mirror of
https://github.com/autc04/Retro68.git
synced 2024-12-27 07:31:35 +00:00
1464 lines
40 KiB
C
1464 lines
40 KiB
C
/* Liveness for SSA trees.
|
|
Copyright (C) 2003-2014 Free Software Foundation, Inc.
|
|
Contributed by Andrew MacLeod <amacleod@redhat.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "hash-table.h"
|
|
#include "tm.h"
|
|
#include "tree.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "bitmap.h"
|
|
#include "sbitmap.h"
|
|
#include "basic-block.h"
|
|
#include "tree-ssa-alias.h"
|
|
#include "internal-fn.h"
|
|
#include "gimple-expr.h"
|
|
#include "is-a.h"
|
|
#include "gimple.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimple-ssa.h"
|
|
#include "tree-phinodes.h"
|
|
#include "ssa-iterators.h"
|
|
#include "stringpool.h"
|
|
#include "tree-ssanames.h"
|
|
#include "expr.h"
|
|
#include "tree-dfa.h"
|
|
#include "timevar.h"
|
|
#include "dumpfile.h"
|
|
#include "tree-ssa-live.h"
|
|
#include "diagnostic-core.h"
|
|
#include "debug.h"
|
|
#include "flags.h"
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
static void verify_live_on_entry (tree_live_info_p);
|
|
#endif
|
|
|
|
|
|
/* VARMAP maintains a mapping from SSA version number to real variables.
|
|
|
|
All SSA_NAMES are divided into partitions. Initially each ssa_name is the
|
|
only member of it's own partition. Coalescing will attempt to group any
|
|
ssa_names which occur in a copy or in a PHI node into the same partition.
|
|
|
|
At the end of out-of-ssa, each partition becomes a "real" variable and is
|
|
rewritten as a compiler variable.
|
|
|
|
The var_map data structure is used to manage these partitions. It allows
|
|
partitions to be combined, and determines which partition belongs to what
|
|
ssa_name or variable, and vice versa. */
|
|
|
|
|
|
/* Hashtable helpers. */
|
|
|
|
struct tree_int_map_hasher : typed_noop_remove <tree_int_map>
|
|
{
|
|
typedef tree_int_map value_type;
|
|
typedef tree_int_map compare_type;
|
|
static inline hashval_t hash (const value_type *);
|
|
static inline bool equal (const value_type *, const compare_type *);
|
|
};
|
|
|
|
inline hashval_t
|
|
tree_int_map_hasher::hash (const value_type *v)
|
|
{
|
|
return tree_map_base_hash (v);
|
|
}
|
|
|
|
inline bool
|
|
tree_int_map_hasher::equal (const value_type *v, const compare_type *c)
|
|
{
|
|
return tree_int_map_eq (v, c);
|
|
}
|
|
|
|
|
|
/* This routine will initialize the basevar fields of MAP. */
|
|
|
|
static void
|
|
var_map_base_init (var_map map)
|
|
{
|
|
int x, num_part;
|
|
tree var;
|
|
hash_table <tree_int_map_hasher> tree_to_index;
|
|
struct tree_int_map *m, *mapstorage;
|
|
|
|
num_part = num_var_partitions (map);
|
|
tree_to_index.create (num_part);
|
|
/* We can have at most num_part entries in the hash tables, so it's
|
|
enough to allocate so many map elements once, saving some malloc
|
|
calls. */
|
|
mapstorage = m = XNEWVEC (struct tree_int_map, num_part);
|
|
|
|
/* If a base table already exists, clear it, otherwise create it. */
|
|
free (map->partition_to_base_index);
|
|
map->partition_to_base_index = (int *) xmalloc (sizeof (int) * num_part);
|
|
|
|
/* Build the base variable list, and point partitions at their bases. */
|
|
for (x = 0; x < num_part; x++)
|
|
{
|
|
struct tree_int_map **slot;
|
|
unsigned baseindex;
|
|
var = partition_to_var (map, x);
|
|
if (SSA_NAME_VAR (var)
|
|
&& (!VAR_P (SSA_NAME_VAR (var))
|
|
|| !DECL_IGNORED_P (SSA_NAME_VAR (var))))
|
|
m->base.from = SSA_NAME_VAR (var);
|
|
else
|
|
/* This restricts what anonymous SSA names we can coalesce
|
|
as it restricts the sets we compute conflicts for.
|
|
Using TREE_TYPE to generate sets is the easies as
|
|
type equivalency also holds for SSA names with the same
|
|
underlying decl.
|
|
|
|
Check gimple_can_coalesce_p when changing this code. */
|
|
m->base.from = (TYPE_CANONICAL (TREE_TYPE (var))
|
|
? TYPE_CANONICAL (TREE_TYPE (var))
|
|
: TREE_TYPE (var));
|
|
/* If base variable hasn't been seen, set it up. */
|
|
slot = tree_to_index.find_slot (m, INSERT);
|
|
if (!*slot)
|
|
{
|
|
baseindex = m - mapstorage;
|
|
m->to = baseindex;
|
|
*slot = m;
|
|
m++;
|
|
}
|
|
else
|
|
baseindex = (*slot)->to;
|
|
map->partition_to_base_index[x] = baseindex;
|
|
}
|
|
|
|
map->num_basevars = m - mapstorage;
|
|
|
|
free (mapstorage);
|
|
tree_to_index. dispose ();
|
|
}
|
|
|
|
|
|
/* Remove the base table in MAP. */
|
|
|
|
static void
|
|
var_map_base_fini (var_map map)
|
|
{
|
|
/* Free the basevar info if it is present. */
|
|
if (map->partition_to_base_index != NULL)
|
|
{
|
|
free (map->partition_to_base_index);
|
|
map->partition_to_base_index = NULL;
|
|
map->num_basevars = 0;
|
|
}
|
|
}
|
|
/* Create a variable partition map of SIZE, initialize and return it. */
|
|
|
|
var_map
|
|
init_var_map (int size)
|
|
{
|
|
var_map map;
|
|
|
|
map = (var_map) xmalloc (sizeof (struct _var_map));
|
|
map->var_partition = partition_new (size);
|
|
|
|
map->partition_to_view = NULL;
|
|
map->view_to_partition = NULL;
|
|
map->num_partitions = size;
|
|
map->partition_size = size;
|
|
map->num_basevars = 0;
|
|
map->partition_to_base_index = NULL;
|
|
return map;
|
|
}
|
|
|
|
|
|
/* Free memory associated with MAP. */
|
|
|
|
void
|
|
delete_var_map (var_map map)
|
|
{
|
|
var_map_base_fini (map);
|
|
partition_delete (map->var_partition);
|
|
free (map->partition_to_view);
|
|
free (map->view_to_partition);
|
|
free (map);
|
|
}
|
|
|
|
|
|
/* This function will combine the partitions in MAP for VAR1 and VAR2. It
|
|
Returns the partition which represents the new partition. If the two
|
|
partitions cannot be combined, NO_PARTITION is returned. */
|
|
|
|
int
|
|
var_union (var_map map, tree var1, tree var2)
|
|
{
|
|
int p1, p2, p3;
|
|
|
|
gcc_assert (TREE_CODE (var1) == SSA_NAME);
|
|
gcc_assert (TREE_CODE (var2) == SSA_NAME);
|
|
|
|
/* This is independent of partition_to_view. If partition_to_view is
|
|
on, then whichever one of these partitions is absorbed will never have a
|
|
dereference into the partition_to_view array any more. */
|
|
|
|
p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
|
|
p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
|
|
|
|
gcc_assert (p1 != NO_PARTITION);
|
|
gcc_assert (p2 != NO_PARTITION);
|
|
|
|
if (p1 == p2)
|
|
p3 = p1;
|
|
else
|
|
p3 = partition_union (map->var_partition, p1, p2);
|
|
|
|
if (map->partition_to_view)
|
|
p3 = map->partition_to_view[p3];
|
|
|
|
return p3;
|
|
}
|
|
|
|
|
|
/* Compress the partition numbers in MAP such that they fall in the range
|
|
0..(num_partitions-1) instead of wherever they turned out during
|
|
the partitioning exercise. This removes any references to unused
|
|
partitions, thereby allowing bitmaps and other vectors to be much
|
|
denser.
