple stmt, last_stmt = VEC_index (gimple, *stmts, 0);
tree oprnd0, oprnd1;
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
tree type, half_type;
gimple pattern_stmt;
loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_info);
tree var;
if (!is_gimple_assign (last_stmt))
return NULL;
type = gimple_expr_type (last_stmt);
/* Look for the following pattern
DX = (TYPE) X;
sum_1 = DX + sum_0;
In which DX is at least double the size of X, and sum_1 has been
recognized as a reduction variable.
*/
/* Starting from LAST_STMT, follow the defs of its uses in search
of the above pattern. */
if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
return NULL;
if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
return NULL;
oprnd0 = gimple_assign_rhs1 (last_stmt);
oprnd1 = gimple_assign_rhs2 (last_stmt);
if (!types_compatible_p (TREE_TYPE (oprnd0), type)
|| !types_compatible_p (TREE_TYPE (oprnd1), type))
return NULL;
/* So far so good. Since last_stmt was detected as a (summation) reduction,
we know that oprnd1 is the reduction variable (defined by a loop-header
phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
Left to check that oprnd0 is defined by a cast from type 'type' to type
'TYPE'. */
if (!widened_name_p (oprnd0, last_stmt, &half_type, &stmt, true))
return NULL;
oprnd0 = gimple_assign_rhs1 (stmt);
*type_in = half_type;
*type_out = type;
/* Pattern detected. Create a stmt to be used to replace the pattern: */
var = vect_recog_temp_ssa_var (type, NULL);
pattern_stmt = gimple_build_assign_with_ops (WIDEN_SUM_EXPR, var,
oprnd0, oprnd1);
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "vect_recog_widen_sum_pattern: detected: ");
print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
}
/* We don't allow changing the order of the computation in the inner-loop
when doing outer-loop vectorization. */
gcc_assert (!nested_in_vect_loop_p (loop, last_stmt));
return pattern_stmt;
}
/* Return TRUE if the operation in STMT can be performed on a smaller type.
Input:
STMT - a statement to check.
DEF - we support operations with two operands, one of which is constant.
The other operand can be defined by a demotion operation, or by a
previous statement in a sequence of over-promoted operations. In the
later case DEF is used to replace that operand. (It is defined by a
pattern statement we created for the previous statement in the
sequence).
Input/output:
NEW_TYPE - Output: a smaller type that we are trying to use. Input: if not
NULL, it's the type of DEF.
STMTS - additional pattern statements. If a pattern statement (type
conversion) is created in this function, its original statement is
added to STMTS.
Output:
OP0, OP1 - if the operation fits a smaller type, OP0 and OP1 are the new
operands to use in the new pattern statement for STMT (will be created
in vect_recog_over_widening_pattern ()).
NEW_DEF_STMT - in case DEF has to be promoted, we create two pattern
statements for STMT: the first one is a type promotion and the second
one is the operation itself. We return the type promotion statement
in NEW_DEF_STMT and further store it in STMT_VINFO_PATTERN_DEF_SEQ of
the second pattern statement. */
static bool
vect_operation_fits_smaller_type (gimple stmt, tree def, tree *new_type,
tree *op0, tree *op1, gimple *new_def_stmt,
VEC (gimple, heap) **stmts)
{
enum tree_code code;
tree const_oprnd, oprnd;
tree interm_type = NULL_TREE, half_type, tmp, new_oprnd, type;
gimple def_stmt, new_stmt;
bool first = false;
loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (vinfo_for_stmt (stmt));
struct loop *loop = LOOP_VINFO_LOOP (loop_info);
*op0 = NULL_TREE;
*op1 = NULL_TREE;
*new_def_stmt = NULL;
if (!is_gimple_assign (stmt))
return false;
code = gimple_assign_rhs_code (stmt);
if (code != LSHIFT_EXPR && code != RSHIFT_EXPR
&& code != BIT_IOR_EXPR && code != BIT_XOR_EXPR && code != BIT_AND_EXPR)
return false;
oprnd = gimple_assign_rhs1 (stmt);
const_oprnd = gimple_assign_rhs2 (stmt);
type = gimple_expr_type (stmt);
if (TREE_CODE (oprnd) != SSA_NAME
|| TREE_CODE (const_oprnd) != INTEGER_CST)
return false;
/* If we are in the middle of a sequence, we use DEF from a previous
statement. Otherwise, OPRND has to be a result of type promotion. */
if (*new_type)
{
half_type = *new_type;
oprnd = def;
}
else
{
first = true;
if (!widened_name_p (oprnd, stmt, &half_type, &def_stmt, false)
|| !gimple_bb (def_stmt)
|| !flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
|| !vinfo_for_stmt (def_stmt))
return false;
}
/* Can we perform the operation on a smaller type? */
switch (code)
{
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case BIT_AND_EXPR:
if (!int_fits_type_p (const_oprnd, half_type))
{
/* HALF_TYPE is not enough. Try a bigger type if possible. */
if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
return false;
interm_type = build_nonstandard_integer_type (
TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
if (!int_fits_type_p (const_oprnd, interm_type))
return false;
}
break;
case LSHIFT_EXPR:
/* Try intermediate type - HALF_TYPE is not enough for sure. */
if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
return false;
/* Check that HALF_TYPE size + shift amount <= INTERM_TYPE size.
(e.g., if the original value was char, the shift amount is at most 8
if we want to use short). */
if (compare_tree_int (const_oprnd, TYPE_PRECISION (half_type)) == 1)
return false;
interm_type = build_nonstandard_integer_type (
TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
if (!vect_supportable_shift (code, interm_type))
return false;
break;
case RSHIFT_EXPR:
if (vect_supportable_shift (code, half_type))
break;
/* Try intermediate type - HALF_TYPE is not supported. */
if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
return false;
interm_type = build_nonstandard_integer_type (
TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
if (!vect_supportable_shift (code, interm_type))
return false;
break;
default:
gcc_unreachable ();
}
/* There are four possible cases:
1. OPRND is defined by a type promotion (in that case FIRST is TRUE, it's
the first statement in the sequence)
a. The original, HALF_TYPE, is not enough - we replace the promotion
from HALF_TYPE to TYPE with a promotion to INTERM_TYPE.
b. HALF_TYPE is sufficient, OPRND is set as the RHS of the original
promotion.
2. OPRND is defined by a pattern statement we created.
a. Its type is not sufficient for the operation, we create a new stmt:
a type conversion for OPRND from HALF_TYPE to INTERM_TYPE. We store
this statement in NEW_DEF_STMT, and it is later put in
STMT_VINFO_PATTERN_DEF_SEQ of the pattern statement for STMT.
