/* DingusPPC - The Experimental PowerPC Macintosh emulator Copyright (C) 2018-24 divingkatae and maximum (theweirdo) spatium (Contact divingkatae#1017 or powermax#2286 on Discord for more info) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // General opcodes for the processor - ppcopcodes.cpp #include #include #include "ppcemu.h" #include "ppcmacros.h" #include "ppcmmu.h" #include #include //Extract the registers desired and the values of the registers. // Affects CR Field 0 - For integer operations void ppc_changecrf0(uint32_t set_result) { ppc_state.cr = (ppc_state.cr & 0x0FFFFFFFU) // clear CR0 | ( (set_result == 0) ? CRx_bit::CR_EQ : (int32_t(set_result) < 0) ? CRx_bit::CR_LT : CRx_bit::CR_GT ) | ((ppc_state.spr[SPR::XER] & XER::SO) >> 3); // copy XER[SO] into CR0[SO]. } // Affects the XER register's Carry Bit inline static void ppc_carry(uint32_t a, uint32_t b) { if (b < a) { ppc_state.spr[SPR::XER] |= XER::CA; } else { ppc_state.spr[SPR::XER] &= ~XER::CA; } } inline static void ppc_carry_sub(uint32_t a, uint32_t b) { if (b >= a) { ppc_state.spr[SPR::XER] |= XER::CA; } else { ppc_state.spr[SPR::XER] &= ~XER::CA; } } // Affects the XER register's SO and OV Bits inline static void ppc_setsoov(uint32_t a, uint32_t b, uint32_t d) { if (int32_t((a ^ b) & (a ^ d)) < 0) { ppc_state.spr[SPR::XER] |= XER::SO | XER::OV; } else { ppc_state.spr[SPR::XER] &= ~XER::OV; } } typedef std::function CtxSyncCallback; std::vector gCtxSyncCallbacks; // perform context synchronization by executing registered actions if any void do_ctx_sync() { while (!gCtxSyncCallbacks.empty()) { gCtxSyncCallbacks.back()(); gCtxSyncCallbacks.pop_back(); } } void add_ctx_sync_action(const CtxSyncCallback& cb) { gCtxSyncCallbacks.push_back(cb); } /** The core functionality of this PPC emulation is within all of these void functions. This is where the opcode tables in the ppcemumain.h come into play - reducing the number of comparisons needed. This means loads of functions, but less CPU cycles needed to determine the function (theoretically). **/ template void dppc_interpreter::ppc_addi(uint32_t instr) { ppc_grab_regsdasimm(instr); if (shift) ppc_state.gpr[reg_d] = (reg_a == 0) ? (simm << 16) : (ppc_result_a + (simm << 16)); else ppc_state.gpr[reg_d] = (reg_a == 0) ? simm : (ppc_result_a + simm); } template void dppc_interpreter::ppc_addi(uint32_t instr); template void dppc_interpreter::ppc_addi(uint32_t instr); template void dppc_interpreter::ppc_addic(uint32_t instr) { ppc_grab_regsdasimm(instr); uint32_t ppc_result_d = (ppc_result_a + simm); ppc_carry(ppc_result_a, ppc_result_d); if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_addic(uint32_t instr); template void dppc_interpreter::ppc_addic(uint32_t instr); template void dppc_interpreter::ppc_add(uint32_t instr) { ppc_grab_regsdab(instr); uint32_t ppc_result_d = ppc_result_a + ppc_result_b; if (carry) ppc_carry(ppc_result_a, ppc_result_d); if (ov) ppc_setsoov(ppc_result_a, ~ppc_result_b, ppc_result_d); if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_add(uint32_t instr); template void dppc_interpreter::ppc_add(uint32_t instr); template void dppc_interpreter::ppc_add(uint32_t instr); template void dppc_interpreter::ppc_add(uint32_t instr); template void dppc_interpreter::ppc_add(uint32_t instr); template void dppc_interpreter::ppc_add(uint32_t instr); template void dppc_interpreter::ppc_add(uint32_t instr); template void dppc_interpreter::ppc_add(uint32_t instr); template void dppc_interpreter::ppc_adde(uint32_t instr) { ppc_grab_regsdab(instr); uint32_t xer_ca = !!