/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-24 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/** @file ATA hard disk emulation. */
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace ata_interface;
AtaHardDisk::AtaHardDisk(std::string name) : AtaBaseDevice(name, DEVICE_TYPE_ATA) {
}
int AtaHardDisk::device_postinit() {
std::string hdd_config = GET_STR_PROP("hdd_config");
if (hdd_config.empty()) {
LOG_F(ERROR, "%s: hdd_config property is empty", this->name.c_str());
return -1;
}
std::string hdd_image_path = GET_STR_PROP("hdd_img");
if (hdd_image_path.empty())
return 0;
std::string bus_id;
uint32_t dev_num;
parse_device_path(hdd_config, bus_id, dev_num);
auto bus_obj = dynamic_cast(gMachineObj->get_comp_by_name(bus_id));
bus_obj->register_device(dev_num, this);
this->insert_image(hdd_image_path);
return 0;
}
void AtaHardDisk::insert_image(std::string filename) {
if (!this->hdd_img.open(filename)) {
ABORT_F("%s: could not open image file \"%s\"", this->name.c_str(),
filename.c_str());
}
this->img_size = this->hdd_img.size();
uint64_t sectors = this->hdd_img.size() / ATA_HD_SEC_SIZE;
this->total_sectors = (uint32_t)sectors;
if (sectors != this->total_sectors) {
ABORT_F("%s: image file \"%s\" is too big", this->name.c_str(),
filename.c_str());
}
this->calc_chs_params();
}
int AtaHardDisk::perform_command() {
this->r_status |= BSY;
this->r_error = 0;
switch (this->r_command) {
case NOP:
break;
case ATAPI_SOFT_RESET: // for ATA devices, is a no-op
this->r_status &= ~BSY;
break;
case RECALIBRATE: // is optional in ATA-3; disappeared in >= ATA-4
// OF 3.1.1 won't boot off the drive that reports error for this command
this->r_cylinder_hi = 0;
this->r_cylinder_lo = 0;
this->r_dev_head &= 0xF0;
this->r_sect_num = (this->r_dev_head & ATA_Dev_Head::LBA) ? 0 : 1;
this->r_status &= ~BSY;
this->update_intrq(1);
break;
case READ_MULTIPLE:
case READ_SECTOR:
case READ_SECTOR_NR: {
uint16_t sec_count = this->r_sect_count ? this->r_sect_count : 256;
int xfer_size = sec_count * ATA_HD_SEC_SIZE;
uint64_t offset = this->get_lba() * ATA_HD_SEC_SIZE;
uint32_t ints_size = ATA_HD_SEC_SIZE;
if (this->r_command == READ_MULTIPLE) {
if (!this->sectors_per_int) {
LOG_F(ERROR, "%s: READ_MULTIPLE disabled", this->name.c_str());
this->r_status |= ERR;
this->r_status &= ~BSY;
break;
}
ints_size *= this->sectors_per_int;
}
hdd_img.read(buffer, offset, xfer_size);
this->data_ptr = (uint16_t *)this->buffer;
// those commands should generate IRQ for each sector
this->prepare_xfer(xfer_size, ints_size);
this->signal_data_ready();
}
break;
case WRITE_MULTIPLE:
case WRITE_SECTOR:
case WRITE_SECTOR_NR: {
uint16_t sec_count = this->r_sect_count ? this->r_sect_count : 256;
this->cur_fpos = this->get_lba() * ATA_HD_SEC_SIZE;
this->data_ptr = (uint16_t *)this->buffer;
this->cur_data_ptr = this->data_ptr;
uint32_t xfer_size = sec_count * ATA_HD_SEC_SIZE;
uint32_t ints_size = ATA_HD_SEC_SIZE;
if (this->r_command == WRITE_MULTIPLE) {
if (!this->sectors_per_int) {
LOG_F(ERROR, "%s: WRITE_MULTIPLE disabled", this->name.c_str());
this->r_status |= ERR;
this->r_status &= ~BSY;
break;
}
ints_size *= this->sectors_per_int;
