/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-24 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
uint16_t NvramAddrHiDev::iodev_read(uint32_t address) {
return nvram_addr_hi;
}
void NvramAddrHiDev::iodev_write(uint32_t address, uint16_t value) {
this->nvram_addr_hi = value;
}
NvramDev::NvramDev(NvramAddrHiDev *addr_hi) {
// NVRAM connection
this->nvram = dynamic_cast(gMachineObj->get_comp_by_name("NVRAM"));
this->addr_hi = addr_hi;
}
uint16_t NvramDev::iodev_read(uint32_t address) {
return this->nvram->read_byte((addr_hi->iodev_read(0) << 5) + address);
}
void NvramDev::iodev_write(uint32_t address, uint16_t value) {
this->nvram->write_byte((addr_hi->iodev_read(0) << 5) + address, value);
}
GrandCentral::GrandCentral() : PCIDevice("mac-io/grandcentral"), InterruptCtrl()
{
supports_types(HWCompType::MMIO_DEV | HWCompType::PCI_DEV | HWCompType::INT_CTRL);
// populate my PCI config header
this->vendor_id = PCI_VENDOR_APPLE;
this->device_id = 0x0002;
this->class_rev = 0xFF000002;
this->cache_ln_sz = 8;
this->setup_bars({{0, 0xFFFE0000UL}}); // declare 128Kb of memory-mapped I/O space
this->pci_notify_bar_change = [this](int bar_num) {
this->notify_bar_change(bar_num);
};
// connect Cuda
this->viacuda = dynamic_cast(gMachineObj->get_comp_by_name("ViaCuda"));
// initialize sound chip and its DMA output channel, then wire them together
this->awacs = std::unique_ptr (new AwacsScreamer());
this->snd_out_dma = std::unique_ptr (new DMAChannel("snd_out"));
this->snd_out_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_DAVBUS_Tx));
this->awacs->set_dma_out(this->snd_out_dma.get());
this->snd_out_dma->set_callbacks(
std::bind(&AwacsScreamer::dma_out_start, this->awacs.get()),
std::bind(&AwacsScreamer::dma_out_stop, this->awacs.get())
);
this->snd_in_dma = std::unique_ptr (new DMAChannel("snd_in"));
this->snd_in_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_DAVBUS_Rx));
this->awacs->set_dma_in(this->snd_in_dma.get());
this->snd_in_dma->set_callbacks(
std::bind(&AwacsScreamer::dma_in_start, this->awacs.get()),
std::bind(&AwacsScreamer::dma_in_stop, this->awacs.get())
);
// connect serial HW
this->escc = dynamic_cast(gMachineObj->get_comp_by_name("Escc"));
this->escc_a_tx_dma = std::unique_ptr (new DMAChannel("Escc_a_tx"));
this->escc_a_rx_dma = std::unique_ptr (new DMAChannel("Escc_a_rx"));
this->escc_b_tx_dma = std::unique_ptr (new DMAChannel("Escc_b_tx"));
this->escc_b_rx_dma = std::unique_ptr (new DMAChannel("Escc_b_rx"));
this->escc_a_tx_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_SCCA_Tx));
this->escc_a_rx_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_SCCA_Rx));
this->escc_b_tx_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_SCCB_Tx));
this->escc_b_rx_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_SCCB_Rx));
this->escc->set_dma_channel(0, this->escc_a_tx_dma.get());
this->escc->set_dma_channel(1, this->escc_a_rx_dma.get());
this->escc->set_dma_channel(2, this->escc_b_tx_dma.get());
this->escc->set_dma_channel(3, this->escc_b_rx_dma.get());
// connect MESH (internal SCSI)
this->mesh = dynamic_cast(gMachineObj->get_comp_by_name_optional("MeshTnt"));
if (this->mesh == nullptr) {
LOG_F(WARNING, "%s: Mesh not found, using MeshStub instead", this->name.c_str());
this->mesh_stub = std::unique_ptr(new MeshStub());
this->mesh = dynamic_cast(this->mesh_stub.get());
} else {
this->mesh_dma = std::unique_ptr (new DMAChannel("mesh_scsi"));
