/* DingusPPC - The Experimental PowerPC Macintosh emulator Copyright (C) 2018-24 divingkatae and maximum (theweirdo) spatium (Contact divingkatae#1017 or powermax#2286 on Discord for more info) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /** @file ATA hard disk emulation. */ #include #include #include #include #include #include #include #include #include #include using namespace ata_interface; AtaHardDisk::AtaHardDisk(std::string name) : AtaBaseDevice(name, DEVICE_TYPE_ATA) { } int AtaHardDisk::device_postinit() { std::string hdd_config = GET_STR_PROP("hdd_config"); if (hdd_config.empty()) { LOG_F(ERROR, "%s: hdd_config property is empty", this->name.c_str()); return -1; } std::string hdd_image_path = GET_STR_PROP("hdd_img"); if (hdd_image_path.empty()) return 0; std::string bus_id; uint32_t dev_num; parse_device_path(hdd_config, bus_id, dev_num); auto bus_obj = dynamic_cast(gMachineObj->get_comp_by_name(bus_id)); bus_obj->register_device(dev_num, this); this->insert_image(hdd_image_path); return 0; } void AtaHardDisk::insert_image(std::string filename) { if (!this->hdd_img.open(filename)) { ABORT_F("%s: could not open image file \"%s\"", this->name.c_str(), filename.c_str()); } this->img_size = this->hdd_img.size(); uint64_t sectors = this->hdd_img.size() / ATA_HD_SEC_SIZE; this->total_sectors = (uint32_t)sectors; if (sectors != this->total_sectors) { ABORT_F("%s: image file \"%s\" is too big", this->name.c_str(), filename.c_str()); } this->calc_chs_params(); } int AtaHardDisk::perform_command() { this->r_status |= BSY; this->r_error = 0; switch (this->r_command) { case NOP: break; case ATAPI_SOFT_RESET: // for ATA devices, is a no-op this->r_status &= ~BSY; break; case RECALIBRATE: // is optional in ATA-3; disappeared in >= ATA-4 // OF 3.1.1 won't boot off the drive that reports error for this command this->r_cylinder_hi = 0; this->r_cylinder_lo = 0; this->r_dev_head &= 0xF0; this->r_sect_num = (this->r_dev_head & ATA_Dev_Head::LBA) ? 0 : 1; this->r_status &= ~BSY; this->update_intrq(1); break; case READ_MULTIPLE: case READ_SECTOR: case READ_SECTOR_NR: { uint16_t sec_count = this->r_sect_count ? this->r_sect_count : 256; int xfer_size = sec_count * ATA_HD_SEC_SIZE; uint64_t offset = this->get_lba() * ATA_HD_SEC_SIZE; uint32_t ints_size = ATA_HD_SEC_SIZE; if (this->r_command == READ_MULTIPLE) { if (!this->sectors_per_int) { LOG_F(ERROR, "%s: READ_MULTIPLE disabled", this->name.c_str()); this->r_status |= ERR; this->r_status &= ~BSY; break; } ints_size *= this->sectors_per_int; } hdd_img.read(buffer, offset, xfer_size); this->data_ptr = (uint16_t *)this->buffer; // those commands should generate IRQ for each sector this->prepare_xfer(xfer_size, ints_size); this->signal_data_ready(); } break; case WRITE_MULTIPLE: case WRITE_SECTOR: case WRITE_SECTOR_NR: { uint16_t sec_count = this->r_sect_count ? this->r_sect_count : 256; this->cur_fpos = this->get_lba() * ATA_HD_SEC_SIZE; this->data_ptr = (uint16_t *)this->buffer; this->cur_data_ptr = this->data_ptr; uint32_t xfer_size = sec_count * ATA_HD_SEC_SIZE; uint32_t ints_size = ATA_HD_SEC_SIZE; if (this->r_command == WRITE_MULTIPLE) { if (!this->sectors_per_int) { LOG_F(ERROR, "%s: WRITE_MULTIPLE disabled", this->name.c_str()); this->r_status |= ERR; this->r_status &= ~BSY; break; } ints_size *= this->sectors_per_int; } this->prepare_xfer(xfer_size, ints_size); this->post_xfer_action = [this]() { uint64_t write_len = (this->cur_data_ptr - this->data_ptr) * sizeof(this->data_ptr[0]); this->hdd_img.write(this->data_ptr, this->cur_fpos, write_len); this->cur_fpos += write_len; }; this->r_status |= DRQ; this->r_status &= ~BSY; } break; case DIAGNOSTICS: this->r_error = 1; // device 0 passed, device 1 passed or not present this->device_set_signature(); this->r_status &= ~BSY; this->update_intrq(1); break; case READ_VERIFY: // verify sectors are readable, just no-op this->r_status &= ~BSY; this->update_intrq(1); break; case INIT_DEV_PARAM: // update fictive disk geometry with parameters from host this->sectors = this->r_sect_count; this->heads = (this->r_dev_head & 0xF) + 1; this->r_status &= ~BSY; this->update_intrq(1); break; case SET_MULTIPLE_MODE: // this command is mandatory for ATA devices if (!this->r_sect_count || this->r_sect_count > SECTORS_PER_INT || std::bitset<8>(this->r_sect_count).count() != 1) { // power of two? LOG_F(ERROR, "%s: invalid parameter %d for SET_MULTIPLE_MODE", this->name.c_str(), this->r_sect_count); this->r_error |= ABRT; this->r_status |= ERR; } else { LOG_F(9, "%s: SET_MULTIPLE_MODE, r_sect_count=%d", this->name.c_str(), this->r_sect_count); this->sectors_per_int = this->r_sect_count; } this->r_status &= ~BSY; this->update_intrq(1); break; case FLUSH_CACHE: // used by the XNU kernel driver this->r_status &= ~(BSY | DRQ | ERR); this->update_intrq(1); break; case IDENTIFY_DEVICE: this->prepare_identify_info(); this->data_ptr = (uint16_t *)this->data_buf; this->prepare_xfer(ATA_HD_SEC_SIZE, ATA_HD_SEC_SIZE); this->signal_data_ready(); break; case SET_FEATURES: if (this->r_features == 3) { switch(this->r_sect_count >> 3) { case 0: LOG_F(INFO, "%s: default transfer mode requested", this->name.c_str()); break; case 1: LOG_F(INFO, "%s: PIO transfer mode set to 0x%X", this->name.c_str(), this->r_sect_count & 7); break; case 4: LOG_F(INFO, "%s: Multiword DMA mode set to 0x%X", this->name.c_str(), this->r_sect_count & 7); break; default: LOG_F(ERROR, "%s: unsupported transfer mode 0x%X", this->name.c_str(), this->r_sect_count); this->r_error |= ATA_Error::ABRT; this->r_status |= ATA_Status::ERR; } } else { LOG_F(WARNING, "%s: unsupported SET_FEATURES subcommand code 0x%X", this->name.c_str(), this->r_features); } this->r_status &= ~BSY; this->update_intrq(1); break; case STANDBY_IMMEDIATE_E0: LOG_F(INFO, "%s: STANDBY_IMMEDIATE_E0", this->name.c_str()); this->r_status &= ~BSY; this->update_intrq(1); break; default: LOG_F(ERROR, "%s: unknown ATA command 0x%x", this->name.c_str(), this->r_command); this->r_status &= ~BSY; this->r_status |= ERR; return -1; } return 0; } void AtaHardDisk::prepare_identify_info() { uint16_t *buf_ptr = (uint16_t *)this->data_buf; std::memset(this->data_buf, 0, sizeof(this->data_buf)); buf_ptr[ 0] = 0x0040; // ATA device, non-removable media, non-removable drive buf_ptr[49] = 0x0200; // report LBA support // Maximum number of logical sectors per data block that the device supports // for READ_MULTIPLE/WRITE_MULTIPLE commands. buf_ptr[47] = 0x8000 | SECTORS_PER_INT; // If bit 8 of word 59 is set to one, then bits 7:0 indicate the number of // logical sectors that shall be transferred per data block for // READ_MULTIPLE/WRITE_MULTIPLE commands. if (this->sectors_per_int) buf_ptr[59] = 0x100 | this->sectors_per_int; buf_ptr[ 1] = this->cylinders; buf_ptr[ 3] = this->heads; buf_ptr[ 6] = this->sectors; buf_ptr[57] = this->total_sectors & 0xFFFFU; buf_ptr[58] = (this->total_sectors >> 16) & 0xFFFFU; // report LBA capacity WRITE_WORD_LE_A(&buf_ptr[60], (this->total_sectors & 0xFFFFU)); WRITE_WORD_LE_A(&buf_ptr[61], (this->total_sectors >> 16) & 0xFFFFU); } uint64_t AtaHardDisk::get_lba() { if (this->r_dev_head & ATA_Dev_Head::LBA) { return ((this->r_dev_head & 0xF) << 24) | (this->r_cylinder_hi << 16) | (this->r_cylinder_lo << 8) | (this->r_sect_num); } else { // translate old fashioned CHS addressing to LBA uint16_t c = (this->r_cylinder_hi << 8) + this->r_cylinder_lo; uint8_t h = this->r_dev_head & 0xF; uint8_t s = this->r_sect_num; if (!s) { LOG_F(ERROR, "%s: zero sector number is not allowed!", this->name.c_str()); return -1ULL; } else return (this->heads * c + h) * this->sectors + s - 1; } } void AtaHardDisk::calc_chs_params() { unsigned num_blocks, heads, sectors, max_sectors, cylinders, max_cylinders; LOG_F(INFO, "%s: total sectors %d", this->name.c_str(), this->total_sectors); if (this->total_sectors >= REAL_CHS_LIMIT) { heads = 16; sectors = 255; cylinders = 65535; LOG_F(WARNING, "%s: exceeds max CHS translation", this->name.c_str()); goto done; } // use PC BIOS limit to keep number of sectors small for smaller disks if (this->total_sectors >= ATA_BIOS_LIMIT) { max_sectors = 255; max_cylinders = 65535; } else { max_sectors = 63; max_cylinders = 16383; } num_blocks = this->total_sectors; for (heads = 16; heads > 0; heads--) for (sectors = max_sectors; sectors > 0; sectors--) if (!(num_blocks % (heads * sectors))) if (heads * sectors * max_cylinders >= num_blocks) { cylinders = num_blocks / (heads * sectors); goto done; } heads = 16; sectors = (num_blocks + heads * max_cylinders - 1) / (heads * max_cylinders); cylinders = (num_blocks + heads * sectors - 1) / (heads * sectors); LOG_F(WARNING, "%s: could not find a suitable CHS translation; increased sectors to %d", this->name.c_str(), heads * sectors * cylinders); done: this->heads = heads; this->sectors = sectors; this->cylinders = cylinders; LOG_F(INFO, "%s: C=%d, H=%d, S=%d", this->name.c_str(), cylinders, heads, sectors); } static const PropMap AtaHardDiskProperties = { {"hdd_img", new StrProperty("")}, }; static const DeviceDescription AtaHardDiskDescriptor = {AtaHardDisk::create, {}, AtaHardDiskProperties}; REGISTER_DEVICE(AtaHardDisk, AtaHardDiskDescriptor);