b. OPRND is good to use in the new statement. */
if (first)
{
if (interm_type)
{
/* Replace the original type conversion HALF_TYPE->TYPE with
HALF_TYPE->INTERM_TYPE. */
if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)))
{
new_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt));
/* Check if the already created pattern stmt is what we need. */
if (!is_gimple_assign (new_stmt)
|| gimple_assign_rhs_code (new_stmt) != NOP_EXPR
|| TREE_TYPE (gimple_assign_lhs (new_stmt)) != interm_type)
return false;
VEC_safe_push (gimple, heap, *stmts, def_stmt);
oprnd = gimple_assign_lhs (new_stmt);
}
else
{
/* Create NEW_OPRND = (INTERM_TYPE) OPRND. */
oprnd = gimple_assign_rhs1 (def_stmt);
tmp = create_tmp_reg (interm_type, NULL);
add_referenced_var (tmp);
new_oprnd = make_ssa_name (tmp, NULL);
new_stmt = gimple_build_assign_with_ops (NOP_EXPR, new_oprnd,
oprnd, NULL_TREE);
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)) = new_stmt;
VEC_safe_push (gimple, heap, *stmts, def_stmt);
oprnd = new_oprnd;
}
}
else
{
/* Retrieve the operand before the type promotion. */
oprnd = gimple_assign_rhs1 (def_stmt);
}
}
else
{
if (interm_type)
{
/* Create a type conversion HALF_TYPE->INTERM_TYPE. */
tmp = create_tmp_reg (interm_type, NULL);
add_referenced_var (tmp);
new_oprnd = make_ssa_name (tmp, NULL);
new_stmt = gimple_build_assign_with_ops (NOP_EXPR, new_oprnd,
oprnd, NULL_TREE);
oprnd = new_oprnd;
*new_def_stmt = new_stmt;
}
/* Otherwise, OPRND is already set. */
}
if (interm_type)
*new_type = interm_type;
else
*new_type = half_type;
*op0 = oprnd;
*op1 = fold_convert (*new_type, const_oprnd);
return true;
}
/* Try to find a statement or a sequence of statements that can be performed
on a smaller type:
type x_t;
TYPE x_T, res0_T, res1_T;
loop:
S1 x_t = *p;
S2 x_T = (TYPE) x_t;
S3 res0_T = op (x_T, C0);
S4 res1_T = op (res0_T, C1);
S5 ... = () res1_T; - type demotion
where type 'TYPE' is at least double the size of type 'type', C0 and C1 are
constants.
Check if S3 and S4 can be done on a smaller type than 'TYPE', it can either
be 'type' or some intermediate type. For now, we expect S5 to be a type
demotion operation. We also check that S3 and S4 have only one use. */
static gimple
vect_recog_over_widening_pattern (VEC (gimple, heap) **stmts,
tree *type_in, tree *type_out)
{
gimple stmt = VEC_pop (gimple, *stmts);
gimple pattern_stmt = NULL, new_def_stmt, prev_stmt = NULL, use_stmt = NULL;
tree op0, op1, vectype = NULL_TREE, lhs, use_lhs, use_type;
imm_use_iterator imm_iter;
use_operand_p use_p;
int nuses = 0;
tree var = NULL_TREE, new_type = NULL_TREE, tmp, new_oprnd;
bool first;
struct loop *loop = (gimple_bb (stmt))->loop_father;
tree type = NULL;
first = true;
while (1)
{
if (!vinfo_for_stmt (stmt)
|| STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt)))
return NULL;
new_def_stmt = NULL;
if (!vect_operation_fits_smaller_type (stmt, var, &new_type,
&op0, &op1, &new_def_stmt,
stmts))
{
if (first)
return NULL;
else
break;
}
/* STMT can be performed on a smaller type. Check its uses. */
lhs = gimple_assign_lhs (stmt);
nuses = 0;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
{
if (is_gimple_debug (USE_STMT (use_p)))
continue;
use_stmt = USE_STMT (use_p);
nuses++;
}
if (nuses != 1 || !is_gimple_assign (use_stmt)
|| !gimple_bb (use_stmt)
|| !flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
return NULL;
/* Create pattern statement for STMT. */
vectype = get_vectype_for_scalar_type (new_type);
if (!vectype)
return NULL;
/* We want to collect all the statements for which we create pattern
statetments, except for the case when the last statement in the
sequence doesn't have a corresponding pattern statement. In such
case we associate the last pattern statement with the last statement
in the sequence. Therefore, we only add the original statement to
the list if we know that it is not the last. */
if (prev_stmt)
VEC_safe_push (gimple, heap, *stmts, prev_stmt);
var = vect_recog_temp_ssa_var (new_type, NULL);
pattern_stmt
= gimple_build_assign_with_ops (gimple_assign_rhs_code (stmt), var,
op0, op1);
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt)) = pattern_stmt;
new_pattern_def_seq (vinfo_for_stmt (stmt), new_def_stmt);
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "created pattern stmt: ");
print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
}
type = gimple_expr_type (stmt);
prev_stmt = stmt;
stmt = use_stmt;
first = false;
}
/* We got a sequence. We expect it to end with a type demotion operation.
Otherwise, we quit (for now). There are three possible cases: the
conversion is to NEW_TYPE (we don't do anything), the conversion is to
a type bigger than NEW_TYPE and/or the signedness of USE_TYPE and
NEW_TYPE differs (we create a new conversion statement). */
if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)))
{
use_lhs = gimple_assign_lhs (use_stmt);
use_type = TREE_TYPE (use_lhs);
/* Support only type demotion or signedess change. */
if (!INTEGRAL_TYPE_P (use_type)
|| TYPE_PRECISION (type) <= TYPE_PRECISION (use_type))
return NULL;
/* Check that NEW_TYPE is not bigger than the conversion result. */
if (TYPE_PRECISION (new_type) > TYPE_PRECISION (use_type))
return NULL;
if (TYPE_UNSIGNED (new_type) != TYPE_UNSIGNED (use_type)
|| TYPE_PRECISION (new_type) != TYPE_PRECISION (use_type))
{
/* Create NEW_TYPE->USE_TYPE conversion. */
tmp = create_tmp_reg (use_type, NULL);
add_referenced_var (tmp);
new_oprnd = make_ssa_name (tmp, NULL);
pattern_stmt = gimple_build_assign_with_ops (NOP_EXPR, new_oprnd,
var, NULL_TREE);
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt)) = pattern_stmt;
*type_in = get_vectype_for_scalar_type (new_type);
*type_out = get_vectype_for_scalar_type (use_type);
/* We created a pattern statement for the last statement in the
sequence, so we don't need to associate it with the pattern
statement created for PREV_STMT. Therefore, we add PREV_STMT
to the list in order to mark it later in vect_pattern_recog_1. */
if (prev_stmt)
VEC_safe_push (gimple, heap, *stmts, prev_stmt);
}
else
{
if (prev_stmt)
STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (use_stmt))
= STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (prev_stmt));
*type_in = vectype;
*type_out = NULL_TREE;
}
VEC_safe_push (gimple, heap, *stmts, use_stmt);
}
else
/* TODO: support general case, create a conversion to the correct type. */
return NULL;
/* Pattern detected. */
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "vect_recog_over_widening_pattern: detected: ");
print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
}
return pattern_stmt;
}
/* Detect widening shift pattern:
type a_t;
TYPE a_T, res_T;
S1 a_t = ;
S2 a_T = (TYPE) a_t;
S3 res_T = a_T << CONST;
where type 'TYPE' is at least double the size of type 'type'.
Also detect unsigned cases:
unsigned type a_t;
unsigned TYPE u_res_T;
TYPE a_T, res_T;
S1 a_t = ;
S2 a_T = (TYPE) a_t;
S3 res_T = a_T << CONST;
S4 u_res_T = (unsigned TYPE) res_T;
And a case when 'TYPE' is 4 times bigger than 'type'. In that case we
create an additional pattern stmt for S2 to create a variable of an
intermediate type, and perform widen-shift on the intermediate type:
type a_t;
interm_type a_it;
TYPE a_T, res_T, res_T';
S1 a_t = ;
S2 a_T = (TYPE) a_t;
'--> a_it = (interm_type) a_t;
S3 res_T = a_T << CONST;
'--> res_T' = a_it <<* CONST;
Input/Output:
* STMTS: Contains a stmt from which the pattern search begins.
In case of unsigned widen-shift, the original stmt (S3) is replaced with S4
in STMTS. When an intermediate type is used and a pattern statement is
created for S2, we also put S2 here (before S3).
Output:
* TYPE_IN: The type of the input arguments to the pattern.