this->mesh_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_SCSI_MESH));
this->mesh->set_dma_channel(this->mesh_dma.get());
}
// connect external SCSI controller (Curio) to its DMA channel
this->curio = dynamic_cast(gMachineObj->get_comp_by_name("Sc53C94"));
this->curio_dma = std::unique_ptr (new DMAChannel("curio_scsi"));
this->curio_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_SCSI_CURIO));
this->curio->set_dma_channel(this->curio_dma.get());
// connect Ethernet HW
this->mace = dynamic_cast(gMachineObj->get_comp_by_name("Mace"));
// connect floppy disk HW
this->swim3 = dynamic_cast(gMachineObj->get_comp_by_name("Swim3"));
this->floppy_dma = std::unique_ptr (new DMAChannel("floppy"));
this->swim3->set_dma_channel(this->floppy_dma.get());
this->floppy_dma->register_dma_int(this, this->register_dma_int(IntSrc::DMA_SWIM3));
// attach IOBus Device #4 0xF301D000 ; NVRAM High Address
this->nvram_addr_hi_dev = std::unique_ptr(new NvramAddrHiDev());
attach_iodevice(3, this->nvram_addr_hi_dev.get());
// attach IOBus Device #6 0xF301F000 ; NVRAM Data
this->nvram_dev = std::unique_ptr(new NvramDev(nvram_addr_hi_dev.get()));
attach_iodevice(5, this->nvram_dev.get());
}
void GrandCentral::notify_bar_change(int bar_num)
{
if (bar_num) // only BAR0 is supported
return;
if (this->base_addr != (this->bars[bar_num] & 0xFFFFFFF0UL)) {
if (this->base_addr) {
LOG_F(WARNING, "%s: deallocating I/O memory not implemented", this->name.c_str());
}
this->base_addr = this->bars[0] & 0xFFFFFFF0UL;
this->host_instance->pci_register_mmio_region(this->base_addr, 0x20000, this);
LOG_F(INFO, "%s: base address set to 0x%X", this->pci_name.c_str(), this->base_addr);
}
}
static uint8_t ENET_ROM[] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 };
uint32_t GrandCentral::read(uint32_t rgn_start, uint32_t offset, int size)
{
if (offset & 0x10000) { // Device register space
unsigned subdev_num = (offset >> 12) & 0xF;
switch (subdev_num) {
case 0: // Curio SCSI
return this->curio->read((offset >> 4) & 0xF);
case 1: // MACE
return this->mace->read((offset >> 4) & 0x1F);
case 2: // ESCC compatible addressing
if ((offset & 0xFF) < 16) {
return this->escc->read(compat_to_macrisc[(offset >> 1) & 0xF]);
}
// fallthrough
case 3: // ESCC MacRISC addressing
return this->escc->read((offset >> 4) & 0xF);
case 4: // AWACS
return this->awacs->snd_ctrl_read(offset & 0xFF, size);
case 5: // SWIM3
return this->swim3->read((offset >> 4) & 0xF);
case 6:
case 7: // VIA-CUDA
return this->viacuda->read((offset >> 9) & 0xF);
case 8: // MESH SCSI
if (this->mesh)
return this->mesh->read((offset >> 4) & 0xF);
else if (this->mesh_stub)
return this->mesh_stub->read((offset >> 4) & 0xF);
case 9: // ENET-ROM
return ENET_ROM[(offset >> 4) & 0x7];
case 0xA: // IOBus device #1 ; Board register 1 and bandit1 PRSNT bits
case 0xB: // IOBus device #2 ; RaDACal/DACula
case 0xC: // IOBus device #3 ; chaos or bandit2 PRSNT bits ; sixty6
case 0xD: // IOBus device #4 ; NVRAM High Address
case 0xE: // IOBus device #5 ; sixty6 composite/s-video (not for fatman)
case 0xF: // IOBus device #6 ; NVRAM Data
if (this->iobus_devs[subdev_num - 10] != nullptr) {
uint64_t value = this->iobus_devs[subdev_num - 10]->iodev_read((offset >> 4) & 0x1F);
value |= value << 32;
int shift = (offset & 3) * 8;
switch (size) {
case 1: return (uint8_t)(value >> shift);
case 2: return BYTESWAP_16((uint16_t)(value >> shift));
