/* DingusPPC - The Experimental PowerPC Macintosh emulator Copyright (C) 2018-21 divingkatae and maximum (theweirdo) spatium (Contact divingkatae#1017 or powermax#2286 on Discord for more info) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include /* Mach64 post dividers. */ static const int mach64_post_div[8] = { 1, 2, 4, 8, // standard post dividers 3, 5, 6, 12 // alternate post dividers }; /* Human readable Mach64 HW register names for easier debugging. */ static const std::map mach64_reg_names = { {0x0000, "CRTC_H_TOTAL_DISP"}, {0x0004, "CRTC_H_SYNC_STRT_WID"}, {0x0008, "CRTC_V_TOTAL_DISP"}, {0x000C, "CRTC_V_SYNC_STRT_WID"}, {0x0010, "CRTC_VLINE_CRNT_VLINE"}, {0x0014, "CRTC_OFF_PITCH"}, {0x0018, "CRTC_INT_CNTL"}, {0x001C, "CRTC_GEN_CNTL"}, {0x0020, "DSP_CONFIG"}, {0x0024, "DSP_ON_OFF"}, {0x002C, "MEM_BUF_CNTL"}, {0x0034, "MEM_ADDR_CFG"}, {0x0040, "OVR_CLR"}, {0x0044, "OVR_WID_LEFT_RIGHT"}, {0x0048, "OVR_WID_TOP_BOTTOM"}, {0x0060, "CUR_CLR0"}, {0x0064, "CUR_CLR1"}, {0x0068, "CUR_OFFSET"}, {0x006C, "CUR_HORZ_VERT_POSN"}, {0x0078, "GP_IO"}, {0x007C, "HW_DEBUG"}, {0x0080, "SCRATCH_REG0"}, {0x0084, "SCRATCH_REG1"}, {0x0088, "SCRATCH_REG2"}, {0x008C, "SCRATCH_REG3"}, {0x0090, "CLOCK_CNTL"}, {0x00A0, "BUS_CNTL"}, {0x00AC, "EXT_MEM_CNTL"}, {0x00B0, "MEM_CNTL"}, {0x00C0, "DAC_REGS"}, {0x00C4, "DAC_CNTL"}, {0x00D0, "GEN_TEST_CNTL"}, {0x00D4, "CUSTOM_MACRO_CNTL"}, {0x00E0, "CONFIG_CHIP_ID"}, {0x00E4, "CONFIG_STAT0"}, {0x01B4, "SRC_CNTL"}, {0x01FC, "SCALE_3D_CNTL"}, {0x0310, "FIFO_STAT"}, {0x0338, "GUI_STAT"}, {0x04C0, "MPP_CONFIG"}, {0x04C4, "MPP_STROBE_SEQ"}, {0x04C8, "MPP_ADDR"}, {0x04CC, "MPP_DATA"}, {0x0500, "TVO_CNTL"}, {0x0704, "SETUP_CNTL"}, }; ATIRage::ATIRage(uint16_t dev_id, uint32_t mem_amount) : PCIDevice("ati-rage") { uint8_t asic_id; this->vram_size = mem_amount << 20; /* allocate video RAM */ this->vram_ptr = new uint8_t[this->vram_size]; /* ATI Rage driver needs to know ASIC ID (manufacturer's internal chip code) to operate properly */ switch (dev_id) { case ATI_RAGE_GT_DEV_ID: asic_id = 0x9A; // GT-B2U3 fabricated by UMC break; case ATI_RAGE_PRO_DEV_ID: asic_id = 0x5C; // R3B/D/P-A4 fabricated by UMC break; default: asic_id = 0xDD; LOG_F(WARNING, "ATI Rage: bogus ASIC ID assigned!"); } /* set up PCI configuration space header */ WRITE_DWORD_LE_A(&this->pci_cfg[0], (dev_id << 16) | ATI_PCI_VENDOR_ID); WRITE_DWORD_LE_A(&this->pci_cfg[8], (0x030000 << 8) | asic_id); WRITE_DWORD_LE_A(&this->pci_cfg[0x3C], 0x00080100); /* stuff default values into chip registers */ WRITE_DWORD_LE_A(&this->block_io_regs[ATI_CONFIG_CHIP_ID], (asic_id << 24) | dev_id); /* initialize display identification */ this->disp_id = new DisplayID(); //this->surface = new uint8_t[640 * 480]; } ATIRage::~ATIRage() { //delete (this->surface); if (this->vram_ptr) { delete this->vram_ptr; } delete (this->disp_id); } const