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
WIDEN_LSHIFT_EXPR <a_t, CONST>. */
static gimple
vect_recog_widen_shift_pattern (VEC (gimple, heap) **stmts,
tree *type_in, tree *type_out)
{
gimple last_stmt = VEC_pop (gimple, *stmts);
gimple def_stmt0;
tree oprnd0, oprnd1;
tree type, half_type0;
gimple pattern_stmt, orig_stmt = NULL;
tree vectype, vectype_out = NULL_TREE;
tree dummy;
tree var;
enum tree_code dummy_code;
int dummy_int;
VEC (tree, heap) * dummy_vec;
gimple use_stmt = NULL;
bool over_widen = false;
if (!is_gimple_assign (last_stmt) || !vinfo_for_stmt (last_stmt))
return NULL;
orig_stmt = last_stmt;
if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (last_stmt)))
{
/* This statement was also detected as over-widening operation (it can't
be any other pattern, because only over-widening detects shifts).
LAST_STMT is the final type demotion statement, but its related
statement is shift. We analyze the related statement to catch cases:
orig code:
type a_t;
itype res;
TYPE a_T, res_T;
S1 a_T = (TYPE) a_t;
S2 res_T = a_T << CONST;
S3 res = (itype)res_T;
(size of type * 2 <= size of itype
and size of itype * 2 <= size of TYPE)
code after over-widening pattern detection:
S1 a_T = (TYPE) a_t;
--> a_it = (itype) a_t;
S2 res_T = a_T << CONST;
S3 res = (itype)res_T; <--- LAST_STMT
--> res = a_it << CONST;
after widen_shift:
S1 a_T = (TYPE) a_t;
--> a_it = (itype) a_t; - redundant
S2 res_T = a_T << CONST;
S3 res = (itype)res_T;
--> res = a_t w<< CONST;
i.e., we replace the three statements with res = a_t w<< CONST. */
last_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (last_stmt));
over_widen = true;
}
if (gimple_assign_rhs_code (last_stmt) != LSHIFT_EXPR)
return NULL;
oprnd0 = gimple_assign_rhs1 (last_stmt);
oprnd1 = gimple_assign_rhs2 (last_stmt);
if (TREE_CODE (oprnd0) != SSA_NAME || TREE_CODE (oprnd1) != INTEGER_CST)
return NULL;
/* Check operand 0: it has to be defined by a type promotion. */
if (!widened_name_p (oprnd0, last_stmt, &half_type0, &def_stmt0, false))
return NULL;
/* Check operand 1: has to be positive. We check that it fits the type
in vect_handle_widen_op_by_const (). */
if (tree_int_cst_compare (oprnd1, size_zero_node) <= 0)
return NULL;
oprnd0 = gimple_assign_rhs1 (def_stmt0);
type = gimple_expr_type (last_stmt);
/* Check if this a widening operation. */
if (!vect_handle_widen_op_by_const (last_stmt, LSHIFT_EXPR, oprnd1,
&oprnd0, stmts,
type, &half_type0, def_stmt0))
return NULL;
/* Handle unsigned case. Look for
S4 u_res_T = (unsigned TYPE) res_T;
Use unsigned TYPE as the type for WIDEN_LSHIFT_EXPR. */
if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (half_type0))
{
tree lhs = gimple_assign_lhs (last_stmt), use_lhs;
imm_use_iterator imm_iter;
use_operand_p use_p;
int nuses = 0;
tree use_type;
if (over_widen)
{
/* In case of over-widening pattern, S4 should be ORIG_STMT itself.
We check here that TYPE is the correct type for the operation,
i.e., it's the type of the original result. */
tree orig_type = gimple_expr_type (orig_stmt);
if ((TYPE_UNSIGNED (type) != TYPE_UNSIGNED (orig_type))
|| (TYPE_PRECISION (type) != TYPE_PRECISION (orig_type)))
return NULL;
}
else
{
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
{
if (is_gimple_debug (USE_STMT (use_p)))
continue;
use_stmt = USE_STMT (use_p);
nuses++;
}
if (nuses != 1 || !is_gimple_assign (use_stmt)
|| !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)))
return NULL;
use_lhs = gimple_assign_lhs (use_stmt);
use_type = TREE_TYPE (use_lhs);
if (!INTEGRAL_TYPE_P (use_type)
|| (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (use_type))
|| (TYPE_PRECISION (type) != TYPE_PRECISION (use_type)))
return NULL;
type = use_type;
}
}
/* Pattern detected. */
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "vect_recog_widen_shift_pattern: detected: ");
/* Check target support. */
vectype = get_vectype_for_scalar_type (half_type0);
vectype_out = get_vectype_for_scalar_type (type);
if (!vectype
|| !vectype_out
|| !supportable_widening_operation (WIDEN_LSHIFT_EXPR, last_stmt,
vectype_out, vectype,
&dummy, &dummy, &dummy_code,
&dummy_code, &dummy_int,
&dummy_vec))
return NULL;
*type_in = vectype;
*type_out = vectype_out;
/* Pattern supported. Create a stmt to be used to replace the pattern. */
var = vect_recog_temp_ssa_var (type, NULL);
pattern_stmt =
gimple_build_assign_with_ops (WIDEN_LSHIFT_EXPR, var, oprnd0, oprnd1);
if (vect_print_dump_info (REPORT_DETAILS))
print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
if (use_stmt)
last_stmt = use_stmt;
else
last_stmt = orig_stmt;
VEC_safe_push (gimple, heap, *stmts, last_stmt);
return pattern_stmt;
}
/* Detect a vector by vector shift pattern that wouldn't be otherwise
vectorized:
type a_t;
TYPE b_T, res_T;
S1 a_t = ;
S2 b_T = ;
S3 res_T = b_T op a_t;
where type 'TYPE' is a type with different size than 'type',
and op is <<, >> or rotate.
Also detect cases:
type a_t;
TYPE b_T, c_T, res_T;
S0 c_T = ;
S1 a_t = (type) c_T;
S2 b_T = ;
S3 res_T = b_T op a_t;
Input/Output:
* STMTS: Contains a stmt from which the pattern search begins,
i.e. the shift/rotate stmt. The original stmt (S3) is replaced
with a shift/rotate which has same type on both operands, in the
second case just b_T op c_T, in the first case with added cast
from a_t to c_T in STMT_VINFO_PATTERN_DEF_SEQ.
Output:
* TYPE_IN: The type of the input arguments to the pattern.
