Cherrypicks a small piece of joevt/dingusppc@117ca1e449
so that booting from the 10.2 CD gets past it trying to change the video
mode to 15bpp.
Co-authored-by: joevt <joevt@shaw.ca>
AdbKeyboard would copy the event into its own fields and set the
changed field, so that we could return the event when register was 0.
However, if a subsequent event was received before ADB polling, the
previous event would be overwritten and lost.
Fix this by maintaining a queue of events, so that we can return
everything since the last poll.
We were using an empty value on the second byte of the ADB keyboard
register 0, but that maps to the "a" key. This manifested itself
as the Key Caps DA never showing the "a" key as being down.
Switch to a non-existent key for the second byte.
Allows different implementations for different platforms (the JS
build relies on browser APIs to stream disk images over the network).
Setting aside the JS build, this also reduces some code duplication.
Besides generating KeyboardEvents in the SDL event handler and
returning the key state in the register 0 reads of the AdbKeyboard
device, we also needed to generalize the ADB bus polling a bit. We now
check all devices that have the service request bit set, instead of
hardcoding the mouse.
The SDL key event -> ADB raw key code mapping is based on BasiliskII/
SheepShaver's, but cleaned up a bit.
Otherwise if pull_data is called again, it will think that it still
has data available in the buffer (rem_len will be non-zero) and
random data at the buffer location will be returned.
This manifested itself as noise being played back in the JS
implementation of the SoundServer. The cubeb implementation was not
affected because it stops polling once it's told it has no more
data in the buffer. Both approaches are valid (the JS version pads
data with silence), and the DMA buffer should support both.
Result of running IWYU (https://include-what-you-use.org/) and
applying most of the suggestions about unncessary includes and
forward declarations.
Was motivated by observing that <thread> was being included in
ppcopcodes.cpp even though it was unused (found while researching
the use of threads), but seems generally good to help with build
times and correctness.
While Emscripten has an SDL compabtility layer, it assumes that the
code is executing in the main browser process (and thus has access to
them DOM). The Infinite Mac project runs emulators in a worker thread
(for better performance) and has a custom API for the display, sound,
input, etc. Similarly, it does not need the cross-platform sound support
from cubeb, there there is a sound API as well.
This commit makes SDL (*_sdl.cpp) and cubeb-based (*_cubeb.cpp) code be
skipped when targeting Emscripten, and instead *_js.cpp files are used
instead (this is the cross-platform convention used by Chromium[^1], and
could be extended for other targets).
For hostevents.cpp and soundserver.cpp the entire file was replaced,
whereas for videoctrl.cpp there was enough shared logic that it was
kept, and the platform-specific bits were moved behind a Display class
that can have per-platform implementations. For cases where we need
additional private fields in the platform-specific classes, we use
a PIMPL pattern.
The *_js.cpp files with implementations are not included in this
commit, since they are closely tied to the Infinite Mac project, and
will live in its fork of DingusPPC.
[^1]: https://www.chromium.org/developers/design-documents/conventions-and-patterns-for-multi-platform-development/
The simplest solution is to cut the aperture size by the amount
of video RAM installed. This way, accesses to the big-endian
aperture located above the installed VRAM will be catched and
reported by the MMU.
The disk cache is unchanged. data_ptr continues to be only used for the user data sector area for each block. The other sector areas (synch, header, etc.) are filled in while reading.
has_data and get_data exist as a way to bypass data_ptr for parts of the transfer outside the user data sector area of each block. The default behaviour is defined in atabasedevice and is overridden by atapicdrom for the Read CD command. atapicdrom has a flag doing_sector_areas to control the behavior of the get_data method. When the flag is true, the sector_areas, current_block, and current_block_byte are used for selecting the correct data from one of the sector areas. The Read CD command initializes those variables. xfer_cnt remains the total number of bytes to be transferred and is now not necessarily the same as the number of disk image blocks read into the disk cache.
lba_to_msf is used to fill in the header. The values was not verified using a real CD.
Mac OS X just cares about the Mode in the header. For now, only the synch and header and user data areas are filled in. The other areas read as all zeros.