(ppc_state.spr[SPR::XER] & XER::CA); uint32_t ppc_result_d = ppc_result_a + ppc_result_b + xer_ca; if ((ppc_result_d < ppc_result_a) || (xer_ca && (ppc_result_d == ppc_result_a))) { ppc_state.spr[SPR::XER] |= XER::CA; } else { ppc_state.spr[SPR::XER] &= ~XER::CA; } if (ov) ppc_setsoov(ppc_result_a, ~ppc_result_b, ppc_result_d); if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_adde(uint32_t instr); template void dppc_interpreter::ppc_adde(uint32_t instr); template void dppc_interpreter::ppc_adde(uint32_t instr); template void dppc_interpreter::ppc_adde(uint32_t instr); template void dppc_interpreter::ppc_addme(uint32_t instr) { ppc_grab_regsda(instr); uint32_t xer_ca = !!(ppc_state.spr[SPR::XER] & XER::CA); uint32_t ppc_result_d = ppc_result_a + xer_ca - 1; if (((xer_ca - 1) < 0xFFFFFFFFUL) || (ppc_result_d < ppc_result_a)) { ppc_state.spr[SPR::XER] |= XER::CA; } else { ppc_state.spr[SPR::XER] &= ~XER::CA; } if (ov) ppc_setsoov(ppc_result_a, 0, ppc_result_d); if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_addme(uint32_t instr); template void dppc_interpreter::ppc_addme(uint32_t instr); template void dppc_interpreter::ppc_addme(uint32_t instr); template void dppc_interpreter::ppc_addme(uint32_t instr); template void dppc_interpreter::ppc_addze(uint32_t instr) { ppc_grab_regsda(instr); uint32_t grab_xer = !!(ppc_state.spr[SPR::XER] & XER::CA); uint32_t ppc_result_d = ppc_result_a + grab_xer; if (ppc_result_d < ppc_result_a) { ppc_state.spr[SPR::XER] |= XER::CA; } else { ppc_state.spr[SPR::XER] &= ~XER::CA; } if (ov) ppc_setsoov(ppc_result_a, 0xFFFFFFFFUL, ppc_result_d); if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_addze(uint32_t instr); template void dppc_interpreter::ppc_addze(uint32_t instr); template void dppc_interpreter::ppc_addze(uint32_t instr); template void dppc_interpreter::ppc_addze(uint32_t instr); void dppc_interpreter::ppc_subfic(uint32_t instr) { ppc_grab_regsdasimm(instr); uint32_t ppc_result_d = simm - ppc_result_a; if (simm == -1) ppc_state.spr[SPR::XER] |= XER::CA; else ppc_carry(~ppc_result_a, ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_subf(uint32_t instr) { ppc_grab_regsdab(instr); uint32_t ppc_result_d = ppc_result_b - ppc_result_a; if (carry) ppc_carry_sub(ppc_result_a, ppc_result_b); if (ov) ppc_setsoov(ppc_result_b, ppc_result_a, ppc_result_d); if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_subf(uint32_t instr); template void dppc_interpreter::ppc_subf(uint32_t instr); template void dppc_interpreter::ppc_subf(uint32_t instr); template void dppc_interpreter::ppc_subf(uint32_t instr); template void dppc_interpreter::ppc_subf(uint32_t instr); template void dppc_interpreter::ppc_subf(uint32_t instr); template void dppc_interpreter::ppc_subf(uint32_t instr); template void dppc_interpreter::ppc_subf(uint32_t instr); template void dppc_interpreter::ppc_subfe(uint32_t instr) { ppc_grab_regsdab(instr); uint32_t grab_ca = !!