|
|
|
|
This is implemented such that compaction doesn't affect partitioning.
|
|
Ie., once partitions are created and possibly merged, running one
|
|
or more different kind of compaction will not affect the partitions
|
|
themselves. Their index might change, but all the same variables will
|
|
still be members of the same partition group. This allows work on reduced
|
|
sets, and no loss of information when a larger set is later desired.
|
|
|
|
In particular, coalescing can work on partitions which have 2 or more
|
|
definitions, and then 'recompact' later to include all the single
|
|
definitions for assignment to program variables. */
|
|
|
|
|
|
/* Set MAP back to the initial state of having no partition view. Return a
|
|
bitmap which has a bit set for each partition number which is in use in the
|
|
varmap. */
|
|
|
|
static bitmap
|
|
partition_view_init (var_map map)
|
|
{
|
|
bitmap used;
|
|
int tmp;
|
|
unsigned int x;
|
|
|
|
used = BITMAP_ALLOC (NULL);
|
|
|
|
/* Already in a view? Abandon the old one. */
|
|
if (map->partition_to_view)
|
|
{
|
|
free (map->partition_to_view);
|
|
map->partition_to_view = NULL;
|
|
}
|
|
if (map->view_to_partition)
|
|
{
|
|
free (map->view_to_partition);
|
|
map->view_to_partition = NULL;
|
|
}
|
|
|
|
/* Find out which partitions are actually referenced. */
|
|
for (x = 0; x < map->partition_size; x++)
|
|
{
|
|
tmp = partition_find (map->var_partition, x);
|
|
if (ssa_name (tmp) != NULL_TREE && !virtual_operand_p (ssa_name (tmp))
|
|
&& (!has_zero_uses (ssa_name (tmp))
|
|
|| !SSA_NAME_IS_DEFAULT_DEF (ssa_name (tmp))))
|
|
bitmap_set_bit (used, tmp);
|
|
}
|
|
|
|
map->num_partitions = map->partition_size;
|
|
return used;
|
|
}
|
|
|
|
|
|
/* This routine will finalize the view data for MAP based on the partitions
|
|
set in SELECTED. This is either the same bitmap returned from
|
|
partition_view_init, or a trimmed down version if some of those partitions
|
|
were not desired in this view. SELECTED is freed before returning. */
|
|
|
|
static void
|
|
partition_view_fini (var_map map, bitmap selected)
|
|
{
|
|
bitmap_iterator bi;
|
|
unsigned count, i, x, limit;
|
|
|
|
gcc_assert (selected);
|
|
|
|
count = bitmap_count_bits (selected);
|
|
limit = map->partition_size;
|
|
|
|
/* If its a one-to-one ratio, we don't need any view compaction. */
|
|
if (count < limit)
|
|
{
|
|
map->partition_to_view = (int *)xmalloc (limit * sizeof (int));
|
|
memset (map->partition_to_view, 0xff, (limit * sizeof (int)));
|
|
map->view_to_partition = (int *)xmalloc (count * sizeof (int));
|
|
|
|
i = 0;
|
|
/* Give each selected partition an index. */
|
|
EXECUTE_IF_SET_IN_BITMAP (selected, 0, x, bi)
|
|
{
|
|
map->partition_to_view[x] = i;
|
|
map->view_to_partition[i] = x;
|
|
i++;
|
|
}
|
|
gcc_assert (i == count);
|
|
map->num_partitions = i;
|
|
}
|
|
|
|
BITMAP_FREE (selected);
|
|
}
|
|
|
|
|
|
/* Create a partition view which includes all the used partitions in MAP. If
|
|
WANT_BASES is true, create the base variable map as well. */
|
|
|
|
void
|
|
partition_view_normal (var_map map, bool want_bases)
|
|
{
|
|
bitmap used;
|
|
|
|
used = partition_view_init (map);
|
|
partition_view_fini (map, used);
|
|
|
|
if (want_bases)
|
|
var_map_base_init (map);
|
|
else
|
|
var_map_base_fini (map);
|
|
}
|
|
|
|
|
|
/* Create a partition view in MAP which includes just partitions which occur in
|
|
the bitmap ONLY. If WANT_BASES is true, create the base variable map
|
|
as well. */
|
|
|
|
void
|
|
partition_view_bitmap (var_map map, bitmap only, bool want_bases)
|
|
{
|
|
bitmap used;
|
|
bitmap new_partitions = BITMAP_ALLOC (NULL);
|
|
unsigned x, p;
|
|
bitmap_iterator bi;
|
|
|
|
used = partition_view_init (map);
|
|
EXECUTE_IF_SET_IN_BITMAP (only, 0, x, bi)
|
|
{
|
|
p = partition_find (map->var_partition, x);
|
|
gcc_assert (bitmap_bit_p (used, p));
|
|
bitmap_set_bit (new_partitions, p);
|
|
}
|
|
partition_view_fini (map, new_partitions);
|
|
|
|
if (want_bases)
|
|
var_map_base_init (map);
|
|
else
|
|
var_map_base_fini (map);
|
|
}
|
|
|
|
|
|
static bitmap usedvars;
|
|
|
|
/* Mark VAR as used, so that it'll be preserved during rtl expansion.