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the shift/rotate
S3 stmt. */
static gimple
vect_recog_vector_vector_shift_pattern (VEC (gimple, heap) **stmts,
tree *type_in, tree *type_out)
{
gimple last_stmt = VEC_pop (gimple, *stmts);
tree oprnd0, oprnd1, lhs, var;
gimple pattern_stmt, def_stmt;
enum tree_code rhs_code;
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
enum vect_def_type dt;
tree def;
if (!is_gimple_assign (last_stmt))
return NULL;
rhs_code = gimple_assign_rhs_code (last_stmt);
switch (rhs_code)
{
case LSHIFT_EXPR:
case RSHIFT_EXPR:
case LROTATE_EXPR:
case RROTATE_EXPR:
break;
default:
return NULL;
}
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
return NULL;
lhs = gimple_assign_lhs (last_stmt);
oprnd0 = gimple_assign_rhs1 (last_stmt);
oprnd1 = gimple_assign_rhs2 (last_stmt);
if (TREE_CODE (oprnd0) != SSA_NAME
|| TREE_CODE (oprnd1) != SSA_NAME
|| TYPE_MODE (TREE_TYPE (oprnd0)) == TYPE_MODE (TREE_TYPE (oprnd1))
|| TYPE_PRECISION (TREE_TYPE (oprnd1))
!= GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (oprnd1)))
|| TYPE_PRECISION (TREE_TYPE (lhs))
!= TYPE_PRECISION (TREE_TYPE (oprnd0)))
return NULL;
if (!vect_is_simple_use (oprnd1, last_stmt, loop_vinfo, NULL, &def_stmt,
&def, &dt))
return NULL;
if (dt != vect_internal_def)
return NULL;
*type_in = get_vectype_for_scalar_type (TREE_TYPE (oprnd0));
*type_out = *type_in;
if (*type_in == NULL_TREE)
return NULL;
def = NULL_TREE;
if (gimple_assign_cast_p (def_stmt))
{
tree rhs1 = gimple_assign_rhs1 (def_stmt);
if (TYPE_MODE (TREE_TYPE (rhs1)) == TYPE_MODE (TREE_TYPE (oprnd0))
&& TYPE_PRECISION (TREE_TYPE (rhs1))
== TYPE_PRECISION (TREE_TYPE (oprnd0)))
def = rhs1;
}
if (def == NULL_TREE)
{
def = vect_recog_temp_ssa_var (TREE_TYPE (oprnd0), NULL);
def_stmt = gimple_build_assign_with_ops (NOP_EXPR, def, oprnd1,
NULL_TREE);
new_pattern_def_seq (stmt_vinfo, def_stmt);
}
/* Pattern detected. */
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "vect_recog_vector_vector_shift_pattern: detected: ");
/* Pattern supported. Create a stmt to be used to replace the pattern. */
var = vect_recog_temp_ssa_var (TREE_TYPE (oprnd0), NULL);
pattern_stmt = gimple_build_assign_with_ops (rhs_code, var, oprnd0, def);
if (vect_print_dump_info (REPORT_DETAILS))
print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
VEC_safe_push (gimple, heap, *stmts, last_stmt);
return pattern_stmt;
}
/* Detect a signed division by power of two constant that wouldn't be
otherwise vectorized:
type a_t, b_t;
S1 a_t = b_t / N;
where type 'type' is a signed integral type and N is a constant positive
power of two.
Similarly handle signed modulo by power of two constant:
S4 a_t = b_t % N;
Input/Output:
* STMTS: Contains a stmt from which the pattern search begins,
i.e. the division stmt. S1 is replaced by:
S3 y_t = b_t < 0 ? N - 1 : 0;
S2 x_t = b_t + y_t;
S1' a_t = x_t >> log2 (N);
S4 is replaced by (where *_T temporaries have unsigned type):
S9 y_T = b_t < 0 ? -1U : 0U;
S8 z_T = y_T >> (sizeof (type_t) * CHAR_BIT - log2 (N));
S7 z_t = (type) z_T;
S6 w_t = b_t + z_t;
S5 x_t = w_t & (N - 1);
S4' a_t = x_t - z_t;
Output:
* TYPE_IN: The type of the input arguments to the pattern.
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the division
S1 or modulo S4 stmt. */
static gimple
vect_recog_sdivmod_pow2_pattern (VEC (gimple, heap) **stmts,
tree *type_in, tree *type_out)
{
gimple last_stmt = VEC_pop (gimple, *stmts);
tree oprnd0, oprnd1, vectype, itype, cond;
gimple pattern_stmt, def_stmt;
enum tree_code rhs_code;
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
optab optab;
if (!is_gimple_assign (last_stmt))
return NULL;
rhs_code = gimple_assign_rhs_code (last_stmt);
switch (rhs_code)
{
case TRUNC_DIV_EXPR:
case TRUNC_MOD_EXPR:
break;
default:
return NULL;
}
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
return NULL;
oprnd0 = gimple_assign_rhs1 (last_stmt);
oprnd1 = gimple_assign_rhs2 (last_stmt);
itype = TREE_TYPE (oprnd0);
if (TREE_CODE (oprnd0) != SSA_NAME
|| TREE_CODE (oprnd1) != INTEGER_CST
|| TREE_CODE (itype) != INTEGER_TYPE
|| TYPE_UNSIGNED (itype)
|| TYPE_PRECISION (itype) != GET_MODE_PRECISION (TYPE_MODE (itype))
|| !integer_pow2p (oprnd1)
|| tree_int_cst_sgn (oprnd1) != 1)
return NULL;
vectype = get_vectype_for_scalar_type (itype);
if (vectype == NULL_TREE)
return NULL;
/* If the target can handle vectorized division or modulo natively,
don't attempt to optimize this. */
optab = optab_for_tree_code (rhs_code, vectype, optab_default);
if (optab != NULL)
{
enum machine_mode vec_mode = TYPE_MODE (vectype);
int icode = (int) optab_handler (optab, vec_mode);
if (icode != CODE_FOR_nothing
|| GET_MODE_SIZE (vec_mode) == UNITS_PER_WORD)
return NULL;
}
/* Pattern detected. */
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "vect_recog_sdivmod_pow2_pattern: detected: ");
cond = build2 (LT_EXPR, boolean_type_node, oprnd0, build_int_cst (itype, 0));
if (rhs_code == TRUNC_DIV_EXPR)
{
tree var = vect_recog_temp_ssa_var (itype, NULL);
def_stmt
= gimple_build_assign_with_ops3 (COND_EXPR, var, cond,
fold_build2 (MINUS_EXPR, itype,
oprnd1,
build_int_cst (itype,
1)),
build_int_cst (itype, 0));
new_pattern_def_seq (stmt_vinfo, def_stmt);
var = vect_recog_temp_ssa_var (itype, NULL);
def_stmt
= gimple_build_assign_with_ops (PLUS_EXPR, var, oprnd0,
gimple_assign_lhs (def_stmt));
append_pattern_def_seq (stmt_vinfo, def_stmt);
pattern_stmt
= gimple_build_assign_with_ops (RSHIFT_EXPR,
vect_recog_temp_ssa_var (itype, NULL),
var,
build_int_cst (itype,
tree_log2 (oprnd1)));
}
else
{
tree signmask;
STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
if (compare_tree_int (oprnd1, 2) == 0)
{
signmask = vect_recog_temp_ssa_var (itype, NULL);
def_stmt
= gimple_build_assign_with_ops3 (COND_EXPR, signmask, cond,
build_int_cst (itype, 1),
build_int_cst (itype, 0));
append_pattern_def_seq (stmt_vinfo, def_stmt);
}
else
{
tree utype
= build_nonstandard_integer_type (TYPE_PRECISION (itype), 1);
tree vecutype = get_vectype_for_scalar_type (utype);
tree shift
= build_int_cst (utype, GET_MODE_BITSIZE (TYPE_MODE (itype))
- tree_log2 (oprnd1));
tree var = vect_recog_temp_ssa_var (utype, NULL);
stmt_vec_info def_stmt_vinfo;
def_stmt
= gimple_build_assign_with_ops3 (COND_EXPR, var, cond,
build_int_cst (utype, -1),
build_int_cst (utype, 0));
def_stmt_vinfo = new_stmt_vec_info (def_stmt, loop_vinfo, NULL);
set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecutype;
append_pattern_def_seq (stmt_vinfo, def_stmt);
var = vect_recog_temp_ssa_var (utype, NULL);
def_stmt
= gimple_build_assign_with_ops (RSHIFT_EXPR, var,
gimple_assign_lhs (def_stmt),
shift);
def_stmt_vinfo = new_stmt_vec_info (def_stmt, loop_vinfo, NULL);
set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecutype;
append_pattern_def_seq (stmt_vinfo, def_stmt);
signmask = vect_recog_temp_ssa_var (itype, NULL);
def_stmt
= gimple_build_assign_with_ops (NOP_EXPR, signmask, var,
NULL_TREE);
append_pattern_def_seq (stmt_vinfo, def_stmt);
}
def_stmt
= gimple_build_assign_with_ops (PLUS_EXPR,
vect_recog_temp_ssa_var (itype, NULL),
oprnd0, signmask);
append_pattern_def_seq (stmt_vinfo, def_stmt);
def_stmt
= gimple_build_assign_with_ops (BIT_AND_EXPR,
vect_recog_temp_ssa_var (itype, NULL),
gimple_assign_lhs (def_stmt),
fold_build2 (MINUS_EXPR, itype,
oprnd1,
build_int_cst (itype,
1)));
append_pattern_def_seq (stmt_vinfo, def_stmt);
pattern_stmt
= gimple_build_assign_with_ops (MINUS_EXPR,
vect_recog_temp_ssa_var (itype, NULL),
gimple_assign_lhs (def_stmt),
signmask);
}
if (vect_print_dump_info (REPORT_DETAILS))
print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
VEC_safe_push (gimple, heap, *stmts, last_stmt);
*type_in = vectype;
*type_out = vectype;
return pattern_stmt;
}
/* Function vect_recog_mixed_size_cond_pattern
Try to find the following pattern:
type x_t, y_t;
TYPE a_T, b_T, c_T;
loop:
S1 a_T = x_t CMP y_t ? b_T : c_T;
where type 'TYPE' is an integral type which has different size
from 'type'. b_T and c_T are constants and if 'TYPE' is wider
than 'type', the constants need to fit into an integer type
with the same width as 'type'.