}
this->prepare_xfer(xfer_size, ints_size);
this->post_xfer_action = [this]() {
uint64_t write_len = (this->cur_data_ptr - this->data_ptr) * sizeof(this->data_ptr[0]);
this->hdd_img.write(this->data_ptr, this->cur_fpos, write_len);
this->cur_fpos += write_len;
};
this->r_status |= DRQ;
this->r_status &= ~BSY;
}
break;
case DIAGNOSTICS:
this->r_error = 1; // device 0 passed, device 1 passed or not present
this->device_set_signature();
this->r_status &= ~BSY;
this->update_intrq(1);
break;
case READ_VERIFY: // verify sectors are readable, just no-op
this->r_status &= ~BSY;
this->update_intrq(1);
break;
case INIT_DEV_PARAM:
// update fictive disk geometry with parameters from host
this->sectors = this->r_sect_count;
this->heads = (this->r_dev_head & 0xF) + 1;
this->r_status &= ~BSY;
this->update_intrq(1);
break;
case SET_MULTIPLE_MODE: // this command is mandatory for ATA devices
if (!this->r_sect_count || this->r_sect_count > SECTORS_PER_INT ||
std::bitset<8>(this->r_sect_count).count() != 1) { // power of two?
LOG_F(ERROR, "%s: invalid parameter %d for SET_MULTIPLE_MODE",
this->name.c_str(), this->r_sect_count);
this->r_error |= ABRT;
this->r_status |= ERR;
} else {
LOG_F(9, "%s: SET_MULTIPLE_MODE, r_sect_count=%d", this->name.c_str(),
this->r_sect_count);
this->sectors_per_int = this->r_sect_count;
}
this->r_status &= ~BSY;
this->update_intrq(1);
break;
case FLUSH_CACHE: // used by the XNU kernel driver
this->r_status &= ~(BSY | DRQ | ERR);
this->update_intrq(1);
break;
case IDENTIFY_DEVICE:
this->prepare_identify_info();
this->data_ptr = (uint16_t *)this->data_buf;
this->prepare_xfer(ATA_HD_SEC_SIZE, ATA_HD_SEC_SIZE);
this->signal_data_ready();
break;
case SET_FEATURES:
if (this->r_features == 3) {
switch(this->r_sect_count >> 3) {
case 0:
LOG_F(INFO, "%s: default transfer mode requested", this->name.c_str());
break;
case 1:
LOG_F(INFO, "%s: PIO transfer mode set to 0x%X", this->name.c_str(),
this->r_sect_count & 7);
break;
case 4:
LOG_F(INFO, "%s: Multiword DMA mode set to 0x%X", this->name.c_str(),
this->r_sect_count & 7);
break;
default:
LOG_F(ERROR, "%s: unsupported transfer mode 0x%X", this->name.c_str(),
this->r_sect_count);
this->r_error |= ATA_Error::ABRT;
this->r_status |= ATA_Status::ERR;
}
} else {
LOG_F(WARNING, "%s: unsupported SET_FEATURES subcommand code 0x%X",
this->name.c_str(), this->r_features);
}
this->r_status &= ~BSY;
this->update_intrq(1);
break;
case STANDBY_IMMEDIATE_E0:
LOG_F(INFO, "%s: STANDBY_IMMEDIATE_E0", this->name.c_str());
this->r_status &= ~BSY;
this->update_intrq(1);
break;
default:
LOG_F(ERROR, "%s: unknown ATA command 0x%x", this->name.c_str(), this->r_command);
this->r_status &= ~BSY;
this->r_status |= ERR;
return -1;
}
return 0;
}
void AtaHardDisk::prepare_identify_info() {
uint16_t *buf_ptr = (uint16_t *)this->data_buf;
std::memset(this->data_buf, 0, sizeof(this->data_buf));
buf_ptr[ 0] = 0x0040; // ATA device, non-removable media, non-removable drive
buf_ptr[49] = 0x0200; // report LBA support
// Maximum number of logical sectors per data block that the device supports
// for READ_MULTIPLE/WRITE_MULTIPLE commands.