case 4: return BYTESWAP_32((uint32_t)(value >> shift));
}
} else {
LOG_F(ERROR, "%s: IOBus device #%d (unknown) read 0x%x", this->name.c_str(),
subdev_num - 9, (offset >> 4) & 0x1F);
return 0;
}
break;
}
} else if (offset & 0x8000) { // DMA register space
unsigned dma_channel = (offset >> 8) & 0xF;
switch (dma_channel) {
case MIO_GC_DMA_SCSI_CURIO:
return this->curio_dma->reg_read(offset & 0xFF, size);
case MIO_GC_DMA_FLOPPY:
return this->floppy_dma->reg_read(offset & 0xFF, size);
case MIO_GC_DMA_ESCC_A_XMIT:
return this->escc_a_tx_dma->reg_read(offset & 0xFF, size);
case MIO_GC_DMA_ESCC_A_RCV:
return this->escc_a_rx_dma->reg_read(offset & 0xFF, size);
case MIO_GC_DMA_ESCC_B_XMIT:
return this->escc_b_tx_dma->reg_read(offset & 0xFF, size);
case MIO_GC_DMA_ESCC_B_RCV:
return this->escc_b_rx_dma->reg_read(offset & 0xFF, size);
case MIO_GC_DMA_AUDIO_OUT:
return this->snd_out_dma->reg_read(offset & 0xFF, size);
case MIO_GC_DMA_AUDIO_IN:
//LOG_F(WARNING, "%s: Unsupported DMA channel DMA_AUDIO_IN read @%02x.%c", this->name.c_str(), offset & 0xFF, SIZE_ARG(size));
return 0; // this->snd_in_dma->reg_read(offset & 0xFF, size);
case MIO_GC_DMA_SCSI_MESH:
if (this->mesh_dma) {
return this->mesh_dma->reg_read(offset & 0xFF, size);
break;
}
// fallthrough
default:
LOG_F(WARNING, "%s: unimplemented DMA register at 0x%X",
this->name.c_str(), this->base_addr + offset);
}
} else { // Interrupt related registers
switch (offset) {
case MIO_INT_EVENTS1:
return BYTESWAP_32(this->int_events);
case MIO_INT_MASK1:
return BYTESWAP_32(this->int_mask);
case MIO_INT_CLEAR1:
// some Mac OS drivers reads from this write-only register
// so we return zero here as real HW does
return 0;
case MIO_INT_LEVELS1:
return BYTESWAP_32(this->int_levels);
}
}
LOG_F(WARNING, "%s: reading from unmapped I/O memory 0x%X", this->name.c_str(),
this->base_addr + offset);
return 0;
}
void GrandCentral::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size)
{
if (offset & 0x10000) { // Device register space
unsigned subdev_num = (offset >> 12) & 0xF;
switch (subdev_num) {
case 0: // Curio SCSI
this->curio->write((offset >> 4) & 0xF, value);
break;
case 1: // MACE registers
this->mace->write((offset >> 4) & 0x1F, value);
break;
case 2: // ESCC compatible addressing
if ((offset & 0xFF) < 16) {
this->escc->write(compat_to_macrisc[(offset >> 1) & 0xF], value);
break;
}
// fallthrough
case 3: // ESCC MacRISC addressing
this->escc->write((offset >> 4) & 0xF, value);
break;
case 4: // AWACS
this->awacs->snd_ctrl_write(offset & 0xFF, value, size);
break;
case 5:
this->swim3->write((offset >> 4) & 0xF, value);
break;
case 6:
case 7: // VIA-CUDA
this->viacuda->write((offset >> 9) & 0xF, value);
break;
case 8: // MESH SCSI
if (this->mesh)
this->mesh->write((offset >> 4) & 0xF, value);
else if (this->mesh_stub)
this->mesh_stub->write((offset >> 4) & 0xF, value);
break;
case 0xA: // IOBus device #1 ; Board register 1 and bandit1 PRSNT bits
case 0xB: // IOBus device #2 ; RaDACal/DACula
case 0xC: // IOBus device #3 ; chaos or bandit2 PRSNT bits
case 0xD: // IOBus device #4 ; NVRAM High Address
case 0xE: // IOBus device #5 ; sixty6 composite/s-video (not for fatman)
case 0xF: // IOBus device #6 ; NVRAM Data
uint16_t val;
switch (size) {
case 1: val = (uint8_t)value; break;
case 2: val = BYTESWAP_16(value); break;
case 4: val = (uint16_t)BYTESWAP_32(value); break;
default: val = 0; break;
}
