799bf4c4ac
This prevents cxa_demangle aqnd most of the IO subsysten from being pulled in by std::terminate |
||
---|---|---|
AutomatedTests | ||
binutils | ||
cmake | ||
Console | ||
ConvertObj | ||
docs | ||
Elf2Mac | ||
gcc | ||
hfsutils | ||
ImportLibraries | ||
InterfacesAndLibraries | ||
LaunchAPPL | ||
libelf | ||
libretro | ||
MakeAPPL | ||
PEFTools | ||
ResourceFiles | ||
Rez | ||
Samples | ||
TestApps | ||
.gitattributes | ||
.gitignore | ||
build-toolchain.bash | ||
CMakeLists.txt | ||
COPYING | ||
COPYING.RUNTIME | ||
Dockerfile | ||
prepare-headers.sh | ||
prepare-rincludes.sh | ||
README.md |
Retro68
A GCC-based cross-compilation environment for 68K and PowerPC Macs. Why? Because there is no decent C++11 Compiler targeting Apple's System 6. If that's not a sufficient reason for you, I'm sure you will find something more useful elsewhere.
If you are crazy enough to try it out, please say hello at wolfgang.thaller@gmx.net.
Installing/Building
Prerequisites
- Linux, Mac OS X or Windows (via Cygwin)
- boost
- CMake 2.8
- GCC dependencies: GMP 4.2+, MPFR 2.3.1+ and MPC 0.8.0+
- bison version 3.0.2 or later
- Apple Universal Interfaces (version 3.x; version 3.4 is tested)
- An ancient Mac and/or an emulator.
For Ubuntu Linux, the following should help a bit:
sudo apt-get install cmake libgmp-dev libmpfr-dev libmpc-dev libboost-all-dev bison
On a Mac, get the homebrew package manager and:
brew install boost
brew install cmake gmp mpfr libmpc bison
You can also run Retro68 on a PowerMac G4 or G5 running Mac OS 10.4 (Tiger). In that case, get the tigerbrew package manager and
brew install gcc cmake gmp mpfr libmpc bison
brew install boost --c++11
Apple Universal Interfaces
Before you can build Retro68, you need to find a copy of Apple's Universal Interfaces and put it inside the InterfacesAndLibraries directory in the source tree. Version 3.4 has received the most testing, but any 3.x version could theoretically work. The exact directory layout inside the InterfacesAndLibraries directory does not matter. The resource forks of the files are not required.
The Universal Interfaces used to be a free download from Apple. However, they have taken the site off-line and the license agreement does not allow redistribution, which is why it's not included in this repository. The concept of fair use might cover keeping it available for reasons of historical interest, or it might not. I am not a lawyer.
The Universal Interfaces were also included with Apple's free-to-download Macintosh Programmer's Workshop (MPW; redistribution is not officially allowed, either) and with Metrowerks CodeWarrior.
One of the most easily found downloads is the MPW 3.5 Golden Master release, usually in a file named mpg-gm.img_.bin. At the time of this writing, this can be found at:
http://macintoshgarden.org/apps/macintosh-programmers-workshop
https://www.macintoshrepository.org/1360-macintosh-programmer-s-workshop-mpw-3-0-to-3-5
You will need a Mac or a Mac emulator (with DiscCopy) to read that file.
Windows Compilation using Cygwin
You can compile Retro68 on Windows using via a Cygwin terminal. When installing Cygwin, select the following packages in the Cygwin Setup program (as per the dependencies listed above):
- bison
- cmake
- flex
- gcc-core
- gcc-g++
- libboost-devel
- libgmp-devel
- libmpc-devel
- libmpfr-devel
- make
- texinfo
- zlib-devel
Additional dependencies will be automatically installed.
Note that compilation via Cygwin is around 3X slower than other platforms.
Compiling Retro68
Once you have all the prerequisites, execute these commands from the top level of the Retro68 directory:
cd ..
mkdir Retro68-build
cd Retro68-build
../Retro68/build-toolchain.bash
The toolchain will be installed in the "toolchain" directory inside
the build directory. All the commands are in toolchain/bin
, so you might want
to add that to your PATH
.
If you're building this on a PowerMac running Mac OS X 10.4, tell the build script to use the gcc you've installed via tigerbrew:
../Retro68/build-toolchain.bash --host-cxx-compiler=g++-5 --host-c-compiler=gcc-5
Build options and recompiling
Building all of Retro68 involves building binutils and gcc... twice, so it takes quite a while.