buf_ptr[47] = 0x8000 | SECTORS_PER_INT;
// If bit 8 of word 59 is set to one, then bits 7:0 indicate the number of
// logical sectors that shall be transferred per data block for
// READ_MULTIPLE/WRITE_MULTIPLE commands.
if (this->sectors_per_int)
buf_ptr[59] = 0x100 | this->sectors_per_int;
buf_ptr[ 1] = this->cylinders;
buf_ptr[ 3] = this->heads;
buf_ptr[ 6] = this->sectors;
buf_ptr[57] = this->total_sectors & 0xFFFFU;
buf_ptr[58] = (this->total_sectors >> 16) & 0xFFFFU;
// report LBA capacity
WRITE_WORD_LE_A(&buf_ptr[60], (this->total_sectors & 0xFFFFU));
WRITE_WORD_LE_A(&buf_ptr[61], (this->total_sectors >> 16) & 0xFFFFU);
}
uint64_t AtaHardDisk::get_lba() {
if (this->r_dev_head & ATA_Dev_Head::LBA) {
return ((this->r_dev_head & 0xF) << 24) | (this->r_cylinder_hi << 16) |
(this->r_cylinder_lo << 8) | (this->r_sect_num);
} else { // translate old fashioned CHS addressing to LBA
uint16_t c = (this->r_cylinder_hi << 8) + this->r_cylinder_lo;
uint8_t h = this->r_dev_head & 0xF;
uint8_t s = this->r_sect_num;
if (!s) {
LOG_F(ERROR, "%s: zero sector number is not allowed!", this->name.c_str());
return -1ULL;
} else
return (this->heads * c + h) * this->sectors + s - 1;
}
}
void AtaHardDisk::calc_chs_params() {
unsigned num_blocks, heads, sectors, max_sectors, cylinders, max_cylinders;
LOG_F(INFO, "%s: total sectors %d", this->name.c_str(), this->total_sectors);
if (this->total_sectors >= REAL_CHS_LIMIT) {
heads = 16;
sectors = 255;
cylinders = 65535;
LOG_F(WARNING, "%s: exceeds max CHS translation",
this->name.c_str());
goto done;
}
// use PC BIOS limit to keep number of sectors small for smaller disks
if (this->total_sectors >= ATA_BIOS_LIMIT) {
max_sectors = 255;
max_cylinders = 65535;
} else {
max_sectors = 63;
max_cylinders = 16383;
}
num_blocks = this->total_sectors;
for (heads = 16; heads > 0; heads--)
for (sectors = max_sectors; sectors > 0; sectors--)
if (!(num_blocks % (heads * sectors)))
if (heads * sectors * max_cylinders >= num_blocks) {
cylinders = num_blocks / (heads * sectors);
goto done;
}
heads = 16;
sectors = (num_blocks + heads * max_cylinders - 1) / (heads * max_cylinders);
cylinders = (num_blocks + heads * sectors - 1) / (heads * sectors);
LOG_F(WARNING, "%s: could not find a suitable CHS translation; increased sectors to %d",
this->name.c_str(), heads * sectors * cylinders);
done:
this->heads = heads;
this->sectors = sectors;
this->cylinders = cylinders;
LOG_F(INFO, "%s: C=%d, H=%d, S=%d", this->name.c_str(), cylinders,
heads, sectors);
}
static const PropMap AtaHardDiskProperties = {
{"hdd_img", new StrProperty("")},
};
static const DeviceDescription AtaHardDiskDescriptor =
{AtaHardDisk::create, {}, AtaHardDiskProperties};
REGISTER_DEVICE(AtaHardDisk, AtaHardDiskDescriptor);