|
|
Returns true if VAR wasn't marked before. */
|
|
|
|
static inline bool
|
|
set_is_used (tree var)
|
|
{
|
|
return bitmap_set_bit (usedvars, DECL_UID (var));
|
|
}
|
|
|
|
/* Return true if VAR is marked as used. */
|
|
|
|
static inline bool
|
|
is_used_p (tree var)
|
|
{
|
|
return bitmap_bit_p (usedvars, DECL_UID (var));
|
|
}
|
|
|
|
static inline void mark_all_vars_used (tree *);
|
|
|
|
/* Helper function for mark_all_vars_used, called via walk_tree. */
|
|
|
|
static tree
|
|
mark_all_vars_used_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
|
|
{
|
|
tree t = *tp;
|
|
enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
|
|
tree b;
|
|
|
|
if (TREE_CODE (t) == SSA_NAME)
|
|
{
|
|
*walk_subtrees = 0;
|
|
t = SSA_NAME_VAR (t);
|
|
if (!t)
|
|
return NULL;
|
|
}
|
|
|
|
if (IS_EXPR_CODE_CLASS (c)
|
|
&& (b = TREE_BLOCK (t)) != NULL)
|
|
TREE_USED (b) = true;
|
|
|
|
/* Ignore TMR_OFFSET and TMR_STEP for TARGET_MEM_REFS, as those
|
|
fields do not contain vars. */
|
|
if (TREE_CODE (t) == TARGET_MEM_REF)
|
|
{
|
|
mark_all_vars_used (&TMR_BASE (t));
|
|
mark_all_vars_used (&TMR_INDEX (t));
|
|
mark_all_vars_used (&TMR_INDEX2 (t));
|
|
*walk_subtrees = 0;
|
|
return NULL;
|
|
}
|
|
|
|
/* Only need to mark VAR_DECLS; parameters and return results are not
|
|
eliminated as unused. */
|
|
if (TREE_CODE (t) == VAR_DECL)
|
|
{
|
|
/* When a global var becomes used for the first time also walk its
|
|
initializer (non global ones don't have any). */
|
|
if (set_is_used (t) && is_global_var (t)
|
|
&& DECL_CONTEXT (t) == current_function_decl)
|
|
mark_all_vars_used (&DECL_INITIAL (t));
|
|
}
|
|
/* remove_unused_scope_block_p requires information about labels
|
|
which are not DECL_IGNORED_P to tell if they might be used in the IL. */
|
|
else if (TREE_CODE (t) == LABEL_DECL)
|
|
/* Although the TREE_USED values that the frontend uses would be
|
|
acceptable (albeit slightly over-conservative) for our purposes,
|
|
init_vars_expansion clears TREE_USED for LABEL_DECLs too, so we
|
|
must re-compute it here. */
|
|
TREE_USED (t) = 1;
|
|
|
|
if (IS_TYPE_OR_DECL_P (t))
|
|
*walk_subtrees = 0;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Mark the scope block SCOPE and its subblocks unused when they can be
|
|
possibly eliminated if dead. */
|
|
|
|
static void
|
|
mark_scope_block_unused (tree scope)
|
|
{
|
|
tree t;
|
|
TREE_USED (scope) = false;
|
|
if (!(*debug_hooks->ignore_block) (scope))
|
|
TREE_USED (scope) = true;
|
|
for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
|
|
mark_scope_block_unused (t);
|
|
}
|
|
|
|
/* Look if the block is dead (by possibly eliminating its dead subblocks)
|
|
and return true if so.
|
|
Block is declared dead if:
|
|
1) No statements are associated with it.
|
|
2) Declares no live variables
|
|
3) All subblocks are dead
|
|
or there is precisely one subblocks and the block
|
|
has same abstract origin as outer block and declares
|
|
no variables, so it is pure wrapper.
|
|
When we are not outputting full debug info, we also eliminate dead variables
|
|
out of scope blocks to let them to be recycled by GGC and to save copying work
|
|
done by the inliner. */
|
|
|
|
static bool
|
|
remove_unused_scope_block_p (tree scope)
|
|
{
|
|
tree *t, *next;
|
|
bool unused = !TREE_USED (scope);
|
|
int nsubblocks = 0;
|
|
|
|
for (t = &BLOCK_VARS (scope); *t; t = next)
|
|
{
|
|
next = &DECL_CHAIN (*t);
|
|
|
|
/* Debug info of nested function refers to the block of the
|
|
function. We might stil call it even if all statements
|
|
of function it was nested into was elliminated.
|
|
|
|
TODO: We can actually look into cgraph to see if function
|
|
will be output to file. */
|
|
if (TREE_CODE (*t) == FUNCTION_DECL)
|
|
unused = false;
|
|
|
|
/* If a decl has a value expr, we need to instantiate it
|
|
regardless of debug info generation, to avoid codegen
|
|
differences in memory overlap tests. update_equiv_regs() may
|
|
indirectly call validate_equiv_mem() to test whether a
|
|
SET_DEST overlaps with others, and if the value expr changes
|
|
by virtual register instantiation, we may get end up with
|
|
different results. */
|
|
else if (TREE_CODE (*t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*t))
|
|
unused = false;
|
|
|
|
/* Remove everything we don't generate debug info for. */
|
|
else if (DECL_IGNORED_P (*t))
|
|
{
|
|
*t = DECL_CHAIN (*t);
|
|
next = t;
|
|
}
|
|
|
|
/* When we are outputting debug info, we usually want to output
|
|
info about optimized-out variables in the scope blocks.
|
|
Exception are the scope blocks not containing any instructions
|
|
at all so user can't get into the scopes at first place. */
|
|
else if (is_used_p (*t))
|
|
unused = false;
|
|
else if (TREE_CODE (*t) == LABEL_DECL && TREE_USED (*t))
|
|
/* For labels that are still used in the IL, the decision to
|
|
preserve them must not depend DEBUG_INFO_LEVEL, otherwise we
|
|
risk having different ordering in debug vs. non-debug builds
|
|
during inlining or versioning.