Input:
* LAST_STMT: A stmt from which the pattern search begins.
Output:
* TYPE_IN: The type of the input arguments to the pattern.
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the pattern.
Additionally a def_stmt is added.
a_it = x_t CMP y_t ? b_it : c_it;
a_T = (TYPE) a_it; */
static gimple
vect_recog_mixed_size_cond_pattern (VEC (gimple, heap) **stmts, tree *type_in,
tree *type_out)
{
gimple last_stmt = VEC_index (gimple, *stmts, 0);
tree cond_expr, then_clause, else_clause;
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt), def_stmt_info;
tree type, vectype, comp_vectype, itype, vecitype;
enum machine_mode cmpmode;
gimple pattern_stmt, def_stmt;
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
if (!is_gimple_assign (last_stmt)
|| gimple_assign_rhs_code (last_stmt) != COND_EXPR
|| STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def)
return NULL;
cond_expr = gimple_assign_rhs1 (last_stmt);
then_clause = gimple_assign_rhs2 (last_stmt);
else_clause = gimple_assign_rhs3 (last_stmt);
if (TREE_CODE (then_clause) != INTEGER_CST
|| TREE_CODE (else_clause) != INTEGER_CST)
return NULL;
if (!COMPARISON_CLASS_P (cond_expr))
return NULL;
comp_vectype
= get_vectype_for_scalar_type (TREE_TYPE (TREE_OPERAND (cond_expr, 0)));
if (comp_vectype == NULL_TREE)
return NULL;
type = gimple_expr_type (last_stmt);
cmpmode = GET_MODE_INNER (TYPE_MODE (comp_vectype));
if (GET_MODE_BITSIZE (TYPE_MODE (type)) == GET_MODE_BITSIZE (cmpmode))
return NULL;
vectype = get_vectype_for_scalar_type (type);
if (vectype == NULL_TREE)
return NULL;
if (expand_vec_cond_expr_p (vectype, comp_vectype))
return NULL;
itype = build_nonstandard_integer_type (GET_MODE_BITSIZE (cmpmode),
TYPE_UNSIGNED (type));
if (itype == NULL_TREE
|| GET_MODE_BITSIZE (TYPE_MODE (itype)) != GET_MODE_BITSIZE (cmpmode))
return NULL;
vecitype = get_vectype_for_scalar_type (itype);
if (vecitype == NULL_TREE)
return NULL;
if (!expand_vec_cond_expr_p (vecitype, comp_vectype))
return NULL;
if (GET_MODE_BITSIZE (TYPE_MODE (type)) > GET_MODE_BITSIZE (cmpmode))
{
if (!int_fits_type_p (then_clause, itype)
|| !int_fits_type_p (else_clause, itype))
return NULL;
}
def_stmt
= gimple_build_assign_with_ops3 (COND_EXPR,
vect_recog_temp_ssa_var (itype, NULL),
unshare_expr (cond_expr),
fold_convert (itype, then_clause),
fold_convert (itype, else_clause));
pattern_stmt
= gimple_build_assign_with_ops (NOP_EXPR,
vect_recog_temp_ssa_var (type, NULL),
gimple_assign_lhs (def_stmt), NULL_TREE);
new_pattern_def_seq (stmt_vinfo, def_stmt);
def_stmt_info = new_stmt_vec_info (def_stmt, loop_vinfo, NULL);
set_vinfo_for_stmt (def_stmt, def_stmt_info);
STMT_VINFO_VECTYPE (def_stmt_info) = vecitype;
*type_in = vecitype;
*type_out = vectype;
return pattern_stmt;
}
/* Helper function of vect_recog_bool_pattern. Called recursively, return
true if bool VAR can be optimized that way. */
static bool
check_bool_pattern (tree var, loop_vec_info loop_vinfo)
{
gimple def_stmt;
enum vect_def_type dt;
tree def, rhs1;
enum tree_code rhs_code;
if (!vect_is_simple_use (var, NULL, loop_vinfo, NULL, &def_stmt, &def, &dt))
return false;
if (dt != vect_internal_def)
return false;
if (!is_gimple_assign (def_stmt))
return false;
if (!has_single_use (def))
return false;
rhs1 = gimple_assign_rhs1 (def_stmt);
rhs_code = gimple_assign_rhs_code (def_stmt);
switch (rhs_code)
{
case SSA_NAME:
return check_bool_pattern (rhs1, loop_vinfo);
CASE_CONVERT:
if ((TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
|| !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
&& TREE_CODE (TREE_TYPE (rhs1)) != BOOLEAN_TYPE)
return false;
return check_bool_pattern (rhs1, loop_vinfo);
case BIT_NOT_EXPR:
return check_bool_pattern (rhs1, loop_vinfo);
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
if (!check_bool_pattern (rhs1, loop_vinfo))
return false;
return check_bool_pattern (gimple_assign_rhs2 (def_stmt), loop_vinfo);
default:
if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
{
tree vecitype, comp_vectype;
/* If the comparison can throw, then is_gimple_condexpr will be
false and we can't make a COND_EXPR/VEC_COND_EXPR out of it. */
if (stmt_could_throw_p (def_stmt))
return false;
comp_vectype = get_vectype_for_scalar_type (TREE_TYPE (rhs1));
if (comp_vectype == NULL_TREE)
return false;
if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE)
{
enum machine_mode mode = TYPE_MODE (TREE_TYPE (rhs1));
tree itype
= build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
vecitype = get_vectype_for_scalar_type (itype);
if (vecitype == NULL_TREE)
return false;
}
else
vecitype = comp_vectype;
return expand_vec_cond_expr_p (vecitype, comp_vectype);
}
return false;
}
}
/* Helper function of adjust_bool_pattern. Add a cast to TYPE to a previous
stmt (SSA_NAME_DEF_STMT of VAR) by moving the COND_EXPR from RELATED_STMT
to PATTERN_DEF_SEQ and adding a cast as RELATED_STMT. */
static tree
adjust_bool_pattern_cast (tree type, tree var)
{
stmt_vec_info stmt_vinfo = vinfo_for_stmt (SSA_NAME_DEF_STMT (var));
gimple cast_stmt, pattern_stmt;
gcc_assert (!STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo));
pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
new_pattern_def_seq (stmt_vinfo, pattern_stmt);
cast_stmt
= gimple_build_assign_with_ops (NOP_EXPR,
vect_recog_temp_ssa_var (type, NULL),
gimple_assign_lhs (pattern_stmt),
NULL_TREE);
STMT_VINFO_RELATED_STMT (stmt_vinfo) = cast_stmt;
return gimple_assign_lhs (cast_stmt);
}
/* Helper function of vect_recog_bool_pattern. Do the actual transformations,
recursively. VAR is an SSA_NAME that should be transformed from bool
to a wider integer type, OUT_TYPE is the desired final integer type of
the whole pattern, TRUEVAL should be NULL unless optimizing
BIT_AND_EXPR into a COND_EXPR with one integer from one of the operands