if (offset & 15) {
LOG_F(ERROR, "%s: Unexpected offset (0x%x) or size (%d) write (0x%x) to IOBus device #%d", this->name.c_str(), offset, size, value, subdev_num - 9);
}
if (this->iobus_devs[subdev_num - 10] != nullptr) {
this->iobus_devs[subdev_num - 10]->iodev_write((offset >> 4) & 0x1F, val);
} else {
LOG_F(ERROR, "%s: IOBus device #%d (unknown) write 0x%x = %04x", this->name.c_str(),
subdev_num - 9, (offset >> 4) & 0x1F, value);
}
break;
default:
LOG_F(WARNING, "%s: writing to unmapped I/O memory 0x%X",
this->name.c_str(), this->base_addr + offset);
}
} else if (offset & 0x8000) { // DMA register space
unsigned dma_channel = (offset >> 8) & 0xF;
switch (dma_channel) {
case MIO_GC_DMA_SCSI_CURIO:
this->curio_dma->reg_write(offset & 0xFF, value, size);
break;
case MIO_GC_DMA_FLOPPY:
this->floppy_dma->reg_write(offset & 0xFF, value, size);
break;
case MIO_GC_DMA_ESCC_A_XMIT:
this->escc_a_tx_dma->reg_write(offset & 0xFF, value, size);
break;
case MIO_GC_DMA_ESCC_A_RCV:
this->escc_a_rx_dma->reg_write(offset & 0xFF, value, size);
break;
case MIO_GC_DMA_ESCC_B_XMIT:
this->escc_b_tx_dma->reg_write(offset & 0xFF, value, size);
break;
case MIO_GC_DMA_ESCC_B_RCV:
this->escc_b_rx_dma->reg_write(offset & 0xFF, value, size);
break;
case MIO_GC_DMA_AUDIO_OUT:
this->snd_out_dma->reg_write(offset & 0xFF, value, size);
break;
case MIO_GC_DMA_AUDIO_IN:
LOG_F(WARNING, "%s: Unsupported DMA channel DMA_AUDIO_IN write @%02x.%c = %0*x", this->name.c_str(), offset & 0xFF, SIZE_ARG(size), size * 2, value);
//this->snd_in_dma->reg_write(offset & 0xFF, value, size);
break;
case MIO_GC_DMA_SCSI_MESH:
if (this->mesh_dma) {
this->mesh_dma->reg_write(offset & 0xFF, value, size);
break;
}
// fallthrough
default:
LOG_F(WARNING, "%s: unimplemented DMA register at 0x%X",
this->name.c_str(), this->base_addr + offset);
}
} else { // Interrupt related registers
switch (offset) {
case MIO_INT_MASK1:
this->int_mask = BYTESWAP_32(value);
break;
case MIO_INT_CLEAR1:
if ((this->int_mask & MACIO_INT_MODE) && (value & MACIO_INT_CLR))
this->int_events = 0;
else
this->int_events &= ~(BYTESWAP_32(value) & 0x7FFFFFFFUL);
clear_cpu_int();
break;
case MIO_INT_LEVELS1:
break; // ignore writes to this read-only register
default:
LOG_F(WARNING, "%s: writing to unmapped I/O memory 0x%X",
this->name.c_str(), this->base_addr + offset);
}
}
}
void GrandCentral::attach_iodevice(int dev_num, IobusDevice* dev_obj)
{
if (dev_num >= 0 && dev_num < 6) {
if (this->iobus_devs[dev_num])
LOG_F(ERROR, "%s: Replacing existing IOBus device #%d", this->name.c_str(), dev_num + 1);
this->iobus_devs[dev_num] = dev_obj;
}
}
#define INT_TO_IRQ_ID(intx) (1 << intx)
uint32_t GrandCentral::register_dev_int(IntSrc src_id) {
switch (src_id) {
case IntSrc::SCSI_CURIO : return INT_TO_IRQ_ID(0x0C);
case IntSrc::SCSI_MESH : return INT_TO_IRQ_ID(0x0D);
case IntSrc::ETHERNET : return INT_TO_IRQ_ID(0x0E);
case IntSrc::SCCA : return INT_TO_IRQ_ID(0x0F);
case IntSrc::SCCB : return INT_TO_IRQ_ID(0x10);
case IntSrc::DAVBUS : return INT_TO_IRQ_ID(0x11);
case IntSrc::VIA_CUDA : return INT_TO_IRQ_ID(0x12);
case IntSrc::SWIM3 : return INT_TO_IRQ_ID(0x13);
case IntSrc::NMI : return INT_TO_IRQ_ID(0x14); // EXT0 // nmiSource in AppleGrandCentral/AppleGrandCentral.cpp
case IntSrc::EXT1 : return INT_TO_IRQ_ID(0x15); // EXT1 // Iridium
case IntSrc::BANDIT1 : return INT_TO_IRQ_ID(0x16); // EXT2
case IntSrc::PCI_A : return INT_TO_IRQ_ID(0x17); // EXT3
