ppcmmu: replace macros with function templates.

This commit is contained in:
Maxim Poliakovski 2021-04-18 20:05:15 +02:00
parent ed6c316c82
commit bc59bf7c43

View File

@ -55,57 +55,112 @@ AddressMapEntry last_ptab_area = {0xFFFFFFFF, 0xFFFFFFFF};
AddressMapEntry last_dma_area = {0xFFFFFFFF, 0xFFFFFFFF}; AddressMapEntry last_dma_area = {0xFFFFFFFF, 0xFFFFFFFF};
#define WRITE_BYTE(addr, val) (*(addr) = val) template <class T, const bool is_aligned>
static inline T read_phys_mem(AddressMapEntry *mru_rgn, uint32_t addr)
/* macro for generating code reading from physical memory */ {
#define READ_PHYS_MEM(ENTRY, ADDR, OP, SIZE, UNVAL) \ if (addr < mru_rgn->start || (addr + sizeof(T)) > mru_rgn->end) {
{ \ AddressMapEntry* entry = mem_ctrl_instance->find_range(addr);
if ((ADDR) >= (ENTRY).start && ((ADDR) + (SIZE)) <= (ENTRY).end) { \ if (entry) {
ret = OP((ENTRY).mem_ptr + ((ADDR) - (ENTRY).start)); \ *mru_rgn = *entry;
} else { \ } else {
AddressMapEntry* entry = mem_ctrl_instance->find_range((ADDR)); \ LOG_F(ERROR, "Read from unmapped memory at 0x%08X!\n", addr);
if (entry) { \ return (-1ULL ? sizeof(T) == 8 : -1UL);
if (entry->type & (RT_ROM | RT_RAM)) { \ }
(ENTRY).start = entry->start; \
(ENTRY).end = entry->end; \
(ENTRY).mem_ptr = entry->mem_ptr; \
ret = OP((ENTRY).mem_ptr + ((ADDR) - (ENTRY).start)); \
} else if (entry->type & RT_MMIO) { \
ret = entry->devobj->read(entry->start, (ADDR)-entry->start, (SIZE)); \
} else { \
LOG_F(ERROR, "Please check your address map! \n"); \
ret = (UNVAL); \
} \
} else { \
LOG_F(WARNING, "Read from unmapped memory at 0x%08X!\n", (ADDR)); \
ret = (UNVAL); \
} \
} \
} }
/* macro for generating code writing to physical memory */ if (mru_rgn->type & (RT_ROM | RT_RAM)) {
#define WRITE_PHYS_MEM(ENTRY, ADDR, OP, VAL, SIZE) \ #ifdef MMU_PROFILING
{ \ dmem_reads_total++;
if ((ADDR) >= (ENTRY).start && ((ADDR) + (SIZE)) <= (ENTRY).end) { \ #endif
OP((ENTRY).mem_ptr + ((ADDR) - (ENTRY).start), (VAL)); \ switch(sizeof(T)) {
} else { \ case 1:
AddressMapEntry* entry = mem_ctrl_instance->find_range((ADDR)); \ return *(mru_rgn->mem_ptr + (addr - mru_rgn->start));
if (entry) { \ case 2:
if (entry->type & RT_RAM) { \ if (is_aligned) {
(ENTRY).start = entry->start; \ return READ_WORD_BE_A(mru_rgn->mem_ptr + (addr - mru_rgn->start));
(ENTRY).end = entry->end; \ } else {
(ENTRY).mem_ptr = entry->mem_ptr; \ return READ_WORD_BE_U(mru_rgn->mem_ptr + (addr - mru_rgn->start));
OP((ENTRY).mem_ptr + ((ADDR) - (ENTRY).start), (VAL)); \ }
} else if (entry->type & RT_MMIO) { \ case 4:
entry->devobj->write(entry->start, (ADDR)-entry->start, (VAL), (SIZE)); \ if (is_aligned) {
} else { \ return READ_DWORD_BE_A(mru_rgn->mem_ptr + (addr - mru_rgn->start));
LOG_F(ERROR, "Please check your address map!\n"); \ } else {
} \ return READ_DWORD_BE_U(mru_rgn->mem_ptr + (addr - mru_rgn->start));