(ppc_state.spr[SPR::XER] & XER::CA); uint32_t ppc_result_d = ~ppc_result_a + ppc_result_b + grab_ca; if (grab_ca && ppc_result_b == 0xFFFFFFFFUL) ppc_state.spr[SPR::XER] |= XER::CA; else ppc_carry(~ppc_result_a, ppc_result_d); if (ov) ppc_setsoov(ppc_result_b, ppc_result_a, ppc_result_d); if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_subfe(uint32_t instr); template void dppc_interpreter::ppc_subfe(uint32_t instr); template void dppc_interpreter::ppc_subfe(uint32_t instr); template void dppc_interpreter::ppc_subfe(uint32_t instr); template void dppc_interpreter::ppc_subfme(uint32_t instr) { ppc_grab_regsda(instr); uint32_t grab_ca = !!(ppc_state.spr[SPR::XER] & XER::CA); uint32_t ppc_result_d = ~ppc_result_a + grab_ca - 1; if (ppc_result_a == 0xFFFFFFFFUL && !grab_ca) ppc_state.spr[SPR::XER] &= ~XER::CA; else ppc_state.spr[SPR::XER] |= XER::CA; if (ov) { if (ppc_result_d == ppc_result_a && int32_t(ppc_result_d) > 0) ppc_state.spr[SPR::XER] |= XER::SO | XER::OV; else ppc_state.spr[SPR::XER] &= ~XER::OV; } if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_subfme(uint32_t instr); template void dppc_interpreter::ppc_subfme(uint32_t instr); template void dppc_interpreter::ppc_subfme(uint32_t instr); template void dppc_interpreter::ppc_subfme(uint32_t instr); template void dppc_interpreter::ppc_subfze(uint32_t instr) { ppc_grab_regsda(instr); uint32_t grab_ca = !!(ppc_state.spr[SPR::XER] & XER::CA); uint32_t ppc_result_d = ~ppc_result_a + grab_ca; if (!ppc_result_d && grab_ca) // special case: ppc_result_d = 0 and CA=1 ppc_state.spr[SPR::XER] |= XER::CA; else ppc_state.spr[SPR::XER] &= ~XER::CA; if (ov) { if (ppc_result_d && ppc_result_d == ppc_result_a) ppc_state.spr[SPR::XER] |= XER::SO | XER::OV; else ppc_state.spr[SPR::XER] &= ~XER::OV; } if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_subfze(uint32_t instr); template void dppc_interpreter::ppc_subfze(uint32_t instr); template void dppc_interpreter::ppc_subfze(uint32_t instr); template void dppc_interpreter::ppc_subfze(uint32_t instr); template void dppc_interpreter::ppc_andirc(uint32_t instr) { ppc_grab_regssauimm(instr); ppc_result_a = shift ? (ppc_result_d & (uimm << 16)) : (ppc_result_d & uimm); ppc_changecrf0(ppc_result_a); ppc_store_iresult_reg(reg_a, ppc_result_a); } template void dppc_interpreter::ppc_andirc(uint32_t instr); template void dppc_interpreter::ppc_andirc(uint32_t instr); template void dppc_interpreter::ppc_ori(uint32_t instr) { ppc_grab_regssauimm(instr); ppc_result_a = shift ? (ppc_result_d | (uimm << 16)) : (ppc_result_d | uimm); ppc_store_iresult_reg(reg_a, ppc_result_a); } template void dppc_interpreter::ppc_ori(uint32_t instr); template void dppc_interpreter::ppc_ori(uint32_t instr); template void dppc_interpreter::ppc_xori(uint32_t instr) { ppc_grab_regssauimm(instr); ppc_result_a = shift ? (ppc_result_d ^ (uimm << 16)) : (ppc_result_d ^ uimm); ppc_store_iresult_reg(reg_a, ppc_result_a); } template void dppc_interpreter::ppc_xori(uint32_t instr); template void dppc_interpreter::ppc_xori(uint32_t instr); template void dppc_interpreter::ppc_logical(uint32_t instr) { ppc_grab_regssab(instr); if (logical_op == logical_fun::ppc_and) ppc_result_a = ppc_result_d & ppc_result_b; else if (logical_op == logical_fun::ppc_andc) ppc_result_a = ppc_result_d & ~(ppc_result_b); else if (logical_op == logical_fun::ppc_eqv) ppc_result_a = ~(ppc_result_d ^ ppc_result_b); else if (logical_op == logical_fun::ppc_nand) ppc_result_a = ~(ppc_result_d & ppc_result_b); else if (logical_op == logical_fun::ppc_nor) ppc_result_a = ~(ppc_result_d | ppc_result_b); else if (logical_op == logical_fun::ppc_or) ppc_result_a = ppc_result_d | ppc_result_b; else if (logical_op == logical_fun::ppc_orc) ppc_result_a = ppc_result_d | ~(ppc_result_b); else if (logical_op == logical_fun::ppc_xor) ppc_result_a = ppc_result_d ^ ppc_result_b; if (rec) ppc_changecrf0(ppc_result_a); ppc_store_iresult_reg(reg_a, ppc_result_a); } template void dppc_interpreter::ppc_logical(uint32_t instr); template void dppc_interpreter::ppc_logical(uint32_t instr); template void dppc_interpreter::ppc_logical(uint32_t instr); template void dppc_interpreter::ppc_logical(uint32_t instr); template void dppc_interpreter::ppc_logical(uint32_t instr); template void dppc_interpreter::ppc_logical(uint32_t instr); template void dppc_interpreter::ppc_logical(uint32_t instr); template void dppc_interpreter::ppc_logical(uint32_t instr); template void dppc_interpreter::ppc_logical(uint32_t instr); template void dppc_interpreter::ppc_logical(uint32_t instr); template void dppc_interpreter::ppc_logical(uint32_t instr); template void dppc_interpreter::ppc_logical(uint32_t instr); template void dppc_interpreter::ppc_logical(uint32_t instr); template void dppc_interpreter::ppc_logical(uint32_t instr); template void dppc_interpreter::ppc_logical(uint32_t instr); template void dppc_interpreter::ppc_logical(uint32_t instr); template void dppc_interpreter::ppc_neg(uint32_t instr) { ppc_grab_regsda(instr); uint32_t ppc_result_d = ~(ppc_result_a) + 1; if (ov) { if (ppc_result_a == 0x80000000) ppc_state.spr[SPR::XER] |= XER::SO | XER::OV; else ppc_state.spr[SPR::XER] &= ~XER::OV; } if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_neg(uint32_t instr); template void dppc_interpreter::ppc_neg(uint32_t instr); template void dppc_interpreter::ppc_neg(uint32_t instr); template void dppc_interpreter::ppc_neg(uint32_t instr); template void dppc_interpreter::ppc_cntlzw(uint32_t instr) { ppc_grab_regssa(instr); uint32_t bit_check = ppc_result_d; #ifdef __builtin_clz //for GCC and Clang users uint32_t lead = !bit_check ? 32 : __builtin_clz(bit_check); #elif defined __lzcnt //for Visual C++ users uint32_t lead = __lzcnt(bit_check); #else uint32_t lead, mask; for (mask = 0x80000000UL, lead = 0; mask != 0; lead++, mask >>= 1) { if (bit_check & mask) break; } #endif ppc_result_a = lead; if (rec) { ppc_changecrf0(ppc_result_a); } ppc_store_iresult_reg(reg_a, ppc_result_a); } template void dppc_interpreter::ppc_cntlzw(uint32_t instr); template void dppc_interpreter::ppc_cntlzw(uint32_t instr); template void dppc_interpreter::ppc_mulhwu(uint32_t instr) { ppc_grab_regsdab(instr); uint64_t product = uint64_t(ppc_result_a) * uint64_t(ppc_result_b); uint32_t ppc_result_d = uint32_t(product >> 32); if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_mulhwu(uint32_t instr); template void dppc_interpreter::ppc_mulhwu(uint32_t instr); template void dppc_interpreter::ppc_mulhw(uint32_t instr) { ppc_grab_regsdab(instr); int64_t product = int64_t(int32_t(ppc_result_a)) * int64_t(int32_t(ppc_result_b)); uint32_t ppc_result_d = product >> 32; if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_mulhw(uint32_t instr); template void dppc_interpreter::ppc_mulhw(uint32_t instr); template void dppc_interpreter::ppc_mullw(uint32_t instr) { ppc_grab_regsdab(instr); int64_t product = int64_t(int32_t(ppc_result_a)) * int64_t(int32_t(ppc_result_b)); if (ov) { if (product != int64_t(int32_t(product))) { ppc_state.spr[SPR::XER] |= XER::SO | XER::OV; } else { ppc_state.spr[SPR::XER] &= ~XER::OV; } } uint32_t ppc_result_d = (uint32_t)product; if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_mullw(uint32_t instr); template void dppc_interpreter::ppc_mullw(uint32_t instr); template void dppc_interpreter::ppc_mullw(uint32_t instr); template void dppc_interpreter::ppc_mullw(uint32_t instr); void dppc_interpreter::ppc_mulli(uint32_t instr) { ppc_grab_regsdasimm(instr); int64_t product = int64_t(int32_t(ppc_result_a)) * int64_t(int32_t(simm)); uint32_t ppc_result_d = uint32_t(product); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_divw(uint32_t instr) { uint32_t ppc_result_d; ppc_grab_regsdab(instr); if (!ppc_result_b) { // handle the "anything / 0" case ppc_result_d = 0; // tested on G4 in Mac OS X 10.4 and Open Firmware. // ppc_result_d = (int32_t(ppc_result_a) < 0) ? -1 : 0; /* UNDOCUMENTED! */ if (ov) ppc_state.spr[SPR::XER] |= XER::SO | XER::OV; } else if (ppc_result_a == 0x80000000UL && ppc_result_b == 0xFFFFFFFFUL) { ppc_result_d = 0; // tested on G4 in Mac OS X 10.4 and Open Firmware. if (ov) ppc_state.spr[SPR::XER] |= XER::SO | XER::OV; } else { // normal signed devision ppc_result_d = int32_t(ppc_result_a) / int32_t(ppc_result_b); if (ov) ppc_state.spr[SPR::XER] &= ~XER::OV; } if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_divw(uint32_t instr); template void dppc_interpreter::ppc_divw(uint32_t instr); template void dppc_interpreter::ppc_divw(uint32_t instr); template void dppc_interpreter::ppc_divw(uint32_t instr); template void dppc_interpreter::ppc_divwu(uint32_t instr) { uint32_t ppc_result_d; ppc_grab_regsdab(instr); if (!ppc_result_b) { // division by zero ppc_result_d = 0; if (ov) ppc_state.spr[SPR::XER] |= XER::SO | XER::OV; if (rec) ppc_state.cr |= 0x20000000; } else { ppc_result_d = ppc_result_a / ppc_result_b; if (ov) ppc_state.spr[SPR::XER] &= ~XER::OV; } if (rec) ppc_changecrf0(ppc_result_d); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_divwu(uint32_t instr); template void dppc_interpreter::ppc_divwu(uint32_t instr); template void dppc_interpreter::ppc_divwu(uint32_t instr); template void dppc_interpreter::ppc_divwu(uint32_t instr); // Value shifting template void dppc_interpreter::ppc_shift(uint32_t instr) { ppc_grab_regssab(instr); if (ppc_result_b & 0x20) { ppc_result_a = 0; } else { ppc_result_a = isleft ? (ppc_result_d << (ppc_result_b & 0x1F)) : (ppc_result_d >> (ppc_result_b & 0x1F)); } if (rec) ppc_changecrf0(ppc_result_a); ppc_store_iresult_reg(reg_a, ppc_result_a); } template void dppc_interpreter::ppc_shift(uint32_t instr); template void dppc_interpreter::ppc_shift(uint32_t instr); template void dppc_interpreter::ppc_shift(uint32_t instr); template void dppc_interpreter::ppc_shift(uint32_t instr); template void dppc_interpreter::ppc_sraw(uint32_t instr) { ppc_grab_regssab(instr); // clear XER[CA] by default ppc_state.spr[SPR::XER] &= ~XER::CA; if (ppc_result_b & 0x20) { // fill rA with the sign bit of rS ppc_result_a = int32_t(ppc_result_d) >> 31; if (ppc_result_a) // if rA is negative ppc_state.spr[SPR::XER] |= XER::CA; } else { uint32_t shift = ppc_result_b & 0x1F; ppc_result_a = int32_t(ppc_result_d) >> shift; if ((int32_t(ppc_result_d) < 0) && (ppc_result_d & ((1U << shift) - 1))) ppc_state.spr[SPR::XER] |= XER::CA; } if (rec) ppc_changecrf0(ppc_result_a); ppc_store_iresult_reg(reg_a, ppc_result_a); } template