case IntSrc::PCI_B : return INT_TO_IRQ_ID(0x18); // EXT4
case IntSrc::PCI_C : return INT_TO_IRQ_ID(0x19); // EXT5
case IntSrc::BANDIT2 : return INT_TO_IRQ_ID(0x1A); // EXT6
case IntSrc::PCI_D : return INT_TO_IRQ_ID(0x1B); // EXT7
case IntSrc::PCI_E : return INT_TO_IRQ_ID(0x1C); // EXT8
case IntSrc::PCI_F : return INT_TO_IRQ_ID(0x1D); // EXT9
case IntSrc::CONTROL : return INT_TO_IRQ_ID(0x1A); // EXT6
case IntSrc::SIXTY6 : return INT_TO_IRQ_ID(0x1B); // EXT7
case IntSrc::PLANB : return INT_TO_IRQ_ID(0x1C); // EXT8
case IntSrc::VCI : return INT_TO_IRQ_ID(0x1D); // EXT9
case IntSrc::PLATINUM : return INT_TO_IRQ_ID(0x1E); // EXT10
default:
ABORT_F("%s: unknown interrupt source %d", this->name.c_str(), src_id);
}
return 0;
}
#define DMA_INT_TO_IRQ_ID(intx) (1 << intx)
uint32_t GrandCentral::register_dma_int(IntSrc src_id) {
switch (src_id) {
case IntSrc::DMA_SCSI_CURIO : return DMA_INT_TO_IRQ_ID(0x00);
case IntSrc::DMA_SWIM3 : return DMA_INT_TO_IRQ_ID(0x01);
case IntSrc::DMA_ETHERNET_Tx : return DMA_INT_TO_IRQ_ID(0x02);
case IntSrc::DMA_ETHERNET_Rx : return DMA_INT_TO_IRQ_ID(0x03);
case IntSrc::DMA_SCCA_Tx : return DMA_INT_TO_IRQ_ID(0x04);
case IntSrc::DMA_SCCA_Rx : return DMA_INT_TO_IRQ_ID(0x05);
case IntSrc::DMA_SCCB_Tx : return DMA_INT_TO_IRQ_ID(0x06);
case IntSrc::DMA_SCCB_Rx : return DMA_INT_TO_IRQ_ID(0x07);
case IntSrc::DMA_DAVBUS_Tx : return DMA_INT_TO_IRQ_ID(0x08);
case IntSrc::DMA_DAVBUS_Rx : return DMA_INT_TO_IRQ_ID(0x09);
case IntSrc::DMA_SCSI_MESH : return DMA_INT_TO_IRQ_ID(0x0A);
default:
ABORT_F("%s: unknown DMA interrupt source %d", this->name.c_str(), src_id);
}
return 0;
}
void GrandCentral::ack_int_common(uint32_t irq_id, uint8_t irq_line_state) {
// native mode: set IRQ bits in int_events1 on a 0-to-1 transition
// emulated mode: set IRQ bits in int_events1 on all transitions
//#if 1
// if (irq_id & ~(INT_TO_IRQ_ID(0x12) | INT_TO_IRQ_ID(0x1A)))
// LOG_F(INTERRUPT, "%s: native interrupt mask:%08x events:%08x levels:%08x change:%08x state:%d",
// this->name.c_str(), this->int_mask, this->int_events + 0, this->int_levels + 0, irq_id, irq_line_state
// );
//#endif
if ((this->int_mask & MACIO_INT_MODE) ||
(irq_line_state && !(this->int_levels & irq_id))) {
this->int_events |= irq_id;
} else {
this->int_events &= ~irq_id;
}
this->int_events &= this->int_mask;
// update IRQ line state
if (irq_line_state) {
this->int_levels |= irq_id;
} else {
this->int_levels &= ~irq_id;
}
this->signal_cpu_int(irq_id);
}
void GrandCentral::ack_int(uint32_t irq_id, uint8_t irq_line_state) {
this->ack_int_common(irq_id, irq_line_state);
}
void GrandCentral::ack_dma_int(uint32_t irq_id, uint8_t irq_line_state) {
this->ack_int_common(irq_id, irq_line_state);
}
void GrandCentral::signal_cpu_int(uint32_t irq_id) {
if (this->int_events) {
if (!this->cpu_int_latch) {
this->cpu_int_latch = true;
ppc_assert_int();
LOG_F(5, "%s: CPU INT asserted, source: %d", this->name.c_str(), irq_id);
} else {
LOG_F(5, "%s: CPU INT already latched", this->name.c_str());
}
}
}
void GrandCentral::clear_cpu_int() {
if (!this->int_events) {
this->cpu_int_latch = false;
ppc_release_int();
LOG_F(5, "%s: CPU INT latch cleared", this->name.c_str());
}
}
static const vector GCSubdevices = {
"NVRAM", "ViaCuda", "Escc", "ScsiCurio", "Sc53C94", "Mace", "Swim3"
};
static const DeviceDescription GC_Descriptor = {
GrandCentral::create, GCSubdevices, {}
};
REGISTER_DEVICE(GrandCentral, GC_Descriptor);