in the then_clause, STMTS is where statements with added pattern stmts
should be pushed to. */
static tree
adjust_bool_pattern (tree var, tree out_type, tree trueval,
VEC (gimple, heap) **stmts)
{
gimple stmt = SSA_NAME_DEF_STMT (var);
enum tree_code rhs_code, def_rhs_code;
tree itype, cond_expr, rhs1, rhs2, irhs1, irhs2;
location_t loc;
gimple pattern_stmt, def_stmt;
rhs1 = gimple_assign_rhs1 (stmt);
rhs2 = gimple_assign_rhs2 (stmt);
rhs_code = gimple_assign_rhs_code (stmt);
loc = gimple_location (stmt);
switch (rhs_code)
{
case SSA_NAME:
CASE_CONVERT:
irhs1 = adjust_bool_pattern (rhs1, out_type, NULL_TREE, stmts);
itype = TREE_TYPE (irhs1);
pattern_stmt
= gimple_build_assign_with_ops (SSA_NAME,
vect_recog_temp_ssa_var (itype, NULL),
irhs1, NULL_TREE);
break;
case BIT_NOT_EXPR:
irhs1 = adjust_bool_pattern (rhs1, out_type, NULL_TREE, stmts);
itype = TREE_TYPE (irhs1);
pattern_stmt
= gimple_build_assign_with_ops (BIT_XOR_EXPR,
vect_recog_temp_ssa_var (itype, NULL),
irhs1, build_int_cst (itype, 1));
break;
case BIT_AND_EXPR:
/* Try to optimize x = y & (a < b ? 1 : 0); into
x = (a < b ? y : 0);
E.g. for:
bool a_b, b_b, c_b;
TYPE d_T;
S1 a_b = x1 CMP1 y1;
S2 b_b = x2 CMP2 y2;
S3 c_b = a_b & b_b;
S4 d_T = (TYPE) c_b;
we would normally emit:
S1' a_T = x1 CMP1 y1 ? 1 : 0;
S2' b_T = x2 CMP2 y2 ? 1 : 0;
S3' c_T = a_T & b_T;
S4' d_T = c_T;
but we can save one stmt by using the
result of one of the COND_EXPRs in the other COND_EXPR and leave
BIT_AND_EXPR stmt out:
S1' a_T = x1 CMP1 y1 ? 1 : 0;
S3' c_T = x2 CMP2 y2 ? a_T : 0;
S4' f_T = c_T;
At least when VEC_COND_EXPR is implemented using masks
cond ? 1 : 0 is as expensive as cond ? var : 0, in both cases it
computes the comparison masks and ands it, in one case with
all ones vector, in the other case with a vector register.
Don't do this for BIT_IOR_EXPR, because cond ? 1 : var; is
often more expensive. */
def_stmt = SSA_NAME_DEF_STMT (rhs2);
def_rhs_code = gimple_assign_rhs_code (def_stmt);
if (TREE_CODE_CLASS (def_rhs_code) == tcc_comparison)
{
tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
irhs1 = adjust_bool_pattern (rhs1, out_type, NULL_TREE, stmts);
if (TYPE_PRECISION (TREE_TYPE (irhs1))
== GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (def_rhs1))))
{
gimple tstmt;
stmt_vec_info stmt_def_vinfo = vinfo_for_stmt (def_stmt);
irhs2 = adjust_bool_pattern (rhs2, out_type, irhs1, stmts);
tstmt = VEC_pop (gimple, *stmts);
gcc_assert (tstmt == def_stmt);
VEC_quick_push (gimple, *stmts, stmt);
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt))
= STMT_VINFO_RELATED_STMT (stmt_def_vinfo);
gcc_assert (!STMT_VINFO_PATTERN_DEF_SEQ (stmt_def_vinfo));
STMT_VINFO_RELATED_STMT (stmt_def_vinfo) = NULL;
return irhs2;
}
else
irhs2 = adjust_bool_pattern (rhs2, out_type, NULL_TREE, stmts);
goto and_ior_xor;
}
def_stmt = SSA_NAME_DEF_STMT (rhs1);
def_rhs_code = gimple_assign_rhs_code (def_stmt);
if (TREE_CODE_CLASS (def_rhs_code) == tcc_comparison)
{
tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
irhs2 = adjust_bool_pattern (rhs2, out_type, NULL_TREE, stmts);
if (TYPE_PRECISION (TREE_TYPE (irhs2))
== GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (def_rhs1))))
{
gimple tstmt;
stmt_vec_info stmt_def_vinfo = vinfo_for_stmt (def_stmt);
irhs1 = adjust_bool_pattern (rhs1, out_type, irhs2, stmts);
tstmt = VEC_pop (gimple, *stmts);
gcc_assert (tstmt == def_stmt);
VEC_quick_push (gimple, *stmts, stmt);
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt))
= STMT_VINFO_RELATED_STMT (stmt_def_vinfo);
gcc_assert (!STMT_VINFO_PATTERN_DEF_SEQ (stmt_def_vinfo));
STMT_VINFO_RELATED_STMT (stmt_def_vinfo) = NULL;
return irhs1;
}
else
irhs1 = adjust_bool_pattern (rhs1, out_type, NULL_TREE, stmts);
goto and_ior_xor;
}
/* FALLTHRU */
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
irhs1 = adjust_bool_pattern (rhs1, out_type, NULL_TREE, stmts);
irhs2 = adjust_bool_pattern (rhs2, out_type, NULL_TREE, stmts);
and_ior_xor:
if (TYPE_PRECISION (TREE_TYPE (irhs1))
!= TYPE_PRECISION (TREE_TYPE (irhs2)))
{
int prec1 = TYPE_PRECISION (TREE_TYPE (irhs1));
int prec2 = TYPE_PRECISION (TREE_TYPE (irhs2));
int out_prec = TYPE_PRECISION (out_type);
if (absu_hwi (out_prec - prec1) < absu_hwi (out_prec - prec2))
irhs2 = adjust_bool_pattern_cast (TREE_TYPE (irhs1), rhs2);
else if (absu_hwi (out_prec - prec1) > absu_hwi (out_prec - prec2))
irhs1 = adjust_bool_pattern_cast (TREE_TYPE (irhs2), rhs1);
else
{
irhs1 = adjust_bool_pattern_cast (out_type, rhs1);
irhs2 = adjust_bool_pattern_cast (out_type, rhs2);
}
}
itype = TREE_TYPE (irhs1);
pattern_stmt
= gimple_build_assign_with_ops (rhs_code,
vect_recog_temp_ssa_var (itype, NULL),
irhs1, irhs2);
break;
default:
gcc_assert (TREE_CODE_CLASS (rhs_code) == tcc_comparison);
if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE
|| !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
{
enum machine_mode mode = TYPE_MODE (TREE_TYPE (rhs1));
itype
= build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
}
else
itype = TREE_TYPE (rhs1);
cond_expr = build2_loc (loc, rhs_code, itype, rhs1, rhs2);
if (trueval == NULL_TREE)
trueval = build_int_cst (itype, 1);
else
gcc_checking_assert (useless_type_conversion_p (itype,
TREE_TYPE (trueval)));
pattern_stmt
= gimple_build_assign_with_ops3 (COND_EXPR,
vect_recog_temp_ssa_var (itype, NULL),
cond_expr, trueval,
build_int_cst (itype, 0));
break;
}
VEC_safe_push (gimple, heap, *stmts, stmt);
gimple_set_location (pattern_stmt, loc);
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt)) = pattern_stmt;
return gimple_assign_lhs (pattern_stmt);
}
/* Function vect_recog_bool_pattern
Try to find pattern like following:
bool a_b, b_b, c_b, d_b, e_b;
TYPE f_T;
loop:
S1 a_b = x1 CMP1 y1;
S2 b_b = x2 CMP2 y2;
S3 c_b = a_b & b_b;
S4 d_b = x3 CMP3 y3;
S5 e_b = c_b | d_b;
S6 f_T = (TYPE) e_b;
where type 'TYPE' is an integral type.
