Add TLB profiling.

This commit is contained in:
Maxim Poliakovski 2021-08-19 11:28:18 +02:00
parent 089645e830
commit a8f400287a

View File

@ -46,7 +46,8 @@ void (*mmu_exception_handler)(Except_Type exception_type, uint32_t srr1_bits);
PPC_BAT_entry ibat_array[4] = {{0}}; PPC_BAT_entry ibat_array[4] = {{0}};
PPC_BAT_entry dbat_array[4] = {{0}}; PPC_BAT_entry dbat_array[4] = {{0}};
//#define MMU_PROFILING // enable MMU profiling #define MMU_PROFILING // uncomment this to enable MMU profiling
#define TLB_PROFILING // uncomment this to enable SoftTLB profiling
/* MMU profiling */ /* MMU profiling */
#ifdef MMU_PROFILING #ifdef MMU_PROFILING
@ -135,6 +136,51 @@ public:
}; };
#endif #endif
/* SoftTLB profiling. */
#ifdef TLB_PROFILING
/* global variables for lightweight SoftTLB profiling */
uint64_t num_primary_tlb_hits = 0; // number of hits in the primary TLB
uint64_t num_secondary_tlb_hits = 0; // number of hits in the secondary TLB
uint64_t num_tlb_refills = 0; // number of TLB refills
uint64_t num_entry_replacements = 0; // number of entry replacements
#include "utils/profiler.h"
#include <memory>
class TLBProfile : public BaseProfile {
public:
TLBProfile() : BaseProfile("PPC:MMU:TLB") {};
void populate_variables(std::vector<ProfileVar>& vars) {
vars.clear();
vars.push_back({.name = "Number of hits in the primary TLB",
.format = ProfileVarFmt::DEC,
.value = num_primary_tlb_hits});
vars.push_back({.name = "Number of hits in the secondary TLB",
.format = ProfileVarFmt::DEC,
.value = num_secondary_tlb_hits});
vars.push_back({.name = "Number of TLB refills",
.format = ProfileVarFmt::DEC,
.value = num_tlb_refills});
vars.push_back({.name = "Number of replaced TLB entries",
.format = ProfileVarFmt::DEC,
.value = num_entry_replacements});
};
void reset() {
num_primary_tlb_hits = 0;
num_secondary_tlb_hits = 0;
num_tlb_refills = 0;
num_entry_replacements = 0;
};
};
#endif
/** Temporary TLB test variables. */ /** Temporary TLB test variables. */
bool MemAccessType; // true - memory, false - I/O bool MemAccessType; // true - memory, false - I/O
bool Unaligned_crosspage = false; bool Unaligned_crosspage = false;
@ -767,6 +813,9 @@ static TLBEntry* tlb2_target_entry(uint32_t gp_va)
tlb_entry[3].lru_bits = 0x3; tlb_entry[3].lru_bits = 0x3;
return &tlb_entry[3]; return &tlb_entry[3];
} else { // no invalid blocks, replace an existing one according with the hLRU policy } else { // no invalid blocks, replace an existing one according with the hLRU policy
#ifdef TLB_PROFILING
num_entry_replacements++;
#endif
if (tlb_entry[0].lru_bits == 0) { if (tlb_entry[0].lru_bits == 0) {
// update LRU bits // update LRU bits
tlb_entry[0].lru_bits = 0x3; tlb_entry[0].lru_bits = 0x3;
@ -1126,15 +1175,26 @@ inline T mmu_read_vmem(uint32_t guest_va) {
// look up guest virtual address in the primary TLB // look up guest virtual address in the primary TLB
tlb1_entry = &pCurTLB1[(guest_va >> PAGE_SIZE_BITS) & tlb_size_mask]; tlb1_entry = &pCurTLB1[(guest_va >> PAGE_SIZE_BITS) & tlb_size_mask];
if (tlb1_entry->tag == tag) { // primary TLB hit -> fast path if (tlb1_entry->tag == tag) { // primary TLB hit -> fast path
#ifdef TLB_PROFILING
num_primary_tlb_hits++;
#endif
host_va = (uint8_t *)(tlb1_entry->host_va_offset + guest_va); host_va = (uint8_t *)(tlb1_entry->host_va_offset + guest_va);
} else { } else {
// primary TLB miss -> look up address in the secondary TLB // primary TLB miss -> look up address in the secondary TLB
tlb2_entry = lookup_secondary_tlb(guest_va, tag); tlb2_entry = lookup_secondary_tlb(guest_va, tag);
if (tlb2_entry == nullptr) { if (tlb2_entry == nullptr) {
#ifdef TLB_PROFILING
num_tlb_refills++;
#endif
// secondary TLB miss -> // secondary TLB miss ->
// perform full address translation and refill the secondary TLB // perform full address translation and refill the secondary TLB
tlb2_entry = tlb2_refill(guest_va, 0); tlb2_entry = tlb2_refill(guest_va, 0);
} }
#ifdef TLB_PROFILING
else {
num_secondary_tlb_hits++;
}
#endif
if (tlb2_entry->flags & TLBFlags::PAGE_MEM) { // is it a real memory region? if (tlb2_entry->flags & TLBFlags::PAGE_MEM) { // is it a real memory region?
