mirror of
https://github.com/autc04/Retro68.git
synced 2024-11-19 18:46:30 +00:00
118 lines
3.4 KiB
C
118 lines
3.4 KiB
C
/* Compute complex base 10 logarithm.
|
|
Copyright (C) 1997-2018 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "quadmath-imp.h"
|
|
|
|
/* log_10 (2). */
|
|
#define LOG10_2 0.3010299956639811952137388947244930267682Q
|
|
|
|
/* pi * log10 (e). */
|
|
#define PI_LOG10E 1.364376353841841347485783625431355770210Q
|
|
|
|
__complex128
|
|
clog10q (__complex128 x)
|
|
{
|
|
__complex128 result;
|
|
int rcls = fpclassifyq (__real__ x);
|
|
int icls = fpclassifyq (__imag__ x);
|
|
|
|
if (__glibc_unlikely (rcls == QUADFP_ZERO && icls == QUADFP_ZERO))
|
|
{
|
|
/* Real and imaginary part are 0.0. */
|
|
__imag__ result = signbitq (__real__ x) ? PI_LOG10E : 0;
|
|
__imag__ result = copysignq (__imag__ result, __imag__ x);
|
|
/* Yes, the following line raises an exception. */
|
|
__real__ result = -1 / fabsq (__real__ x);
|
|
}
|
|
else if (__glibc_likely (rcls != QUADFP_NAN && icls != QUADFP_NAN))
|
|
{
|
|
/* Neither real nor imaginary part is NaN. */
|
|
__float128 absx = fabsq (__real__ x), absy = fabsq (__imag__ x);
|
|
int scale = 0;
|
|
|
|
if (absx < absy)
|
|
{
|
|
__float128 t = absx;
|
|
absx = absy;
|
|
absy = t;
|
|
}
|
|
|
|
if (absx > FLT128_MAX / 2)
|
|
{
|
|
scale = -1;
|
|
absx = scalbnq (absx, scale);
|
|
absy = (absy >= FLT128_MIN * 2 ? scalbnq (absy, scale) : 0);
|
|
}
|
|
else if (absx < FLT128_MIN && absy < FLT128_MIN)
|
|
{
|
|
scale = FLT128_MANT_DIG;
|
|
absx = scalbnq (absx, scale);
|
|
absy = scalbnq (absy, scale);
|
|
}
|
|
|
|
if (absx == 1 && scale == 0)
|
|
{
|
|
__real__ result = (log1pq (absy * absy)
|
|
* ((__float128) M_LOG10Eq / 2));
|
|
math_check_force_underflow_nonneg (__real__ result);
|
|
}
|
|
else if (absx > 1 && absx < 2 && absy < 1 && scale == 0)
|
|
{
|
|
__float128 d2m1 = (absx - 1) * (absx + 1);
|
|
if (absy >= FLT128_EPSILON)
|
|
d2m1 += absy * absy;
|
|
__real__ result = log1pq (d2m1) * ((__float128) M_LOG10Eq / 2);
|
|
}
|
|
else if (absx < 1
|
|
&& absx >= 0.5Q
|
|
&& absy < FLT128_EPSILON / 2
|
|
&& scale == 0)
|
|
{
|
|
__float128 d2m1 = (absx - 1) * (absx + 1);
|
|
__real__ result = log1pq (d2m1) * ((__float128) M_LOG10Eq / 2);
|
|
}
|
|
else if (absx < 1
|
|
&& absx >= 0.5Q
|
|
&& scale == 0
|
|
&& absx * absx + absy * absy >= 0.5Q)
|
|
{
|
|
__float128 d2m1 = __quadmath_x2y2m1q (absx, absy);
|
|
__real__ result = log1pq (d2m1) * ((__float128) M_LOG10Eq / 2);
|
|
}
|
|
else
|
|
{
|
|
__float128 d = hypotq (absx, absy);
|
|
__real__ result = log10q (d) - scale * LOG10_2;
|
|
}
|
|
|
|
__imag__ result = M_LOG10Eq * atan2q (__imag__ x, __real__ x);
|
|
}
|
|
else
|
|
{
|
|
__imag__ result = nanq ("");
|
|
if (rcls == QUADFP_INFINITE || icls == QUADFP_INFINITE)
|
|
/* Real or imaginary part is infinite. */
|
|
__real__ result = HUGE_VALQ;
|
|
else
|
|
__real__ result = nanq ("");
|
|
}
|
|
|
|
return result;
|
|
}
|