|
|
A label appearing here (we have already checked DECL_IGNORED_P)
|
|
should not be used in the IL unless it has been explicitly used
|
|
before, so we use TREE_USED as an approximation. */
|
|
/* In principle, we should do the same here as for the debug case
|
|
below, however, when debugging, there might be additional nested
|
|
levels that keep an upper level with a label live, so we have to
|
|
force this block to be considered used, too. */
|
|
unused = false;
|
|
|
|
/* When we are not doing full debug info, we however can keep around
|
|
only the used variables for cfgexpand's memory packing saving quite
|
|
a lot of memory.
|
|
|
|
For sake of -g3, we keep around those vars but we don't count this as
|
|
use of block, so innermost block with no used vars and no instructions
|
|
can be considered dead. We only want to keep around blocks user can
|
|
breakpoint into and ask about value of optimized out variables.
|
|
|
|
Similarly we need to keep around types at least until all
|
|
variables of all nested blocks are gone. We track no
|
|
information on whether given type is used or not, so we have
|
|
to keep them even when not emitting debug information,
|
|
otherwise we may end up remapping variables and their (local)
|
|
types in different orders depending on whether debug
|
|
information is being generated. */
|
|
|
|
else if (TREE_CODE (*t) == TYPE_DECL
|
|
|| debug_info_level == DINFO_LEVEL_NORMAL
|
|
|| debug_info_level == DINFO_LEVEL_VERBOSE)
|
|
;
|
|
else
|
|
{
|
|
*t = DECL_CHAIN (*t);
|
|
next = t;
|
|
}
|
|
}
|
|
|
|
for (t = &BLOCK_SUBBLOCKS (scope); *t ;)
|
|
if (remove_unused_scope_block_p (*t))
|
|
{
|
|
if (BLOCK_SUBBLOCKS (*t))
|
|
{
|
|
tree next = BLOCK_CHAIN (*t);
|
|
tree supercontext = BLOCK_SUPERCONTEXT (*t);
|
|
|
|
*t = BLOCK_SUBBLOCKS (*t);
|
|
while (BLOCK_CHAIN (*t))
|
|
{
|
|
BLOCK_SUPERCONTEXT (*t) = supercontext;
|
|
t = &BLOCK_CHAIN (*t);
|
|
}
|
|
BLOCK_CHAIN (*t) = next;
|
|
BLOCK_SUPERCONTEXT (*t) = supercontext;
|
|
t = &BLOCK_CHAIN (*t);
|
|
nsubblocks ++;
|
|
}
|
|
else
|
|
*t = BLOCK_CHAIN (*t);
|
|
}
|
|
else
|
|
{
|
|
t = &BLOCK_CHAIN (*t);
|
|
nsubblocks ++;
|
|
}
|
|
|
|
|
|
if (!unused)
|
|
;
|
|
/* Outer scope is always used. */
|
|
else if (!BLOCK_SUPERCONTEXT (scope)
|
|
|| TREE_CODE (BLOCK_SUPERCONTEXT (scope)) == FUNCTION_DECL)
|
|
unused = false;
|
|
/* Innermost blocks with no live variables nor statements can be always
|
|
eliminated. */
|
|
else if (!nsubblocks)
|
|
;
|
|
/* When not generating debug info we can eliminate info on unused
|
|
variables. */
|
|
else if (debug_info_level == DINFO_LEVEL_NONE)
|
|
{
|
|
/* Even for -g0 don't prune outer scopes from artificial
|
|
functions, otherwise diagnostics using tree_nonartificial_location
|
|
will not be emitted properly. */
|
|
if (inlined_function_outer_scope_p (scope))
|
|
{
|
|
tree ao = scope;
|
|
|
|
while (ao
|
|
&& TREE_CODE (ao) == BLOCK
|
|
&& BLOCK_ABSTRACT_ORIGIN (ao) != ao)
|
|
ao = BLOCK_ABSTRACT_ORIGIN (ao);
|
|
if (ao
|
|
&& TREE_CODE (ao) == FUNCTION_DECL
|
|
&& DECL_DECLARED_INLINE_P (ao)
|
|
&& lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
|
|
unused = false;
|
|
}
|
|
}
|
|
else if (BLOCK_VARS (scope) || BLOCK_NUM_NONLOCALIZED_VARS (scope))
|
|
unused = false;
|
|
/* See if this block is important for representation of inlined function.
|
|
Inlined functions are always represented by block with
|
|
block_ultimate_origin being set to FUNCTION_DECL and DECL_SOURCE_LOCATION
|
|
set... */
|
|
else if (inlined_function_outer_scope_p (scope))
|
|
unused = false;
|
|
else
|
|
/* Verfify that only blocks with source location set
|
|
are entry points to the inlined functions. */
|
|
gcc_assert (LOCATION_LOCUS (BLOCK_SOURCE_LOCATION (scope))
|
|
== UNKNOWN_LOCATION);
|
|
|
|
TREE_USED (scope) = !unused;
|
|
return unused;
|
|
}
|
|
|
|
/* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
|
|
eliminated during the tree->rtl conversion process. */
|
|
|
|
static inline void
|
|
mark_all_vars_used (tree *expr_p)
|
|
{
|
|
walk_tree (expr_p, mark_all_vars_used_1, NULL, NULL);
|
|
}
|
|
|
|
/* Helper function for clear_unused_block_pointer, called via walk_tree. */
|
|
|
|
static tree
|
|
clear_unused_block_pointer_1 (tree *tp, int *, void *)
|
|
{
|
|
if (EXPR_P (*tp) && TREE_BLOCK (*tp)
|
|
&& !TREE_USED (TREE_BLOCK (*tp)))
|
|
TREE_SET_BLOCK (*tp, NULL);
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Set all block pointer in debug or clobber stmt to NULL if the block
|
|
is unused, so that they will not be streamed out. */
|
|
|
|
static void
|
|
clear_unused_block_pointer (void)
|
|
{
|
|
basic_block bb;
|
|
gimple_stmt_iterator gsi;
|
|
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
unsigned i;
|
|
tree b;
|
|
gimple stmt = gsi_stmt (gsi);
|
|
|
|
if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