char* ATIRage::get_reg_name(uint32_t reg_offset) { auto iter = mach64_reg_names.find(reg_offset & ~3); if (iter != mach64_reg_names.end()) { return iter->second.c_str(); } else { return "unknown Mach64 register"; } } uint32_t ATIRage::read_reg(uint32_t offset, uint32_t size) { uint32_t res; switch (offset & ~3) { case ATI_GP_IO: break; case ATI_CLOCK_CNTL: /* reading from internal PLL registers */ if (offset == ATI_CLOCK_CNTL+2 && size == 1 && !(this->block_io_regs[ATI_CLOCK_CNTL+1] & 0x2)) { return this->plls[this->block_io_regs[ATI_CLOCK_CNTL+1] >> 2]; } break; case ATI_DAC_REGS: if (offset == ATI_DAC_DATA) { this->block_io_regs[ATI_DAC_DATA] = this->palette[this->block_io_regs[ATI_DAC_R_INDEX]][this->comp_index]; this->comp_index++; /* move to next color component */ if (this->comp_index >= 3) { /* autoincrement reading index - move to next palette entry */ (this->block_io_regs[ATI_DAC_R_INDEX])++; this->comp_index = 0; } } break; default: LOG_F( INFO, "ATI Rage: read I/O reg %s at 0x%X, size=%d, val=0x%X", get_reg_name(offset), offset, size, read_mem(&this->block_io_regs[offset], size)); } res = read_mem(&this->block_io_regs[offset], size); return res; } void ATIRage::write_reg(uint32_t offset, uint32_t value, uint32_t size) { uint32_t gpio_val; uint16_t gpio_dir; /* size-dependent endian conversion */ write_mem(&this->block_io_regs[offset], value, size); switch (offset & ~3) { case ATI_CRTC_OFF_PITCH: LOG_F(INFO, "ATI Rage: CRTC_OFF_PITCH=0x%08X", READ_DWORD_LE_A(&this->block_io_regs[ATI_CRTC_OFF_PITCH])); break; case ATI_CRTC_GEN_CNTL: if (this->block_io_regs[ATI_CRTC_GEN_CNTL+3] & 2) { this->crtc_enable(); } else { this->crtc_on = false; } LOG_F(INFO, "ATI Rage: CRTC_GEN_CNTL:CRTC_ENABLE=%d", !!(this->block_io_regs[ATI_CRTC_GEN_CNTL+3] & 2)); LOG_F(INFO, "ATI Rage: CRTC_GEN_CNTL:CRTC_DISPLAY_DIS=%d", !!(this->block_io_regs[ATI_CRTC_GEN_CNTL] & 0x40)); break; case ATI_CUR_OFFSET: LOG_F(INFO, "ATI Rage: CUR_OFFSET=0x%08X", READ_DWORD_LE_A(&this->block_io_regs[ATI_CUR_OFFSET])); break; case ATI_CUR_HORZ_VERT_POSN: LOG_F(INFO, "ATI Rage: CUR_HORZ_VERT_POSN=0x%08X", READ_DWORD_LE_A(&this->block_io_regs[ATI_CUR_HORZ_VERT_POSN])); break; case ATI_CUR_HORZ_VERT_OFF: LOG_F(INFO, "ATI Rage: CUR_HORZ_VERT_OFF=0x%08X", READ_DWORD_LE_A(&this->block_io_regs[ATI_CUR_HORZ_VERT_OFF])); break; case ATI_GP_IO: if (offset < (ATI_GP_IO + 2)) { gpio_val = READ_DWORD_LE_A(&this->block_io_regs[ATI_GP_IO]); gpio_dir = (gpio_val >> 16) & 0x3FFF; WRITE_WORD_LE_A( &this->block_io_regs[ATI_GP_IO], this->disp_id->read_monitor_sense(gpio_val, gpio_dir)); } break; case ATI_CLOCK_CNTL: /* writing to internal PLL registers */ if (offset == ATI_CLOCK_CNTL+2 && size == 1 && (this->block_io_regs[ATI_CLOCK_CNTL+1] & 0x2)) { int pll_addr = this->block_io_regs[ATI_CLOCK_CNTL+1] >> 2; uint8_t pll_data = this->block_io_regs[ATI_CLOCK_CNTL+2]; this->plls[pll_addr] = pll_data; LOG_F(INFO, "ATI Rage: PLL #%d set to 0x%02X", pll_addr, pll_data); } else if (offset == ATI_CLOCK_CNTL && size == 1) { LOG_F(INFO, "ATI Rage: CLOCK_SEL = 0x%02X", this->block_io_regs[ATI_CLOCK_CNTL] & 3); } break; case ATI_DAC_REGS: switch (offset) { /* writing to read/write index registers resets color component index */ case ATI_DAC_W_INDEX: case ATI_DAC_R_INDEX: this->comp_index = 0; break; case ATI_DAC_DATA: this->palette[this->block_io_regs[ATI_DAC_W_INDEX]][this->comp_index] = value & 0xFF; this->comp_index++; /* move to next color component */ if (this->comp_index >= 3) { LOG_F( INFO, "ATI DAC palette entry #%d set to R=%X, G=%X, B=%X", this->block_io_regs[ATI_DAC_W_INDEX], this->palette[this->block_io_regs[ATI_DAC_W_INDEX]][0], this->palette[this->block_io_regs[ATI_DAC_W_INDEX]][1], this->palette[this->block_io_regs[ATI_DAC_W_INDEX]][2]); /* autoincrement writing index - move to next palette entry */ (this->block_io_regs[ATI_DAC_W_INDEX])++; this->comp_index = 0; } } break; case ATI_GEN_TEST_CNTL: LOG_F(INFO, "HW cursor: %s", this->block_io_regs[ATI_GEN_TEST_CNTL] & 0x80 ? "on" : "off"); break; default: LOG_F( INFO, "ATI Rage: %s register at 0x%X set to 0x%X", get_reg_name(offset), offset & ~3, READ_DWORD_LE_A(&this->block_io_regs[offset & ~3])); } if ((this->block_io_regs[ATI_CRTC_GEN_CNTL+3] & 2) && !(this->block_io_regs[ATI_CRTC_GEN_CNTL] & 0x40)) { this->update_screen(); } } uint32_t ATIRage::pci_cfg_read(uint32_t reg_offs, uint32_t size) { uint32_t res = 0; LOG_F(INFO, "Reading ATI Rage config space, offset = 0x%X, size=%d", reg_offs, size); res = read_mem(&this->pci_cfg[reg_offs], size); LOG_F(INFO, "Return value: 0x%X", res); return res; } void ATIRage::pci_cfg_write(uint32_t reg_offs, uint32_t value, uint32_t size) { LOG_F( INFO, "Writing into ATI Rage PCI config space, offset = 0x%X, val=0x%X size=%d", reg_offs, BYTESWAP_32(value), size); switch (reg_offs) { case 0x10: /* BAR 0 */ if (value == 0xFFFFFFFFUL) { WRITE_DWORD_LE_A(&this->pci_cfg[CFG_REG_BAR0], 0xFF000000UL); } else { this->aperture_base = BYTESWAP_32(value); LOG_F(INFO, "ATI Rage aperture address set to 0x%08X", this->aperture_base); WRITE_DWORD_BE_A(&this->pci_cfg[CFG_REG_BAR0], value); this->host_instance->pci_register_mmio_region(this->aperture_base, APERTURE_SIZE, this); } break; case 0x14: /* BAR 1: I/O space base, 256 bytes wide */ if (value == 0xFFFFFFFFUL) { WRITE_DWORD_BE_A(&this->pci_cfg[CFG_REG_BAR1], 0xFFFFFF01UL); } else { WRITE_DWORD_BE_A(&this->pci_cfg[CFG_REG_BAR1], value); } break; case 0x18: /* BAR 2 */ if (value == 0xFFFFFFFFUL) { WRITE_DWORD_BE_A(&this->pci_cfg[CFG_REG_BAR2], 0xFFFFF000UL); } else { WRITE_DWORD_BE_A(&this->pci_cfg[CFG_REG_BAR2], value); } break; case CFG_REG_BAR3: /* unimplemented */ case CFG_REG_BAR4: /* unimplemented */ case