} else { \ }
LOG_F(WARNING, "Write to unmapped memory at 0x%08X!\n", (ADDR)); \ case 8:
} \ if (is_aligned) {
} \ return READ_QWORD_BE_A(mru_rgn->mem_ptr + (addr - mru_rgn->start));
}
default:
LOG_F(ERROR, "READ_PHYS: invalid size %lu passed\n", sizeof(T));
return (-1ULL ? sizeof(T) == 8 : -1UL);
}
} else if (mru_rgn->type & RT_MMIO) {
#ifdef MMU_PROFILING
iomem_reads_total++;
#endif
return (mru_rgn->devobj->read(mru_rgn->start,
addr - mru_rgn->start, sizeof(T)));
} else {
LOG_F(ERROR, "READ_PHYS: invalid region type!\n");
return (-1ULL ? sizeof(T) == 8 : -1UL);
} }
}
template <class T, const bool is_aligned>
static inline void write_phys_mem(AddressMapEntry *mru_rgn, uint32_t addr, T value)
{
if (addr < mru_rgn->start || (addr + sizeof(T)) > mru_rgn->end) {
AddressMapEntry* entry = mem_ctrl_instance->find_range(addr);
if (entry) {
*mru_rgn = *entry;
} else {
LOG_F(ERROR, "Write to unmapped memory at 0x%08X!\n", addr);
return;
}
}
if (mru_rgn->type & RT_RAM) {
#ifdef MMU_PROFILING
dmem_writes_total++;
#endif
switch(sizeof(T)) {
case 1:
*(mru_rgn->mem_ptr + (addr - mru_rgn->start)) = value;
break;
case 2:
if (is_aligned) {
WRITE_WORD_BE_A(mru_rgn->mem_ptr + (addr - mru_rgn->start), value);
} else {
WRITE_WORD_BE_U(mru_rgn->mem_ptr + (addr - mru_rgn->start), value);
}
break;
case 4:
if (is_aligned) {
WRITE_DWORD_BE_A(mru_rgn->mem_ptr + (addr - mru_rgn->start), value);
} else {
WRITE_DWORD_BE_U(mru_rgn->mem_ptr + (addr - mru_rgn->start), value);
}
break;
case 8:
if (is_aligned) {
WRITE_QWORD_BE_A(mru_rgn->mem_ptr + (addr - mru_rgn->start), value);
}
break;
default:
LOG_F(ERROR, "WRITE_PHYS: invalid size %lu passed\n", sizeof(T));
return;
}
} else if (mru_rgn->type & RT_MMIO) {
#ifdef MMU_PROFILING
iomem_writes_total++;
#endif
mru_rgn->devobj->write(mru_rgn->start, addr - mru_rgn->start, value,
sizeof(T));
} else {
LOG_F(ERROR, "WRITE_PHYS: invalid region type!\n");
}
}
uint8_t* mmu_get_dma_mem(uint32_t addr, uint32_t size) { uint8_t* mmu_get_dma_mem(uint32_t addr, uint32_t size) {
if (addr >= last_dma_area.start && (addr + size) <= last_dma_area.end) { if (addr >= last_dma_area.start && (addr + size) <= last_dma_area.end) {
@ -385,28 +440,28 @@ static void mem_write_unaligned(uint32_t addr, uint32_t value, uint32_t size) {
uint32_t phys_addr; uint32_t phys_addr;
uint32_t shift = (size - 1) * 8; uint32_t shift = (size - 1) * 8;
// Break misaligned memory accesses into multiple, smaller accesses // Break misaligned memory accesses into multiple, bytewise accesses
// and retranslate on page boundary. // and retranslate on page boundary.
// Because such accesses suffer a performance penalty, they will be // Because such accesses suffer a performance penalty, they will be
// presumably very rare so don't care much about performance. // presumably very rare so don't care much about performance.