|
|
continue;
|
|
b = gimple_block (stmt);
|
|
if (b && !TREE_USED (b))
|
|
gimple_set_block (stmt, NULL);
|
|
for (i = 0; i < gimple_num_ops (stmt); i++)
|
|
walk_tree (gimple_op_ptr (stmt, i), clear_unused_block_pointer_1,
|
|
NULL, NULL);
|
|
}
|
|
}
|
|
|
|
/* Dump scope blocks starting at SCOPE to FILE. INDENT is the
|
|
indentation level and FLAGS is as in print_generic_expr. */
|
|
|
|
static void
|
|
dump_scope_block (FILE *file, int indent, tree scope, int flags)
|
|
{
|
|
tree var, t;
|
|
unsigned int i;
|
|
|
|
fprintf (file, "\n%*s{ Scope block #%i%s%s",indent, "" , BLOCK_NUMBER (scope),
|
|
TREE_USED (scope) ? "" : " (unused)",
|
|
BLOCK_ABSTRACT (scope) ? " (abstract)": "");
|
|
if (LOCATION_LOCUS (BLOCK_SOURCE_LOCATION (scope)) != UNKNOWN_LOCATION)
|
|
{
|
|
expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (scope));
|
|
fprintf (file, " %s:%i", s.file, s.line);
|
|
}
|
|
if (BLOCK_ABSTRACT_ORIGIN (scope))
|
|
{
|
|
tree origin = block_ultimate_origin (scope);
|
|
if (origin)
|
|
{
|
|
fprintf (file, " Originating from :");
|
|
if (DECL_P (origin))
|
|
print_generic_decl (file, origin, flags);
|
|
else
|
|
fprintf (file, "#%i", BLOCK_NUMBER (origin));
|
|
}
|
|
}
|
|
fprintf (file, " \n");
|
|
for (var = BLOCK_VARS (scope); var; var = DECL_CHAIN (var))
|
|
{
|
|
fprintf (file, "%*s", indent, "");
|
|
print_generic_decl (file, var, flags);
|
|
fprintf (file, "\n");
|
|
}
|
|
for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (scope); i++)
|
|
{
|
|
fprintf (file, "%*s",indent, "");
|
|
print_generic_decl (file, BLOCK_NONLOCALIZED_VAR (scope, i),
|
|
flags);
|
|
fprintf (file, " (nonlocalized)\n");
|
|
}
|
|
for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
|
|
dump_scope_block (file, indent + 2, t, flags);
|
|
fprintf (file, "\n%*s}\n",indent, "");
|
|
}
|
|
|
|
/* Dump the tree of lexical scopes starting at SCOPE to stderr. FLAGS
|
|
is as in print_generic_expr. */
|
|
|
|
DEBUG_FUNCTION void
|
|
debug_scope_block (tree scope, int flags)
|
|
{
|
|
dump_scope_block (stderr, 0, scope, flags);
|
|
}
|
|
|
|
|
|
/* Dump the tree of lexical scopes of current_function_decl to FILE.
|
|
FLAGS is as in print_generic_expr. */
|
|
|
|
void
|
|
dump_scope_blocks (FILE *file, int flags)
|
|
{
|
|
dump_scope_block (file, 0, DECL_INITIAL (current_function_decl), flags);
|
|
}
|
|
|
|
|
|
/* Dump the tree of lexical scopes of current_function_decl to stderr.
|
|
FLAGS is as in print_generic_expr. */
|
|
|
|
DEBUG_FUNCTION void
|
|
debug_scope_blocks (int flags)
|
|
{
|
|
dump_scope_blocks (stderr, flags);
|
|
}
|
|
|
|
/* Remove local variables that are not referenced in the IL. */
|
|
|
|
void
|
|
remove_unused_locals (void)
|
|
{
|
|
basic_block bb;
|
|
tree var;
|
|
unsigned srcidx, dstidx, num;
|
|
bool have_local_clobbers = false;
|
|
|
|
/* Removing declarations from lexical blocks when not optimizing is
|
|
not only a waste of time, it actually causes differences in stack
|
|
layout. */
|
|
if (!optimize)
|
|
return;
|
|
|
|
timevar_push (TV_REMOVE_UNUSED);
|
|
|
|
mark_scope_block_unused (DECL_INITIAL (current_function_decl));
|
|
|
|
usedvars = BITMAP_ALLOC (NULL);
|
|
|
|
/* Walk the CFG marking all referenced symbols. */
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
size_t i;
|
|
edge_iterator ei;
|
|
edge e;
|
|
|
|
/* Walk the statements. */
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
tree b = gimple_block (stmt);
|
|
|
|
if (is_gimple_debug (stmt))
|
|
continue;
|
|
|
|
if (gimple_clobber_p (stmt))
|
|
{
|
|
have_local_clobbers = true;
|
|
continue;
|
|
}
|
|
|
|
if (b)
|
|
TREE_USED (b) = true;
|
|
|
|
for (i = 0; i < gimple_num_ops (stmt); i++)
|
|
mark_all_vars_used (gimple_op_ptr (gsi_stmt (gsi), i));
|
|
}
|
|
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
use_operand_p arg_p;
|
|
ssa_op_iter i;
|
|
tree def;
|
|
gimple phi = gsi_stmt (gsi);
|
|
|
|
if (virtual_operand_p (gimple_phi_result (phi)))
|
|
continue;
|
|
|
|
def = gimple_phi_result (phi);
|
|
mark_all_vars_used (&def);
|
|
|
|
FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES)
|
|
{
|
|
tree arg = USE_FROM_PTR (arg_p);
|
|
int index = PHI_ARG_INDEX_FROM_USE (arg_p);
|
|
tree block =
|
|
LOCATION_BLOCK (gimple_phi_arg_location (phi, index));
|
|
if (block != NULL)
|
|
TREE_USED (block) = true;
|
|
mark_all_vars_used (&arg);
|
|
}
|
|
}
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
if (LOCATION_BLOCK (e->goto_locus) != NULL)
|
|
TREE_USED (LOCATION_BLOCK (e->goto_locus)) = true;
|
|
}
|
|
|
|
/* We do a two-pass approach about the out-of-scope clobbers. We want
|
|
to remove them if they are the only references to a local variable,
|
|
but we want to retain them when there's any other. So the first pass
|
|
ignores them, and the second pass (if there were any) tries to remove
|
|
them. */
|
|
if (have_local_clobbers)