CFG_REG_BAR5: /* unimplemented */ WRITE_DWORD_BE_A(&this->pci_cfg[reg_offs], 0); break; case CFG_EXP_BASE: /* no expansion ROM */ if (value == 0x00F8FFFFUL) { // return 0 (not implemented) when attempting to size the expansion ROM WRITE_DWORD_BE_A(&this->pci_cfg[reg_offs], 0); } else { WRITE_DWORD_BE_A(&this->pci_cfg[reg_offs], value); } break; default: write_mem(&this->pci_cfg[reg_offs], value, size); } } bool ATIRage::io_access_allowed(uint32_t offset, uint32_t* p_io_base) { if (!(this->pci_cfg[CFG_REG_CMD] & 1)) { LOG_F(WARNING, "ATI I/O space disabled in the command reg"); return false; } uint32_t io_base = READ_DWORD_LE_A(&this->pci_cfg[CFG_REG_BAR1]) & ~3; if (offset < io_base || offset > (io_base + 0x100)) { LOG_F(WARNING, "Rage: I/O out of range, base=0x%X, offset=0x%X", io_base, offset); return false; } *p_io_base = io_base; return true; } bool ATIRage::pci_io_read(uint32_t offset, uint32_t size, uint32_t* res) { uint32_t io_base; if (!this->io_access_allowed(offset, &io_base)) { return false; } *res = this->read_reg(offset - io_base, size); return true; } bool ATIRage::pci_io_write(uint32_t offset, uint32_t value, uint32_t size) { uint32_t io_base; if (!this->io_access_allowed(offset, &io_base)) { return false; } this->write_reg(offset - io_base, value, size); return true; } uint32_t ATIRage::read(uint32_t reg_start, uint32_t offset, int size) { LOG_F(8, "Reading ATI Rage PCI memory: region=%X, offset=%X, size %d", reg_start, offset, size); if (reg_start < this->aperture_base || offset > APERTURE_SIZE) { LOG_F(WARNING, "ATI Rage: attempt to read outside the aperture!"); return 0; } if (offset < this->vram_size) { /* read from little-endian VRAM region */ return read_mem(this->vram_ptr + offset, size); } else if (offset >= BE_FB_OFFSET) { /* read from big-endian VRAM region */ return read_mem_rev(this->vram_ptr + (offset - BE_FB_OFFSET), size); } else if (offset >= MM_REGS_0_OFF) { /* read from memory-mapped registers, block 0 */ return this->read_reg(offset - MM_REGS_0_OFF, size); } else if (offset >= MM_REGS_1_OFF) { /* read from memory-mapped registers, block 1 */ return this->read_reg(offset - MM_REGS_1_OFF + 0x400, size); } else { LOG_F(WARNING, "ATI Rage: read attempt from unmapped aperture region at 0x%08X", offset); } return 0; } void ATIRage::write(uint32_t reg_start, uint32_t offset, uint32_t value, int size) { LOG_F(8, "Writing reg=%X, offset=%X, value=%X, size %d", reg_start, offset, value, size); if (reg_start < this->aperture_base || offset > APERTURE_SIZE) { LOG_F(WARNING, "ATI Rage: attempt to write outside the aperture!"); return; } if (offset < this->vram_size) { /* write to little-endian VRAM region */ write_mem(this->vram_ptr + offset, value, size); } else if (offset >= BE_FB_OFFSET) { /* write to big-endian VRAM region */ write_mem_rev(this->vram_ptr + (offset - BE_FB_OFFSET), value, size); } else if (offset >= MM_REGS_0_OFF) { /* write to memory-mapped registers, block 0 */ this->write_reg(offset - MM_REGS_0_OFF, value, size); } else if (offset >= MM_REGS_1_OFF) { /* write to memory-mapped registers, block 1 */ this->write_reg(offset - MM_REGS_1_OFF + 0x400, value, size); } else { LOG_F(WARNING, "ATI Rage: write attempt to unmapped aperture region at 0x%08X", offset); } } float ATIRage::calc_pll_freq(int scale, int fb_div) { return (ATI_XTAL * scale * fb_div) / this->plls[PLL_REF_DIV]; } void ATIRage::verbose_pixel_format(int crtc_index) { if (crtc_index) { LOG_F(ERROR, "CRTC2 not supported yet"); return; } const char* what = "Pixel format:"; switch (this->block_io_regs[ATI_CRTC_GEN_CNTL+1] & 7) { case 1: LOG_F(INFO, "%s 4 bpp with DAC palette", what); break; case 2: // check the undocumented DAC_DIRECT bit if (this->block_io_regs[ATI_DAC_CNTL+1] & 4) { LOG_F(INFO, "%s 8 bpp direct color (RGB322)", what); } else { LOG_F(INFO, "%s 8 bpp with DAC palette", what); } break; case 3: LOG_F(INFO, "%s 15 bpp direct color (RGB555)", what); break; case 4: LOG_F(INFO, "%s 16 bpp direct color (RGB565)", what); break; case 5: LOG_F(INFO, "%s 24 bpp direct color (RGB888)", what); break; case 6: LOG_F(INFO, "%s 32 bpp direct color (ARGB8888)", what); break; default: LOG_F(ERROR, "ATI Rage: CRTC pixel format %d not supported", this->block_io_regs[ATI_CRTC_GEN_CNTL+2] & 7); } } void ATIRage::crtc_enable() { /* active (visible) width is specified in characters (8 px) - 1 */ this->active_width = (this->block_io_regs[ATI_CRTC_H_TOTAL_DISP+2] + 1) * 8; /* active (visible) height is specified in lines - 1 */ this->active_height = (READ_WORD_LE_A(&this->block_io_regs[ATI_CRTC_V_TOTAL_DISP+2]) & 0x7FFUL) + 1; if ((this->plls[PLL_VCLK_CNTL] & 3) == 3) { /* look up which VPLL ouput is requested */ int clock_sel = this->block_io_regs[ATI_CLOCK_CNTL] & 3; /* calculate VPLL output frequency */ float vpll_freq = calc_pll_freq(2, this->plls[VCLK0_FB_DIV + clock_sel]); /* calculate post divider's index */ /* NOTE: post divider's index has been extended by an additional bit in Rage Pro. This bit is resided in PLL_EXT_CNTL register. */ int post_div_idx = ((this->plls[PLL_EXT_CNTL] >> (clock_sel + 2)) & 4) | ((this->plls[VCLK_POST_DIV] >> (clock_sel * 2)) & 3); /* pixel clock = source_freq / post_div */ this->pixel_clock = vpll_freq / mach64_post_div[post_div_idx]; /* calculate display refresh rate */ int hori_total = ((READ_WORD_LE_A(&this->block_io_regs[ATI_CRTC_H_TOTAL_DISP]) & 0x1FFUL) + 1) * 8; int vert_total = (READ_WORD_LE_A(&this->block_io_regs[ATI_CRTC_V_TOTAL_DISP]) & 0x7FFUL) + 1; this->refresh_rate = pixel_clock / hori_total / vert_total; LOG_F(INFO, "ATI Rage: primary CRT controller enabled:"); LOG_F(INFO, "Video mode: %s", (this->block_io_regs[ATI_CRTC_GEN_CNTL+3] & 