for (int i = 0; i < size; shift -= 8, addr++, phys_addr++, i++) { for (int i = 0; i < size; shift -= 8, addr++, phys_addr++, i++) {
if ((ppc_state.msr & 0x10) && (!i || !(addr & 0xFFF))) { if ((ppc_state.msr & 0x10) && (!i || !(addr & 0xFFF))) {
phys_addr = ppc_mmu_addr_translate(addr, 0); phys_addr = ppc_mmu_addr_translate(addr, 1);
} }
WRITE_PHYS_MEM(last_write_area, phys_addr, WRITE_BYTE, write_phys_mem<uint8_t, false>(&last_write_area, phys_addr,
(value >> shift) & 0xFF, 1); (value >> shift) & 0xFF);
} }
} else { } else {
// data address translation if enabled // data address translation if enabled
if (ppc_state.msr & 0x10) { if (ppc_state.msr & 0x10) {
addr = ppc_mmu_addr_translate(addr, 0); addr = ppc_mmu_addr_translate(addr, 1);
} }
if (size == 2) { if (size == 2) {
WRITE_PHYS_MEM(last_write_area, addr, WRITE_WORD_BE_U, value, 2); write_phys_mem<uint16_t, false>(&last_write_area, addr, value);
} else { } else {
WRITE_PHYS_MEM(last_write_area, addr, WRITE_DWORD_BE_U, value, 4); write_phys_mem<uint32_t, false>(&last_write_area, addr, value);
} }
} }
} }
@ -417,12 +472,13 @@ void mem_write_byte(uint32_t addr, uint8_t value) {
addr = ppc_mmu_addr_translate(addr, 1); addr = ppc_mmu_addr_translate(addr, 1);
} }
WRITE_PHYS_MEM(last_write_area, addr, WRITE_BYTE, value, 1); write_phys_mem<uint8_t, true>(&last_write_area, addr, value);
} }
void mem_write_word(uint32_t addr, uint16_t value) { void mem_write_word(uint32_t addr, uint16_t value) {
if (addr & 1) { if (addr & 1) {
mem_write_unaligned(addr, value, 2); mem_write_unaligned(addr, value, 2);
return;
} }
/* data address translation if enabled */ /* data address translation if enabled */
@ -430,12 +486,13 @@ void mem_write_word(uint32_t addr, uint16_t value) {
addr = ppc_mmu_addr_translate(addr, 1); addr = ppc_mmu_addr_translate(addr, 1);
} }
WRITE_PHYS_MEM(last_write_area, addr, WRITE_WORD_BE_A, value, 2); write_phys_mem<uint16_t, true>(&last_write_area, addr, value);
} }
void mem_write_dword(uint32_t addr, uint32_t value) { void mem_write_dword(uint32_t addr, uint32_t value) {
if (addr & 3) { if (addr & 3) {
mem_write_unaligned(addr, value, 4); mem_write_unaligned(addr, value, 4);
return;
} }
/* data address translation if enabled */ /* data address translation if enabled */
@ -443,7 +500,7 @@ void mem_write_dword(uint32_t addr, uint32_t value) {
addr = ppc_mmu_addr_translate(addr, 1); addr = ppc_mmu_addr_translate(addr, 1);
} }
WRITE_PHYS_MEM(last_write_area, addr, WRITE_DWORD_BE_A, value, 4); write_phys_mem<uint32_t, true>(&last_write_area, addr, value);
} }
void mem_write_qword(uint32_t addr, uint64_t value) { void mem_write_qword(uint32_t addr, uint64_t value) {
@ -457,7 +514,7 @@ void mem_write_qword(uint32_t addr, uint64_t value) {
addr = ppc_mmu_addr_translate(addr, 1); addr = ppc_mmu_addr_translate(addr, 1);
} }
WRITE_PHYS_MEM(last_write_area, addr, WRITE_QWORD_BE_A, value, 8); write_phys_mem<uint64_t, true>(&last_write_area, addr, value);
} }
static uint32_t mem_grab_unaligned(uint32_t addr, uint32_t size) { static uint32_t mem_grab_unaligned(uint32_t addr, uint32_t size) {
@ -475,7 +532,7 @@ static uint32_t mem_grab_unaligned(uint32_t addr, uint32_t size) {
uint32_t phys_addr; uint32_t phys_addr;
uint32_t res = 0; uint32_t res = 0;
// Break misaligned memory accesses into multiple, smaller accesses // Break misaligned memory accesses into multiple, bytewise accesses
// and retranslate on page boundary. // and retranslate on page boundary.
// Because such accesses suffer a performance penalty, they will be // Because such accesses suffer a performance penalty, they will be
// presumably very rare so don't care much about performance. // presumably very rare so don't care much about performance.