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
tree b = gimple_block (stmt);
|
|
|
|
if (gimple_clobber_p (stmt))
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree base = get_base_address (lhs);
|
|
/* Remove clobbers referencing unused vars, or clobbers
|
|
with MEM_REF lhs referencing uninitialized pointers. */
|
|
if ((TREE_CODE (base) == VAR_DECL && !is_used_p (base))
|
|
|| (TREE_CODE (lhs) == MEM_REF
|
|
&& TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
|
|
&& SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0))
|
|
&& (TREE_CODE (SSA_NAME_VAR (TREE_OPERAND (lhs, 0)))
|
|
!= PARM_DECL)))
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
gsi_remove (&gsi, true);
|
|
release_defs (stmt);
|
|
continue;
|
|
}
|
|
if (b)
|
|
TREE_USED (b) = true;
|
|
}
|
|
gsi_next (&gsi);
|
|
}
|
|
}
|
|
|
|
cfun->has_local_explicit_reg_vars = false;
|
|
|
|
/* Remove unmarked local and global vars from local_decls. */
|
|
num = vec_safe_length (cfun->local_decls);
|
|
for (srcidx = 0, dstidx = 0; srcidx < num; srcidx++)
|
|
{
|
|
var = (*cfun->local_decls)[srcidx];
|
|
if (TREE_CODE (var) == VAR_DECL)
|
|
{
|
|
if (!is_used_p (var))
|
|
{
|
|
tree def;
|
|
if (cfun->nonlocal_goto_save_area
|
|
&& TREE_OPERAND (cfun->nonlocal_goto_save_area, 0) == var)
|
|
cfun->nonlocal_goto_save_area = NULL;
|
|
/* Release any default def associated with var. */
|
|
if ((def = ssa_default_def (cfun, var)) != NULL_TREE)
|
|
{
|
|
set_ssa_default_def (cfun, var, NULL_TREE);
|
|
release_ssa_name (def);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
if (TREE_CODE (var) == VAR_DECL
|
|
&& DECL_HARD_REGISTER (var)
|
|
&& !is_global_var (var))
|
|
cfun->has_local_explicit_reg_vars = true;
|
|
|
|
if (srcidx != dstidx)
|
|
(*cfun->local_decls)[dstidx] = var;
|
|
dstidx++;
|
|
}
|
|
if (dstidx != num)
|
|
{
|
|
statistics_counter_event (cfun, "unused VAR_DECLs removed", num - dstidx);
|
|
cfun->local_decls->truncate (dstidx);
|
|
}
|
|
|
|
remove_unused_scope_block_p (DECL_INITIAL (current_function_decl));
|
|
clear_unused_block_pointer ();
|
|
|
|
BITMAP_FREE (usedvars);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Scope blocks after cleanups:\n");
|
|
dump_scope_blocks (dump_file, dump_flags);
|
|
}
|
|
|
|
timevar_pop (TV_REMOVE_UNUSED);
|
|
}
|
|
|
|
/* Obstack for globale liveness info bitmaps. We don't want to put these
|
|
on the default obstack because these bitmaps can grow quite large and
|
|
we'll hold on to all that memory until the end of the compiler run.
|
|
As a bonus, delete_tree_live_info can destroy all the bitmaps by just
|
|
releasing the whole obstack. */
|
|
static bitmap_obstack liveness_bitmap_obstack;
|
|
|
|
/* Allocate and return a new live range information object base on MAP. */
|
|
|
|
static tree_live_info_p
|
|
new_tree_live_info (var_map map)
|
|
{
|
|
tree_live_info_p live;
|
|
basic_block bb;
|
|
|
|
live = XNEW (struct tree_live_info_d);
|
|
live->map = map;
|
|
live->num_blocks = last_basic_block_for_fn (cfun);
|
|
|
|
live->livein = XNEWVEC (bitmap_head, last_basic_block_for_fn (cfun));
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
bitmap_initialize (&live->livein[bb->index], &liveness_bitmap_obstack);
|
|
|
|
live->liveout = XNEWVEC (bitmap_head, last_basic_block_for_fn (cfun));
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
bitmap_initialize (&live->liveout[bb->index], &liveness_bitmap_obstack);
|
|
|
|
live->work_stack = XNEWVEC (int, last_basic_block_for_fn (cfun));
|
|
live->stack_top = live->work_stack;
|
|
|
|
live->global = BITMAP_ALLOC (&liveness_bitmap_obstack);
|
|
return live;
|
|
}
|
|
|
|
|
|
/* Free storage for live range info object LIVE. */
|
|
|
|
void
|
|
delete_tree_live_info (tree_live_info_p live)
|
|
{
|
|
bitmap_obstack_release (&liveness_bitmap_obstack);
|
|
free (live->work_stack);
|
|
free (live->liveout);
|
|
free (live->livein);
|
|
free (live);
|
|
}
|
|
|
|
|
|
/* Visit basic block BB and propagate any required live on entry bits from
|
|
LIVE into the predecessors. VISITED is the bitmap of visited blocks.
|
|
TMP is a temporary work bitmap which is passed in to avoid reallocating
|
|
it each time. */
|
|
|
|
static void
|
|
loe_visit_block (tree_live_info_p live, basic_block bb, sbitmap visited,
|
|
bitmap tmp)
|
|
{
|
|
edge e;
|
|
bool change;
|
|
edge_iterator ei;
|
|
basic_block pred_bb;
|
|
bitmap loe;
|
|
|
|
gcc_checking_assert (!bitmap_bit_p (visited, bb->index));
|
|
bitmap_set_bit (visited, bb->index);
|
|
|
|
loe = live_on_entry (live, bb);
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
{
|
|
pred_bb = e->src;
|
|
if (pred_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
|
continue;
|
|
/* TMP is variables live-on-entry from BB that aren't defined in the
|
|
predecessor block. This should be the live on entry vars to pred.