1) ? "extended" : "VGA"); LOG_F(INFO, "Video width: %d px", this->active_width); LOG_F(INFO, "Video height: %d px", this->active_height); verbose_pixel_format(0); LOG_F(INFO, "VPLL frequency: %f MHz", vpll_freq * 1e-6); LOG_F(INFO, "Pixel (dot) clock: %f MHz", this->pixel_clock * 1e-6); LOG_F(INFO, "Refresh rate: %f Hz", this->refresh_rate); } else { LOG_F(WARNING, "ATI Rage: VLCK source != VPLL!"); } this->crtc_on = true; } void ATIRage::draw_hw_cursor(uint8_t *dst_buf, int dst_pitch) { uint8_t *src_buf, *src_row, *dst_row, px4; int horz_offset = READ_DWORD_LE_A(&this->block_io_regs[ATI_CUR_HORZ_VERT_OFF]) & 0x3F; int vert_offset = (READ_DWORD_LE_A(&this->block_io_regs[ATI_CUR_HORZ_VERT_OFF]) >> 16) & 0x3F; src_buf = this->vram_ptr + (READ_DWORD_LE_A(&this->block_io_regs[ATI_CUR_OFFSET]) * 8); int cur_height = 64 - vert_offset; uint32_t color0 = READ_DWORD_LE_A(&this->block_io_regs[ATI_CUR_CLR0]) | 0x000000FFUL; uint32_t color1 = READ_DWORD_LE_A(&this->block_io_regs[ATI_CUR_CLR1]) | 0x000000FFUL; for (int h = 0; h < cur_height; h++) { dst_row = &dst_buf[h * dst_pitch]; src_row = &src_buf[h * 16]; for (int x = 0; x < 16; x++) { px4 = src_row[x]; for (int p = 0; p < 4; p++, px4 >>= 2, dst_row += 4) { switch(px4 & 3) { case 0: // cursor color 0 WRITE_DWORD_BE_A(dst_row, color0); break; case 1: // cursor color 1 WRITE_DWORD_BE_A(dst_row, color1); break; case 2: // transparent break; case 3: // 1's complement of display pixel break; } } } } } void ATIRage::update_screen() { uint8_t *src_buf, *dst_buf, *src_row, *dst_row, pix; int src_pitch, dst_pitch; //auto start_time = std::chrono::steady_clock::now(); this->disp_id->get_disp_texture((void **)&dst_buf, &dst_pitch); uint32_t src_offset = (READ_DWORD_LE_A(&this->block_io_regs[ATI_CRTC_OFF_PITCH]) & 0xFFFF) * 8; src_pitch = ((READ_DWORD_LE_A(&this->block_io_regs[ATI_CRTC_OFF_PITCH])) >> 19) & 0x1FF8; src_buf = this->vram_ptr + src_offset; for (int h = 0; h < this->active_height; h++) { src_row = &src_buf[h * src_pitch]; dst_row = &dst_buf[h * dst_pitch]; for (int x = 0; x < this->active_width; x++) { pix = src_row[x]; dst_row[0] = this->palette[pix][2]; // B dst_row[1] = this->palette[pix][1]; // G dst_row[2] = this->palette[pix][0]; // R dst_row[3] = 255; // A dst_row += 4; } } // HW cursor data is stored at the beginning of the video memory // HACK: use src_offset to recognize cursor data being ready // Normally, we should check GEN_CUR_ENABLE bit in the GEN_TEST_CNTL register if (src_offset > 0x400 && READ_DWORD_LE_A(&this->block_io_regs[ATI_CUR_OFFSET])) { this->draw_hw_cursor(dst_buf + dst_pitch * 20 + 120, dst_pitch); } this->disp_id->update_screen(); //auto end_time = std::chrono::steady_clock::now(); //auto time_elapsed = std::chrono::duration_cast(end_time - start_time); //LOG_F(INFO, "Display uodate took: %lld ns", time_elapsed.count()); SDL_Delay(15); }