// refill the primary TLB // refill the primary TLB
@ -1143,6 +1203,9 @@ inline T mmu_read_vmem(uint32_t guest_va) {
tlb1_entry->host_va_offset = tlb2_entry->host_va_offset; tlb1_entry->host_va_offset = tlb2_entry->host_va_offset;
host_va = (uint8_t *)(tlb1_entry->host_va_offset + guest_va); host_va = (uint8_t *)(tlb1_entry->host_va_offset + guest_va);
} else { // otherwise, it's an access to a memory-mapped device } else { // otherwise, it's an access to a memory-mapped device
#ifdef MMU_PROFILING
iomem_reads_total++;
#endif
return ( return (
tlb2_entry->reg_desc->devobj->read(tlb2_entry->reg_desc->start, tlb2_entry->reg_desc->devobj->read(tlb2_entry->reg_desc->start,
guest_va - tlb2_entry->reg_desc->start, sizeof(T)) guest_va - tlb2_entry->reg_desc->start, sizeof(T))
@ -1150,6 +1213,10 @@ inline T mmu_read_vmem(uint32_t guest_va) {
} }
} }
#ifdef MMU_PROFILING
dmem_reads_total++;
#endif
// handle unaligned memory accesses // handle unaligned memory accesses
if (sizeof(T) > 1 && (guest_va & (sizeof(T) - 1))) { if (sizeof(T) > 1 && (guest_va & (sizeof(T) - 1))) {
return read_unaligned(guest_va, host_va, sizeof(T)); return read_unaligned(guest_va, host_va, sizeof(T));
@ -1185,6 +1252,9 @@ inline void mmu_write_vmem(uint32_t guest_va, T value) {
// look up guest virtual address in the primary TLB // look up guest virtual address in the primary TLB
tlb1_entry = &pCurTLB1[(guest_va >> PAGE_SIZE_BITS) & tlb_size_mask]; tlb1_entry = &pCurTLB1[(guest_va >> PAGE_SIZE_BITS) & tlb_size_mask];
if (tlb1_entry->tag == tag) { // primary TLB hit -> fast path if (tlb1_entry->tag == tag) { // primary TLB hit -> fast path
#ifdef TLB_PROFILING
num_primary_tlb_hits++;
#endif
if (!(tlb1_entry->flags & TLBFlags::PAGE_WRITABLE)) { if (!(tlb1_entry->flags & TLBFlags::PAGE_WRITABLE)) {
ppc_state.spr[SPR::DSISR] = 0x08000000 | (1 << 25); ppc_state.spr[SPR::DSISR] = 0x08000000 | (1 << 25);
ppc_state.spr[SPR::DAR] = guest_va; ppc_state.spr[SPR::DAR] = guest_va;
@ -1209,10 +1279,18 @@ inline void mmu_write_vmem(uint32_t guest_va, T value) {
// primary TLB miss -> look up address in the secondary TLB // primary TLB miss -> look up address in the secondary TLB
tlb2_entry = lookup_secondary_tlb(guest_va, tag); tlb2_entry = lookup_secondary_tlb(guest_va, tag);
if (tlb2_entry == nullptr) { if (tlb2_entry == nullptr) {
#ifdef TLB_PROFILING
num_tlb_refills++;
#endif
// secondary TLB miss -> // secondary TLB miss ->
// perform full address translation and refill the secondary TLB // perform full address translation and refill the secondary TLB
tlb2_entry = tlb2_refill(guest_va, 1); tlb2_entry = tlb2_refill(guest_va, 1);
} }
#ifdef TLB_PROFILING
else {
num_secondary_tlb_hits++;
}
#endif
if (!(tlb2_entry->flags & TLBFlags::PAGE_WRITABLE)) { if (!(tlb2_entry->flags & TLBFlags::PAGE_WRITABLE)) {
LOG_F(WARNING, "DSI Exception in mmu_write_vmem! PC=0x%08X", ppc_state.pc); LOG_F(WARNING, "DSI Exception in mmu_write_vmem! PC=0x%08X", ppc_state.pc);
@ -1238,6 +1316,9 @@ inline void mmu_write_vmem(uint32_t guest_va, T value) {
//MemAccessType = true; //MemAccessType = true;
//MemAddr = (uint64_t)host_va; //MemAddr = (uint64_t)host_va;
} else { // otherwise, it's an access to a memory-mapped device } else { // otherwise, it's an access to a memory-mapped device
#ifdef MMU_PROFILING
iomem_writes_total++;
#endif
tlb2_entry->reg_desc->devobj->write(tlb2_entry->reg_desc->start, tlb2_entry->reg_desc->devobj->write(tlb2_entry->reg_desc->start,
guest_va - tlb2_entry->reg_desc->start, value, sizeof(T)); guest_va - tlb2_entry->reg_desc->start, value, sizeof(T));
//MemAccessType = false; //MemAccessType = false;
@ -1247,6 +1328,10 @@ inline void mmu_write_vmem(uint32_t guest_va, T value) {
} }
} }
#ifdef MMU_PROFILING
dmem_writes_total++;
#endif
// handle unaligned memory accesses // handle unaligned memory accesses
if (sizeof(T) > 1 && (guest_va & (sizeof(T) - 1))) { if (sizeof(T) > 1 && (guest_va & (sizeof(T) - 1))) {
write_unaligned(guest_va, host_va, value, sizeof(T)); write_unaligned(guest_va, host_va, value, sizeof(T));
@ -1285,6 +1370,9 @@ static uint32_t read_unaligned(uint32_t guest_va, uint8_t *host_va, uint32_t siz
// is it a misaligned cross-page read? // is it a misaligned cross-page read?