You can pass the --no-68k
, --no-ppc
or --no-carbon
flags to build-toolchain
to limit yourself to the old Macs you're really
interested in (note that --no-ppc
implies --no-carbon
).
After the initial build, you can use the --skip-thirdparty
option in order to
skip gcc and binutils and just compile the Retro68-specific tools, libraries and
sample programs.
The build-host
, build-target
, build-target-ppc
and build-target-carbon
directories are CMake build directories generated from the top-level CMakeLists.txt
,
so you can also cd
to one of these and run make
separately if you've made changes.
Sample programs
Sample programs are built in several formats:
- On Macs: Real Mac Applications (
ApplicationName.APPL
) - Elsewhere:
ApplicationName.APPL
,.rsrc/ApplicationName.APPL
,.finf/ApplicationName.APPL
(BasiliskII/Sheepshaver compatible) - MacBinary files (
ApplicationName.bin
) - Raw HFS disk image (
ApplicationName.dsk
, containingApplicationName
) - AppleDouble file pairs (
ApplicationName.ad
,%ApplicationName.ad
, Executor compatible)
Look under Retro68-build/build-target/
(68K),
Retro68-build/build-target-ppc/
(PowerPC Classic) and
Retro68-build/build-target-carbon/
(PowerPC Carbon) for the compiled examples,
especially under the Samples
subdirectory.
Components
Retro68 is an aggegation of various existing free software projects with a few components added.
Third Party Components:
- binutils 2.28
- gcc 6.3.0
- newlib 2.10.1 (inside the gcc directory)
- libelf from elfutils-0.170
- hfsutils 3.2.6
Retro68-Specific Components:
- ResourceFiles library
- Rez
- PEFTools (MakePEF and MakeImport)
- MakeAPPL
- LaunchAPPL
- libretro
- TestApps - a few tiny test programs
- Sample Programs: Raytracer, HelloWorld, Launcher, Dialog
binutils
Two new target platforms:
m68k-apple-macos
, based on them68k-unknown-elf
targetpowerpc-apple-macos
, based on thepowerpc-ibm-aix
target
The powerpc target has a few hacks to make weak symbols work as expected. The elf target has a hack to protect MacsBug symbols from -gc-sections.
gcc
Various patches and hacks:
- New target platforms
m68k-apple-macos
andpowerpc-apple-macos
. - support `"\pPascal String Literals"``
68K specific:
- Changed register usage.
- Change the way 1-byte and 2-byte parameters are passed.
- added a pascal calling convention (
pascal
or__attribute__((__pascal__))
) - added
__attribute__((__raw_inline__(word1, word2, word3)))
to emulateONEWORDINLINE
and friends - added
__attribute__((regparam("...")))
to specify custom register calling conventions - added
#pragma parameter
to specify custom register calling conventions - added support for the
= { 0x1234 }
syntax for inline machine code.
PowerPC specific:
- New flag -carbon that makes gcc link with
-lCarbonLib
instead of-lInterfaceLib
newlib
Standard C library. Currently unmodified. The missing platform-dependent bits haven't been added, instead they are found in 'libretro'.
libelf
A library for convenient access to ELF files, taken from the elfutils-0.170 package. Or rather, brutally ripped out of it, hacked to compile on non-linux platforms (<endian.h> is not a standard header file), and made to build with cmake instead of autotools. Much simpler now.
hfsutils:
No changes.
ResourceFiles
A C++ Library for manipulating resource forks.
Rez
A reimplementation of Apple's Rez resource compiler. Reads .r
files
containing textual resource descriptions and compiles them to binary
resource files.
Elf2Mac
A wrapper around the linker for 68K programs; it supplies a linker script, invokes the linker, and converts the resulting ELF binary to a Mac APPL with one or more segments, or to a flat file which can be converted to a code resource using Rez.
LaunchAPPL
A tool for lauching compiled Mac applications via various emulators.
ConvertObj
Reads a MPW 68K Object file (*.o
) and converts it to input for the
GNU assembler (powerpc-apple-macos-as
). Well, as long as the .o file does not
use global variables or non-local function calls. Used to import glue code from
MPW's Interface.o
library.