|
|
Note that liveout is the DEFs in a block while live on entry is
|
|
being calculated. */
|
|
bitmap_and_compl (tmp, loe, &live->liveout[pred_bb->index]);
|
|
|
|
/* Add these bits to live-on-entry for the pred. if there are any
|
|
changes, and pred_bb has been visited already, add it to the
|
|
revisit stack. */
|
|
change = bitmap_ior_into (live_on_entry (live, pred_bb), tmp);
|
|
if (bitmap_bit_p (visited, pred_bb->index) && change)
|
|
{
|
|
bitmap_clear_bit (visited, pred_bb->index);
|
|
*(live->stack_top)++ = pred_bb->index;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
|
|
of all the variables. */
|
|
|
|
static void
|
|
live_worklist (tree_live_info_p live)
|
|
{
|
|
unsigned b;
|
|
basic_block bb;
|
|
sbitmap visited = sbitmap_alloc (last_basic_block_for_fn (cfun) + 1);
|
|
bitmap tmp = BITMAP_ALLOC (&liveness_bitmap_obstack);
|
|
|
|
bitmap_clear (visited);
|
|
|
|
/* Visit all the blocks in reverse order and propagate live on entry values
|
|
into the predecessors blocks. */
|
|
FOR_EACH_BB_REVERSE_FN (bb, cfun)
|
|
loe_visit_block (live, bb, visited, tmp);
|
|
|
|
/* Process any blocks which require further iteration. */
|
|
while (live->stack_top != live->work_stack)
|
|
{
|
|
b = *--(live->stack_top);
|
|
loe_visit_block (live, BASIC_BLOCK_FOR_FN (cfun, b), visited, tmp);
|
|
}
|
|
|
|
BITMAP_FREE (tmp);
|
|
sbitmap_free (visited);
|
|
}
|
|
|
|
|
|
/* Calculate the initial live on entry vector for SSA_NAME using immediate_use
|
|
links. Set the live on entry fields in LIVE. Def's are marked temporarily
|
|
in the liveout vector. */
|
|
|
|
static void
|
|
set_var_live_on_entry (tree ssa_name, tree_live_info_p live)
|
|
{
|
|
int p;
|
|
gimple stmt;
|
|
use_operand_p use;
|
|
basic_block def_bb = NULL;
|
|
imm_use_iterator imm_iter;
|
|
bool global = false;
|
|
|
|
p = var_to_partition (live->map, ssa_name);
|
|
if (p == NO_PARTITION)
|
|
return;
|
|
|
|
stmt = SSA_NAME_DEF_STMT (ssa_name);
|
|
if (stmt)
|
|
{
|
|
def_bb = gimple_bb (stmt);
|
|
/* Mark defs in liveout bitmap temporarily. */
|
|
if (def_bb)
|
|
bitmap_set_bit (&live->liveout[def_bb->index], p);
|
|
}
|
|
else
|
|
def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
|
|
|
|
/* Visit each use of SSA_NAME and if it isn't in the same block as the def,
|
|
add it to the list of live on entry blocks. */
|
|
FOR_EACH_IMM_USE_FAST (use, imm_iter, ssa_name)
|
|
{
|
|
gimple use_stmt = USE_STMT (use);
|
|
basic_block add_block = NULL;
|
|
|
|
if (gimple_code (use_stmt) == GIMPLE_PHI)
|
|
{
|
|
/* Uses in PHI's are considered to be live at exit of the SRC block
|
|
as this is where a copy would be inserted. Check to see if it is
|
|
defined in that block, or whether its live on entry. */
|
|
int index = PHI_ARG_INDEX_FROM_USE (use);
|
|
edge e = gimple_phi_arg_edge (use_stmt, index);
|
|
if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
|
{
|
|
if (e->src != def_bb)
|
|
add_block = e->src;
|
|
}
|
|
}
|
|
else if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
else
|
|
{
|
|
/* If its not defined in this block, its live on entry. */
|
|
basic_block use_bb = gimple_bb (use_stmt);
|
|
if (use_bb != def_bb)
|
|
add_block = use_bb;
|
|
}
|
|
|
|
/* If there was a live on entry use, set the bit. */
|
|
if (add_block)
|
|
{
|
|
global = true;
|
|
bitmap_set_bit (&live->livein[add_block->index], p);
|
|
}
|
|
}
|
|
|
|
/* If SSA_NAME is live on entry to at least one block, fill in all the live
|
|
on entry blocks between the def and all the uses. */
|
|
if (global)
|
|
bitmap_set_bit (live->global, p);
|
|
}
|
|
|
|
|
|
/* Calculate the live on exit vectors based on the entry info in LIVEINFO. */
|
|
|
|
void
|
|
calculate_live_on_exit (tree_live_info_p liveinfo)
|
|
{
|
|
basic_block bb;
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
/* live on entry calculations used liveout vectors for defs, clear them. */
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
bitmap_clear (&liveinfo->liveout[bb->index]);
|
|
|
|
/* Set all the live-on-exit bits for uses in PHIs. */
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
size_t i;
|
|
|
|
/* Mark the PHI arguments which are live on exit to the pred block. */
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple phi = gsi_stmt (gsi);
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
|
{
|
|
tree t = PHI_ARG_DEF (phi, i);
|
|
int p;
|
|
|
|
if (TREE_CODE (t) != SSA_NAME)
|
|
continue;
|
|
|
|
p = var_to_partition (liveinfo->map, t);
|
|
if (p == NO_PARTITION)
|
|
continue;
|
|
e = gimple_phi_arg_edge (phi, i);
|
|
if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
|
bitmap_set_bit (&liveinfo->liveout[e->src->index], p);
|
|
}
|
|
}
|
|
|
|
/* Add each successors live on entry to this bock live on exit. */
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
|
|
bitmap_ior_into (&liveinfo->liveout[bb->index],
|
|
live_on_entry (liveinfo, e->dest));
|
|
}
|
|
}
|
|
|
|
|
|
/* Given partition map MAP, calculate all the live on entry bitmaps for
|
|
each partition. Return a new live info object. */
|
|
|
|
tree_live_info_p
|
|
calculate_live_ranges (var_map map)
|
|
{
|
|
tree var;
|
|
unsigned i;
|
|
tree_live_info_p live;
|
|
|
|
bitmap_obstack_initialize (&liveness_bitmap_obstack);
|
|
live = new_tree_live_info (map);
|
|
for (i = 0; i < num_var_partitions (map); i++)
|
|
{
|
|
var = partition_to_var (map, i);
|
|
if (var != NULL_TREE)
|
|
set_var_live_on_entry (var, live);
|
|
}
|
|
|
|
live_worklist (live);
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
verify_live_on_entry (live);
|
|
#endif
|
|
|
|
calculate_live_on_exit (live);
|
|
return live;
|
|
}
|
|
|
|
|
|
/* Output partition map MAP to file F. */