Input:
* LAST_STMT: A stmt at the end from which the pattern
search begins, i.e. cast of a bool to
an integer type.
Output:
* TYPE_IN: The type of the input arguments to the pattern.
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the pattern.
Assuming size of TYPE is the same as size of all comparisons
(otherwise some casts would be added where needed), the above
sequence we create related pattern stmts:
S1' a_T = x1 CMP1 y1 ? 1 : 0;
S3' c_T = x2 CMP2 y2 ? a_T : 0;
S4' d_T = x3 CMP3 y3 ? 1 : 0;
S5' e_T = c_T | d_T;
S6' f_T = e_T;
Instead of the above S3' we could emit:
S2' b_T = x2 CMP2 y2 ? 1 : 0;
S3' c_T = a_T | b_T;
but the above is more efficient. */
static gimple
vect_recog_bool_pattern (VEC (gimple, heap) **stmts, tree *type_in,
tree *type_out)
{
gimple last_stmt = VEC_pop (gimple, *stmts);
enum tree_code rhs_code;
tree var, lhs, rhs, vectype;
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
gimple pattern_stmt;
if (!is_gimple_assign (last_stmt))
return NULL;
var = gimple_assign_rhs1 (last_stmt);
lhs = gimple_assign_lhs (last_stmt);
if ((TYPE_PRECISION (TREE_TYPE (var)) != 1
|| !TYPE_UNSIGNED (TREE_TYPE (var)))
&& TREE_CODE (TREE_TYPE (var)) != BOOLEAN_TYPE)
return NULL;
rhs_code = gimple_assign_rhs_code (last_stmt);
if (CONVERT_EXPR_CODE_P (rhs_code))
{
if (TREE_CODE (TREE_TYPE (lhs)) != INTEGER_TYPE
|| TYPE_PRECISION (TREE_TYPE (lhs)) == 1)
return NULL;
vectype = get_vectype_for_scalar_type (TREE_TYPE (lhs));
if (vectype == NULL_TREE)
return NULL;
if (!check_bool_pattern (var, loop_vinfo))
return NULL;
rhs = adjust_bool_pattern (var, TREE_TYPE (lhs), NULL_TREE, stmts);
lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
pattern_stmt
= gimple_build_assign_with_ops (SSA_NAME, lhs, rhs, NULL_TREE);
else
pattern_stmt
= gimple_build_assign_with_ops (NOP_EXPR, lhs, rhs, NULL_TREE);
*type_out = vectype;
*type_in = vectype;
VEC_safe_push (gimple, heap, *stmts, last_stmt);
return pattern_stmt;
}
else if (rhs_code == SSA_NAME
&& STMT_VINFO_DATA_REF (stmt_vinfo))
{
stmt_vec_info pattern_stmt_info;
vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
gcc_assert (vectype != NULL_TREE);
if (!VECTOR_MODE_P (TYPE_MODE (vectype)))
return NULL;
if (!check_bool_pattern (var, loop_vinfo))
return NULL;
rhs = adjust_bool_pattern (var, TREE_TYPE (vectype), NULL_TREE, stmts);
lhs = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (vectype), lhs);
if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
{
tree rhs2 = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
gimple cast_stmt
= gimple_build_assign_with_ops (NOP_EXPR, rhs2, rhs, NULL_TREE);
new_pattern_def_seq (stmt_vinfo, cast_stmt);
rhs = rhs2;
}
pattern_stmt
= gimple_build_assign_with_ops (SSA_NAME, lhs, rhs, NULL_TREE);
pattern_stmt_info = new_stmt_vec_info (pattern_stmt, loop_vinfo, NULL);
set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
STMT_VINFO_DATA_REF (pattern_stmt_info)
= STMT_VINFO_DATA_REF (stmt_vinfo);
STMT_VINFO_DR_BASE_ADDRESS (pattern_stmt_info)
= STMT_VINFO_DR_BASE_ADDRESS (stmt_vinfo);
STMT_VINFO_DR_INIT (pattern_stmt_info) = STMT_VINFO_DR_INIT (stmt_vinfo);
STMT_VINFO_DR_OFFSET (pattern_stmt_info)
= STMT_VINFO_DR_OFFSET (stmt_vinfo);
STMT_VINFO_DR_STEP (pattern_stmt_info) = STMT_VINFO_DR_STEP (stmt_vinfo);
STMT_VINFO_DR_ALIGNED_TO (pattern_stmt_info)
= STMT_VINFO_DR_ALIGNED_TO (stmt_vinfo);
DR_STMT (STMT_VINFO_DATA_REF (stmt_vinfo)) = pattern_stmt;
*type_out = vectype;
*type_in = vectype;
VEC_safe_push (gimple, heap, *stmts, last_stmt);
return pattern_stmt;
}
else
return NULL;
}
/* Mark statements that are involved in a pattern. */
static inline void
vect_mark_pattern_stmts (gimple orig_stmt, gimple pattern_stmt,
tree pattern_vectype)
{
stmt_vec_info pattern_stmt_info, def_stmt_info;
stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (orig_stmt_info);
gimple def_stmt;
pattern_stmt_info = vinfo_for_stmt (pattern_stmt);
if (pattern_stmt_info == NULL)
{
pattern_stmt_info = new_stmt_vec_info (pattern_stmt, loop_vinfo, NULL);
set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
}
gimple_set_bb (pattern_stmt, gimple_bb (orig_stmt));
STMT_VINFO_RELATED_STMT (pattern_stmt_info) = orig_stmt;
STMT_VINFO_DEF_TYPE (pattern_stmt_info)
= STMT_VINFO_DEF_TYPE (orig_stmt_info);
STMT_VINFO_VECTYPE (pattern_stmt_info) = pattern_vectype;
STMT_VINFO_IN_PATTERN_P (orig_stmt_info) = true;
STMT_VINFO_RELATED_STMT (orig_stmt_info) = pattern_stmt;
STMT_VINFO_PATTERN_DEF_SEQ (pattern_stmt_info)
= STMT_VINFO_PATTERN_DEF_SEQ (orig_stmt_info);
if (STMT_VINFO_PATTERN_DEF_SEQ (pattern_stmt_info))
{
gimple_stmt_iterator si;
for (si = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (pattern_stmt_info));
!gsi_end_p (si); gsi_next (&si))
{
def_stmt = gsi_stmt (si);
def_stmt_info = vinfo_for_stmt (def_stmt);
if (def_stmt_info == NULL)
{
def_stmt_info = new_stmt_vec_info (def_stmt, loop_vinfo, NULL);
set_vinfo_for_stmt (def_stmt, def_stmt_info);
}
gimple_set_bb (def_stmt, gimple_bb (orig_stmt));
STMT_VINFO_RELATED_STMT (def_stmt_info) = orig_stmt;
STMT_VINFO_DEF_TYPE (def_stmt_info)
= STMT_VINFO_DEF_TYPE (orig_stmt_info);
if (STMT_VINFO_VECTYPE (def_stmt_info) == NULL_TREE)
STMT_VINFO_VECTYPE (def_stmt_info) = pattern_vectype;
}
}
}
/* Function vect_pattern_recog_1
Input:
PATTERN_RECOG_FUNC: A pointer to a function that detects a certain
computation pattern.