@ -484,8 +541,7 @@ static uint32_t mem_grab_unaligned(uint32_t addr, uint32_t size) {
phys_addr = ppc_mmu_addr_translate(addr, 0); phys_addr = ppc_mmu_addr_translate(addr, 0);
} }
READ_PHYS_MEM(last_read_area, phys_addr, *, 1, 0xFFU); res = (res << 8) | read_phys_mem<uint8_t, false>(&last_read_area, phys_addr);
res = (res << 8) | ret;
} }
return res; return res;
@ -496,9 +552,9 @@ static uint32_t mem_grab_unaligned(uint32_t addr, uint32_t size) {
} }
if (size == 2) { if (size == 2) {
READ_PHYS_MEM(last_read_area, addr, READ_WORD_BE_U, 2, 0xFFFFU); return read_phys_mem<uint16_t, false>(&last_read_area, addr);
} else { } else {
READ_PHYS_MEM(last_read_area, addr, READ_DWORD_BE_U, 4, 0xFFFFFFFFUL); return read_phys_mem<uint32_t, false>(&last_read_area, addr);
} }
} }
@ -507,20 +563,15 @@ static uint32_t mem_grab_unaligned(uint32_t addr, uint32_t size) {
/** Grab a value from memory into a register */ /** Grab a value from memory into a register */
uint8_t mem_grab_byte(uint32_t addr) { uint8_t mem_grab_byte(uint32_t addr) {
uint8_t ret;
/* data address translation if enabled */ /* data address translation if enabled */
if (ppc_state.msr & 0x10) { if (ppc_state.msr & 0x10) {
addr = ppc_mmu_addr_translate(addr, 0); addr = ppc_mmu_addr_translate(addr, 0);
} }
READ_PHYS_MEM(last_read_area, addr, *, 1, 0xFFU); return read_phys_mem<uint8_t, true>(&last_read_area, addr);
return ret;
} }
uint16_t mem_grab_word(uint32_t addr) { uint16_t mem_grab_word(uint32_t addr) {
uint16_t ret;
if (addr & 1) { if (addr & 1) {
return mem_grab_unaligned(addr, 2); return mem_grab_unaligned(addr, 2);
} }
@ -530,13 +581,10 @@ uint16_t mem_grab_word(uint32_t addr) {
addr = ppc_mmu_addr_translate(addr, 0); addr = ppc_mmu_addr_translate(addr, 0);
} }
READ_PHYS_MEM(last_read_area, addr, READ_WORD_BE_A, 2, 0xFFFFU); return read_phys_mem<uint16_t, true>(&last_read_area, addr);
return ret;
} }
uint32_t mem_grab_dword(uint32_t addr) { uint32_t mem_grab_dword(uint32_t addr) {
uint32_t ret;
if (addr & 3) { if (addr & 3) {
return mem_grab_unaligned(addr, 4); return mem_grab_unaligned(addr, 4);
} }
@ -546,13 +594,10 @@ uint32_t mem_grab_dword(uint32_t addr) {
addr = ppc_mmu_addr_translate(addr, 0); addr = ppc_mmu_addr_translate(addr, 0);
} }
READ_PHYS_MEM(last_read_area, addr, READ_DWORD_BE_A, 4, 0xFFFFFFFFUL); return read_phys_mem<uint32_t, true>(&last_read_area, addr);
return ret;
} }
uint64_t mem_grab_qword(uint32_t addr) { uint64_t mem_grab_qword(uint32_t addr) {
uint64_t ret;
if (addr & 7) { if (addr & 7) {
LOG_F(ERROR, "SOS! Attempt to read unaligned QWORD at 0x%08X\n", addr); LOG_F(ERROR, "SOS! Attempt to read unaligned QWORD at 0x%08X\n", addr);
exit(-1); // FIXME! exit(-1); // FIXME!
@ -563,8 +608,7 @@ uint64_t mem_grab_qword(uint32_t addr) {
addr = ppc_mmu_addr_translate(addr, 0); addr = ppc_mmu_addr_translate(addr, 0);
} }
READ_PHYS_MEM(last_read_area, addr, READ_QWORD_BE_A, 8, 0xFFFFFFFFFFFFFFFFULL); return read_phys_mem<uint64_t, true>(&last_read_area, addr);
return ret;
} }
uint8_t* quickinstruction_translate(uint32_t addr) { uint8_t* quickinstruction_translate(uint32_t addr) {