void dppc_interpreter::ppc_sraw(uint32_t instr); template void dppc_interpreter::ppc_sraw(uint32_t instr); template void dppc_interpreter::ppc_srawi(uint32_t instr) { ppc_grab_regssash(instr); // clear XER[CA] by default ppc_state.spr[SPR::XER] &= ~XER::CA; if ((int32_t(ppc_result_d) < 0) && (ppc_result_d & ((1U << rot_sh) - 1))) ppc_state.spr[SPR::XER] |= XER::CA; ppc_result_a = int32_t(ppc_result_d) >> rot_sh; if (rec) ppc_changecrf0(ppc_result_a); ppc_store_iresult_reg(reg_a, ppc_result_a); } template void dppc_interpreter::ppc_srawi(uint32_t instr); template void dppc_interpreter::ppc_srawi(uint32_t instr); /** mask generator for rotate and shift instructions (ยง 4.2.1.4 PowerpC PEM) */ static inline uint32_t rot_mask(unsigned rot_mb, unsigned rot_me) { uint32_t m1 = 0xFFFFFFFFUL >> rot_mb; uint32_t m2 = uint32_t(0xFFFFFFFFUL << (31 - rot_me)); return ((rot_mb <= rot_me) ? m2 & m1 : m1 | m2); } void dppc_interpreter::ppc_rlwimi(uint32_t instr) { ppc_grab_regssash(instr); unsigned rot_mb = (instr >> 6) & 0x1F; unsigned rot_me = (instr >> 1) & 0x1F; uint32_t mask = rot_mask(rot_mb, rot_me); uint32_t r = rot_sh ? ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh))) : ppc_result_d; ppc_result_a = (ppc_result_a & ~mask) | (r & mask); if ((instr & 0x01) == 1) { ppc_changecrf0(ppc_result_a); } ppc_store_iresult_reg(reg_a, ppc_result_a); } void dppc_interpreter::ppc_rlwinm(uint32_t instr) { ppc_grab_regssash(instr); unsigned rot_mb = (instr >> 6) & 0x1F; unsigned rot_me = (instr >> 1) & 0x1F; uint32_t mask = rot_mask(rot_mb, rot_me); uint32_t r = rot_sh ? ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh))) : ppc_result_d; ppc_result_a = r & mask; if ((instr & 0x01) == 1) { ppc_changecrf0(ppc_result_a); } ppc_store_iresult_reg(reg_a, ppc_result_a); } void dppc_interpreter::ppc_rlwnm(uint32_t instr) { ppc_grab_regssab(instr); ppc_result_b &= 0x1F; unsigned rot_mb = (instr >> 6) & 0x1F; unsigned rot_me = (instr >> 1) & 0x1F; uint32_t mask = rot_mask(rot_mb, rot_me); uint32_t rot = ppc_result_b & 0x1F; uint32_t r = rot ? ((ppc_result_d << rot) | (ppc_result_d >> (32 - rot))) : ppc_result_d; ppc_result_a = r & mask; if ((instr & 0x01) == 1) { ppc_changecrf0(ppc_result_a); } ppc_store_iresult_reg(reg_a, ppc_result_a); } void dppc_interpreter::ppc_mfcr(uint32_t instr) { int reg_d = (instr >> 21) & 0x1F; ppc_state.gpr[reg_d] = ppc_state.cr; } void dppc_interpreter::ppc_mtsr(uint32_t instr) { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif if (ppc_state.msr & MSR::PR) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::NOT_ALLOWED); } int reg_s = (instr >> 21) & 0x1F; uint32_t grab_sr = (instr >> 16) & 0x0F; if (ppc_state.sr[grab_sr] != ppc_state.gpr[reg_s]) { ppc_state.sr[grab_sr] = ppc_state.gpr[reg_s]; mmu_pat_ctx_changed(); } } void dppc_interpreter::ppc_mtsrin(uint32_t instr) { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif if (ppc_state.msr & MSR::PR) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::NOT_ALLOWED); } ppc_grab_regssb(instr); uint32_t grab_sr = ppc_result_b >> 28; if (ppc_state.sr[grab_sr] != ppc_result_d) { ppc_state.sr[grab_sr] = ppc_result_d; mmu_pat_ctx_changed(); } } void dppc_interpreter::ppc_mfsr(uint32_t instr) { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif if (ppc_state.msr & MSR::PR) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::NOT_ALLOWED); } int