STMT: A stmt from which the pattern search should start.
If PATTERN_RECOG_FUNC successfully detected the pattern, it creates an
expression that computes the same functionality and can be used to
replace the sequence of stmts that are involved in the pattern.
Output:
This function checks if the expression returned by PATTERN_RECOG_FUNC is
supported in vector form by the target. We use 'TYPE_IN' to obtain the
relevant vector type. If 'TYPE_IN' is already a vector type, then this
indicates that target support had already been checked by PATTERN_RECOG_FUNC.
If 'TYPE_OUT' is also returned by PATTERN_RECOG_FUNC, we check that it fits
to the available target pattern.
This function also does some bookkeeping, as explained in the documentation
for vect_recog_pattern. */
static void
vect_pattern_recog_1 (vect_recog_func_ptr vect_recog_func,
gimple_stmt_iterator si,
VEC (gimple, heap) **stmts_to_replace)
{
gimple stmt = gsi_stmt (si), pattern_stmt;
stmt_vec_info stmt_info;
loop_vec_info loop_vinfo;
tree pattern_vectype;
tree type_in, type_out;
enum tree_code code;
int i;
gimple next;
VEC_truncate (gimple, *stmts_to_replace, 0);
VEC_quick_push (gimple, *stmts_to_replace, stmt);
pattern_stmt = (* vect_recog_func) (stmts_to_replace, &type_in, &type_out);
if (!pattern_stmt)
return;
stmt = VEC_last (gimple, *stmts_to_replace);
stmt_info = vinfo_for_stmt (stmt);
loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
if (VECTOR_MODE_P (TYPE_MODE (type_in)))
{
/* No need to check target support (already checked by the pattern
recognition function). */
pattern_vectype = type_out ? type_out : type_in;
}
else
{
enum machine_mode vec_mode;
enum insn_code icode;
optab optab;
/* Check target support */
type_in = get_vectype_for_scalar_type (type_in);
if (!type_in)
return;
if (type_out)
type_out = get_vectype_for_scalar_type (type_out);
else
type_out = type_in;
if (!type_out)
return;
pattern_vectype = type_out;
if (is_gimple_assign (pattern_stmt))
code = gimple_assign_rhs_code (pattern_stmt);
else
{
gcc_assert (is_gimple_call (pattern_stmt));
code = CALL_EXPR;
}
optab = optab_for_tree_code (code, type_in, optab_default);
vec_mode = TYPE_MODE (type_in);
if (!optab
|| (icode = optab_handler (optab, vec_mode)) == CODE_FOR_nothing
|| (insn_data[icode].operand[0].mode != TYPE_MODE (type_out)))
return;
}
/* Found a vectorizable pattern. */
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "pattern recognized: ");
print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
}
/* Mark the stmts that are involved in the pattern. */
vect_mark_pattern_stmts (stmt, pattern_stmt, pattern_vectype);
/* Patterns cannot be vectorized using SLP, because they change the order of
computation. */
FOR_EACH_VEC_ELT (gimple, LOOP_VINFO_REDUCTIONS (loop_vinfo), i, next)
if (next == stmt)
VEC_ordered_remove (gimple, LOOP_VINFO_REDUCTIONS (loop_vinfo), i);
/* It is possible that additional pattern stmts are created and inserted in
STMTS_TO_REPLACE. We create a stmt_info for each of them, and mark the
relevant statements. */
for (i = 0; VEC_iterate (gimple, *stmts_to_replace, i, stmt)
&& (unsigned) i < (VEC_length (gimple, *stmts_to_replace) - 1);
i++)
{
stmt_info = vinfo_for_stmt (stmt);
pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "additional pattern stmt: ");
print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
}
vect_mark_pattern_stmts (stmt, pattern_stmt, NULL_TREE);
}
}
/* Function vect_pattern_recog
Input:
LOOP_VINFO - a struct_loop_info of a loop in which we want to look for
computation idioms.
Output - for each computation idiom that is detected we create a new stmt
that provides the same functionality and that can be vectorized. We
also record some information in the struct_stmt_info of the relevant
stmts, as explained below:
At the entry to this function we have the following stmts, with the
following initial value in the STMT_VINFO fields:
stmt in_pattern_p related_stmt vec_stmt
S1: a_i = .... - - -
S2: a_2 = ..use(a_i).. - - -
S3: a_1 = ..use(a_2).. - - -
S4: a_0 = ..use(a_1).. - - -
S5: ... = ..use(a_0).. - - -
Say the sequence {S1,S2,S3,S4} was detected as a pattern that can be
represented by a single stmt. We then:
- create a new stmt S6 equivalent to the pattern (the stmt is not
inserted into the code)
- fill in the STMT_VINFO fields as follows:
in_pattern_p related_stmt vec_stmt
S1: a_i = .... - - -
S2: a_2 = ..use(a_i).. - - -
S3: a_1 = ..use(a_2).. - - -
S4: a_0 = ..use(a_1).. true S6 -
'---> S6: a_new = .... - S4 -
S5: ... = ..use(a_0).. - - -
(the last stmt in the pattern (S4) and the new pattern stmt (S6) point
to each other through the RELATED_STMT field).
S6 will be marked as relevant in vect_mark_stmts_to_be_vectorized instead
of S4 because it will replace all its uses. Stmts {S1,S2,S3} will
remain irrelevant unless used by stmts other than S4.
If vectorization succeeds, vect_transform_stmt will skip over {S1,S2,S3}
(because they are marked as irrelevant). It will vectorize S6, and record
a pointer to the new vector stmt VS6 from S6 (as usual).
S4 will be skipped, and S5 will be vectorized as usual:
in_pattern_p related_stmt vec_stmt
S1: a_i = .... - - -
S2: a_2 = ..use(a_i).. - - -
S3: a_1 = ..use(a_2).. - - -
> VS6: va_new = .... - - -
S4: a_0 = ..use(a_1).. true S6 VS6
'---> S6: a_new = .... - S4 VS6
> VS5: ... = ..vuse(va_new).. - - -
S5: ... = ..use(a_0).. - - -
DCE could then get rid of {S1,S2,S3,S4,S5} (if their defs are not used
elsewhere), and we'll end up with:
VS6: va_new = ....
VS5: ... = ..vuse(va_new)..
In case of more than one pattern statements, e.g., widen-mult with
intermediate type:
S1 a_t = ;
S2 a_T = (TYPE) a_t;
'--> S3: a_it = (interm_type) a_t;
S4 prod_T = a_T * CONST;
'--> S5: prod_T' = a_it w* CONST;
there may be other users of a_T outside the pattern. In that case S2 will
be marked as relevant (as well as S3), and both S2 and S3 will be analyzed
and vectorized. The vector stmt VS2 will be recorded in S2, and VS3 will
be recorded in S3. */
void
vect_pattern_recog (loop_vec_info loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
unsigned int nbbs = loop->num_nodes;
gimple_stmt_iterator si;
unsigned int i, j;
vect_recog_func_ptr vect_recog_func;
VEC (gimple, heap) *stmts_to_replace = VEC_alloc (gimple, heap, 1);
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "=== vect_pattern_recog ===");
/* Scan through the loop stmts, applying the pattern recognition
functions starting at each stmt visited: */
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
/* Scan over all generic vect_recog_xxx_pattern functions. */
for (j = 0; j < NUM_PATTERNS; j++)
{
vect_recog_func = vect_vect_recog_func_ptrs[j];
vect_pattern_recog_1 (vect_recog_func, si,
&stmts_to_replace);
}
}
}
VEC_free (gimple, heap, stmts_to_replace);
}