MakeAPPL
Reads a FLAT executable as output by elf2flt and converts it to a MacBinary file containing a classic Macintosh application. The CMake setup for the sample programs no longer uses this, but rather uses Rez to generate the appropriate resources.
PEFTools
Tools supporting the Apple's PEF format, the Preferred Executable Format for PowerPC Macs.
MakePEF
, a tool to convert xcoff files to PEF.MakeImport
, a tool to create an xcoff import stub library from a PEF-format library.
prepare-headers.sh:
Apply any necessary patches to Apple's headers.
ImportLibraries
Import Libraries in XCOFF format. Based on the list of symbols in Apple's import
libraries. Generated using the MakeImport
tool.
libretro
Contains startup code (handles relocations on 68K) and implementations for some standard library functions.
Console
Contains a library that implements basic text console functionality.
AutomatedTests
An automated test suite that can be run using ctest
and LaunchAPPL
.
Sample Program: Hello World
The binary is in Retro68-build/build-target/Samples/HelloWorld/.
Sample Program: Raytracer
Calculates a nice 3D image, pixel by pixel. There are two versions: raytracer.c is a straightforward plain C implementation using floating point arithmetic.
Raytracer2 makes use of C++ features; it also uses fixed point arithmetic instead of floating point (operator overloading FTW).
The binaries are in Retro68-build/build-target/Samples/Raytracer/.
Sample Program: Launcher
A utility program for using Retro68 together with the minivmac emulator. Waits for a disk(image) to be inserted, and if it contains a single application, launches it. After the application exits, the disk is ejected again. This way, you can just drag a .dsk file generated by Retro68 on a minivmac Window to run your application.
Intended for System 6 without Multifinder.
Sample Program: Dialog
Shows a simple and useless dialog box. Demonstrates how to use Rez, the resource compiler. The binary is in Retro68-build/build-target/Samples/Dialog/.
Sample Program: WDEF
On the one hand, this is an example for a very basic multi window application with menus and desk accessories. On the other hand, it shows how to write code resources like WDEF window definition procedures.
License
The original parts of Retro68 are licensed under GPL3+, as are most other parts. Some parts are licensed GPL2+ or with more liberal licenses. The libretro runtime library is licensed under GPL3+ with the GCC runtime exception (see COPYING.RUNTIME, so there are no licensing restrictions on programs compiled with Retro68. Check the copyright notices in the individual files for details.
LaunchAPPL and the Test Suite
LaunchAPPL
is a tool included with Retro68 intended to make launching the
compiled Mac applications easier. It's use is optional, so you may skip reading
this section.
Currently, LaunchAPPL supports the following methods for launching Mac applications:
- classic - launch in the Classic environment on PowerPC Macs up to Tiger (10.4)
- carbon - launch as a Carbon app on PowerPC Macs and via Rosetta on Intel Macs up to Snow Leopard (10.6)
- minivmac - launch using the Mini vMac emulator
- executor - launch using Executor
If you're running on a Mac that's old enough to use the classic
or carbon
backends,
they will work out of the box, just launch an application as follows
(assuming you've added Retro68-build/toolchain/bin
to your PATH
):
LaunchAPPL -e classic Retro68-build/build-target/Samples/Raytracer/Raytracer2.bin
LaunchAPPL -e carbon Retro68-build/build-target-carbon/Samples/Raytracer/Raytracer2.bin
To specify either environment as a default, or to configure one of the other emulators,
copy the file Retro68/LaunchAPPL/LaunchAPPL.cfg.example
to ~/.LaunchAPPL.cfg
and edit to taste (documentation is provided in comments).
CONTRIBUTION OPPORTUNITY - This tool can easily be extended with further backends,
so make it work with your favourtite emulator. Just add new subclasses for the
LaunchMethod
and Launcher
classes, they're documented.
The Test Suite
The directory AutomatedTests
contains an autonated test suite that runs via
LaunchAPPL
. It's currently only relevant if you want to hack on the low-level
parts of Retro68.
The test suite will be configured automatically on sufficiently old Macs.
Everywhere else, first configure LaunchAPPL
(see above) and then:
cs Retro68-build/build-target
cmake . -DRETRO68_LAUNCH_METHOD=minivmac # or executor, ...
make
To run the tests, invoke ctest
in the build-target
directory.
ctest