|
|
|
|
void
|
|
dump_var_map (FILE *f, var_map map)
|
|
{
|
|
int t;
|
|
unsigned x, y;
|
|
int p;
|
|
|
|
fprintf (f, "\nPartition map \n\n");
|
|
|
|
for (x = 0; x < map->num_partitions; x++)
|
|
{
|
|
if (map->view_to_partition != NULL)
|
|
p = map->view_to_partition[x];
|
|
else
|
|
p = x;
|
|
|
|
if (ssa_name (p) == NULL_TREE
|
|
|| virtual_operand_p (ssa_name (p)))
|
|
continue;
|
|
|
|
t = 0;
|
|
for (y = 1; y < num_ssa_names; y++)
|
|
{
|
|
p = partition_find (map->var_partition, y);
|
|
if (map->partition_to_view)
|
|
p = map->partition_to_view[p];
|
|
if (p == (int)x)
|
|
{
|
|
if (t++ == 0)
|
|
{
|
|
fprintf (f, "Partition %d (", x);
|
|
print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
|
|
fprintf (f, " - ");
|
|
}
|
|
fprintf (f, "%d ", y);
|
|
}
|
|
}
|
|
if (t != 0)
|
|
fprintf (f, ")\n");
|
|
}
|
|
fprintf (f, "\n");
|
|
}
|
|
|
|
|
|
/* Generic dump for the above. */
|
|
|
|
DEBUG_FUNCTION void
|
|
debug (_var_map &ref)
|
|
{
|
|
dump_var_map (stderr, &ref);
|
|
}
|
|
|
|
DEBUG_FUNCTION void
|
|
debug (_var_map *ptr)
|
|
{
|
|
if (ptr)
|
|
debug (*ptr);
|
|
else
|
|
fprintf (stderr, "<nil>\n");
|
|
}
|
|
|
|
|
|
/* Output live range info LIVE to file F, controlled by FLAG. */
|
|
|
|
void
|
|
dump_live_info (FILE *f, tree_live_info_p live, int flag)
|
|
{
|
|
basic_block bb;
|
|
unsigned i;
|
|
var_map map = live->map;
|
|
bitmap_iterator bi;
|
|
|
|
if ((flag & LIVEDUMP_ENTRY) && live->livein)
|
|
{
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
fprintf (f, "\nLive on entry to BB%d : ", bb->index);
|
|
EXECUTE_IF_SET_IN_BITMAP (&live->livein[bb->index], 0, i, bi)
|
|
{
|
|
print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
|
|
fprintf (f, " ");
|
|
}
|
|
fprintf (f, "\n");
|
|
}
|
|
}
|
|
|
|
if ((flag & LIVEDUMP_EXIT) && live->liveout)
|
|
{
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
fprintf (f, "\nLive on exit from BB%d : ", bb->index);
|
|
EXECUTE_IF_SET_IN_BITMAP (&live->liveout[bb->index], 0, i, bi)
|
|
{
|
|
print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
|
|
fprintf (f, " ");
|
|
}
|
|
fprintf (f, "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Generic dump for the above. */
|
|
|
|
DEBUG_FUNCTION void
|
|
debug (tree_live_info_d &ref)
|
|
{
|
|
dump_live_info (stderr, &ref, 0);
|
|
}
|
|
|
|
DEBUG_FUNCTION void
|
|
debug (tree_live_info_d *ptr)
|
|
{
|
|
if (ptr)
|
|
debug (*ptr);
|
|
else
|
|
fprintf (stderr, "<nil>\n");
|
|
}
|
|
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
/* Verify that SSA_VAR is a non-virtual SSA_NAME. */
|
|
|
|
void
|
|
register_ssa_partition_check (tree ssa_var)
|
|
{
|
|
gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
|
|
if (virtual_operand_p (ssa_var))
|
|
{
|
|
fprintf (stderr, "Illegally registering a virtual SSA name :");
|
|
print_generic_expr (stderr, ssa_var, TDF_SLIM);
|
|
fprintf (stderr, " in the SSA->Normal phase.\n");
|
|
internal_error ("SSA corruption");
|
|
}
|
|
}
|
|
|
|
|
|
/* Verify that the info in LIVE matches the current cfg. */
|
|
|
|
static void
|
|
verify_live_on_entry (tree_live_info_p live)
|
|
{
|
|
unsigned i;
|
|
tree var;
|
|
gimple stmt;
|
|
basic_block bb;
|
|
edge e;
|
|
int num;
|
|
edge_iterator ei;
|
|
var_map map = live->map;
|
|
|
|
/* Check for live on entry partitions and report those with a DEF in
|
|
the program. This will typically mean an optimization has done
|
|
something wrong. */
|
|
bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
|
|
num = 0;
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
{
|
|
int entry_block = e->dest->index;
|
|
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
|
continue;
|
|
for (i = 0; i < (unsigned)num_var_partitions (map); i++)
|
|
{
|
|
basic_block tmp;
|
|
tree d = NULL_TREE;
|
|
bitmap loe;
|
|
var = partition_to_var (map, i);
|
|
stmt = SSA_NAME_DEF_STMT (var);
|
|
tmp = gimple_bb (stmt);
|
|
if (SSA_NAME_VAR (var))
|
|
d = ssa_default_def (cfun, SSA_NAME_VAR (var));
|
|
|
|
loe = live_on_entry (live, e->dest);
|
|
if (loe && bitmap_bit_p (loe, i))
|
|
{
|
|
if (!gimple_nop_p (stmt))
|
|
{
|
|
num++;
|
|
print_generic_expr (stderr, var, TDF_SLIM);
|
|
fprintf (stderr, " is defined ");
|
|
if (tmp)
|
|
fprintf (stderr, " in BB%d, ", tmp->index);
|
|
fprintf (stderr, "by:\n");
|
|
print_gimple_stmt (stderr, stmt, 0, TDF_SLIM);
|
|
fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
|
|
entry_block);
|
|
fprintf (stderr, " So it appears to have multiple defs.\n");
|
|
}
|
|
else
|
|
{
|
|
if (d != var)
|
|
{
|
|
num++;
|
|
print_generic_expr (stderr, var, TDF_SLIM);
|
|
fprintf (stderr, " is live-on-entry to BB%d ",
|
|
entry_block);
|
|
if (d)
|
|
{
|
|
fprintf (stderr, " but is not the default def of ");
|
|
print_generic_expr (stderr, d, TDF_SLIM);
|
|
fprintf (stderr, "\n");
|
|
}
|
|
else
|
|
fprintf (stderr, " and there is no default def.\n");
|
|
}
|
|
}
|
|
}
|
|
else
|
|
if (d == var)
|
|
{
|
|
/* The only way this var shouldn't be marked live on entry is
|
|
if it occurs in a PHI argument of the block. */
|
|
size_t z;
|
|
bool ok = false;
|
|
gimple_stmt_iterator gsi;
|
|
for (gsi = gsi_start_phis (e->dest);
|
|
!gsi_end_p (gsi) && !ok;
|
|
gsi_next (&gsi))
|
|
{
|
|
gimple phi = gsi_stmt (gsi);
|
|
for (z = 0; z < gimple_phi_num_args (phi); z++)
|
|
if (var == gimple_phi_arg_def (phi, z))
|
|
{
|
|
ok = true;
|
|
break;
|
|
}
|
|
}
|
|
if (ok)
|
|
continue;
|
|
num++;
|
|
print_generic_expr (stderr, var, TDF_SLIM);
|
|
fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
|
|
entry_block);
|
|
fprintf (stderr, "but it is a default def so it should be.\n");
|
|
}
|
|
}
|
|
}
|
|
gcc_assert (num <= 0);
|
|
}
|
|
#endif
|