if (((guest_va & 0xFFF) + size) > 0x1000) { if (((guest_va & 0xFFF) + size) > 0x1000) {
#ifdef MMU_PROFILING
unaligned_crossp_r++;
#endif
// Break such a memory access into multiple, bytewise accesses. // Break such a memory access into multiple, bytewise accesses.
// Because such accesses suffer a performance penalty, they will be // Because such accesses suffer a performance penalty, they will be
// presumably very rare so don't waste time optimizing the code below. // presumably very rare so don't waste time optimizing the code below.
@ -1292,6 +1380,9 @@ static uint32_t read_unaligned(uint32_t guest_va, uint8_t *host_va, uint32_t siz
result = (result << 8) | mmu_read_vmem<uint8_t>(guest_va); result = (result << 8) | mmu_read_vmem<uint8_t>(guest_va);
} }
} else { } else {
#ifdef MMU_PROFILING
unaligned_reads++;
#endif
switch(size) { switch(size) {
case 2: case 2:
return READ_WORD_BE_U(host_va); return READ_WORD_BE_U(host_va);
@ -1309,8 +1400,9 @@ static void write_unaligned(uint32_t guest_va, uint8_t *host_va, uint32_t value,
{ {
// is it a misaligned cross-page write? // is it a misaligned cross-page write?
if (((guest_va & 0xFFF) + size) > 0x1000) { if (((guest_va & 0xFFF) + size) > 0x1000) {
Unaligned_crosspage = true; #ifdef MMU_PROFILING
unaligned_crossp_w++;
#endif
// Break such a memory access into multiple, bytewise accesses. // Break such a memory access into multiple, bytewise accesses.
// Because such accesses suffer a performance penalty, they will be // Because such accesses suffer a performance penalty, they will be
// presumably very rare so don't waste time optimizing the code below. // presumably very rare so don't waste time optimizing the code below.
@ -1321,8 +1413,9 @@ static void write_unaligned(uint32_t guest_va, uint8_t *host_va, uint32_t value,
mmu_write_vmem<uint8_t>(guest_va, (value >> shift) & 0xFF); mmu_write_vmem<uint8_t>(guest_va, (value >> shift) & 0xFF);
} }
} else { } else {
Unaligned_crosspage = false; #ifdef MMU_PROFILING
#if 1 unaligned_writes++;
#endif
switch(size) { switch(size) {
case 2: case 2:
WRITE_WORD_BE_U(host_va, value); WRITE_WORD_BE_U(host_va, value);
@ -1334,7 +1427,6 @@ static void write_unaligned(uint32_t guest_va, uint8_t *host_va, uint32_t value,
WRITE_QWORD_BE_U(host_va, value); WRITE_QWORD_BE_U(host_va, value);
break; break;
} }
#endif
} }
} }
@ -1580,7 +1672,12 @@ void ppc_mmu_init() {
mmu_change_mode(); mmu_change_mode();
#ifdef MMU_PROFILING #ifdef MMU_PROFILING
gProfilerObj->register_profile("PPC_MMU", gProfilerObj->register_profile("PPC:MMU",
std::unique_ptr<BaseProfile>(new MMUProfile())); std::unique_ptr<BaseProfile>(new MMUProfile()));
#endif #endif
#ifdef TLB_PROFILING
gProfilerObj->register_profile("PPC:MMU:TLB",
std::unique_ptr<BaseProfile>(new TLBProfile()));
#endif
} }