Some of these accept a 4th register "C" so they exist in the opcode table 32 times.
Some of these don't accept a 4th register "C" so they exist in the opcode table once.
Instead of a primary opcode lookup table with 64 entries and a few
smaller tables with 4-2048 entries, use a single 64 * 2048 (128K)
entry table to dispatch opcodes.
Helps with performance, since we avoid the function call overhead for
some frequently-used instructions (e.g. branch, integer, floating point).
Saves ~2 seconds from the time to Welcome to Macintosh (same measurement
methodology as #125)
Secondarily also makes opcode registration/decoding a bit more uniform,
and scannable, since it's now all in initialize_ppc_opcode_table.
Replace it wth an explicit opcode parameter that is passed around. That
is both slightly easier to reason about (to trace where it comes from)
and slightly faster, since it can be read from a register.
On my machine takes booting to "Welcome to Macintosh" being output in
a verbose boot of Mac OS X 10.2.8 from 31.8s to 30.6s (average of 5
runs, measured using deterministic mode and looking at when execution
reaches PC 0x90004a88).
ppc_opcode16 and other functions are only needed in the implementation in
ppcexec.cpp, they don't need to be in the header.
fp_return_double and fp_return_uint64 have no uses (as of 2141a72b873763995b3428353dc7fd9d5bb47abb)
can can thus be removed altogether.
Similarly ppc_fpu_off has no uses (as of bb3f4e596e3f18f9414daa94e3639d2c192e93ec)
and can be removed.
Adds support for a --deterministic command-line option that makes
repeated runs the same:
- Keyboard and mouse input is ignored
- The sound server does a periodic pull from the DMA channel (so that
it gets drained), but only does so via a periodic timer (instead of
being driven by a cubeb callback, which could arrive at different
times)
- Disk image writes are disabled (reads of a modified area still
work via an in-memory copy)
- NVRAM writes are disabled
- The current time that ViaCuda initializes the guest OS is always the
same.
This makes execution exactly the same each time, which should
make debugging of more subtle issues easier.
To validate that the deterministic mode is working, I've added a
periodic log of the current "time" (measured in cycle count), PC
and opcode. When comparing two runs with --log-no-uptime, the generated
log files are identical.