reg_d = (instr >> 21) & 0x1F; uint32_t grab_sr = (instr >> 16) & 0x0F; ppc_state.gpr[reg_d] = ppc_state.sr[grab_sr]; } void dppc_interpreter::ppc_mfsrin(uint32_t instr) { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif if (ppc_state.msr & MSR::PR) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::NOT_ALLOWED); } ppc_grab_regsdb(instr); uint32_t grab_sr = ppc_result_b >> 28; ppc_state.gpr[reg_d] = ppc_state.sr[grab_sr]; } void dppc_interpreter::ppc_mfmsr(uint32_t instr) { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif if (ppc_state.msr & MSR::PR) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::NOT_ALLOWED); } uint32_t reg_d = (instr >> 21) & 0x1F; ppc_state.gpr[reg_d] = ppc_state.msr; } void dppc_interpreter::ppc_mtmsr(uint32_t instr) { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif if (ppc_state.msr & MSR::PR) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::NOT_ALLOWED); } uint32_t reg_s = (instr >> 21) & 0x1F; ppc_state.msr = ppc_state.gpr[reg_s]; // generate External Interrupt Exception // if CPU interrupt line is asserted if (ppc_state.msr & MSR::EE && int_pin) { //LOG_F(WARNING, "MTMSR: CPU INT pending, generate CPU exception"); ppc_exception_handler(Except_Type::EXC_EXT_INT, 0); } else if ((ppc_state.msr & MSR::EE) && dec_exception_pending) { dec_exception_pending = false; //LOG_F(WARNING, "MTMSR: decrementer exception triggered"); ppc_exception_handler(Except_Type::EXC_DECR, 0); } else { mmu_change_mode(); } } static inline void calc_rtcl_value() { uint64_t new_ts = get_virt_time_ns(); uint64_t rtc_l = new_ts - rtc_timestamp + rtc_lo; if (rtc_l >= ONE_BILLION_NS) { // check RTCL overflow rtc_hi += (uint32_t)(rtc_l / ONE_BILLION_NS); rtc_lo = rtc_l % ONE_BILLION_NS; } else { rtc_lo = (uint32_t)rtc_l; } rtc_timestamp = new_ts; } static inline uint64_t calc_tbr_value() { uint64_t tbr_inc; uint32_t tbr_inc_lo; uint64_t diff = get_virt_time_ns() - tbr_wr_timestamp; _u32xu64(tbr_freq_ghz, diff, tbr_inc, tbr_inc_lo); return (tbr_wr_value + tbr_inc); } static inline uint32_t calc_dec_value() { uint64_t dec_adj; uint32_t dec_adj_lo; uint64_t diff = get_virt_time_ns() - dec_wr_timestamp; _u32xu64(tbr_freq_ghz, diff, dec_adj, dec_adj_lo); return (dec_wr_value - static_cast(dec_adj)); } static void update_timebase(uint64_t mask, uint64_t new_val) { uint64_t tbr_value = calc_tbr_value(); tbr_wr_value = (tbr_value & mask) | new_val; tbr_wr_timestamp = get_virt_time_ns(); } static uint32_t decrementer_timer_id = 0; static void trigger_decrementer_exception() { decrementer_timer_id = 0; dec_wr_value = -1; dec_wr_timestamp = get_virt_time_ns(); if (ppc_state.msr & MSR::EE) { dec_exception_pending = false; //LOG_F(WARNING, "decrementer exception triggered"); ppc_exception_handler(Except_Type::EXC_DECR, 0); } else { //LOG_F(WARNING, "decrementer exception pending"); dec_exception_pending = true; } } static void update_decrementer(uint32_t val) { dec_wr_value = val; dec_wr_timestamp = get_virt_time_ns(); dec_exception_pending = false; if (is_601) return; if (decrementer_timer_id) { //LOG_F(WARNING, "decrementer cancel timer"); TimerManager::get_instance()->cancel_timer(decrementer_timer_id); } uint64_t time_out; uint32_t time_out_lo; _u32xu64(val, tbr_period_ns, time_out, time_out_lo); //LOG_F(WARNING, "decrementer:0x%08X ns:%llu", val, time_out); decrementer_timer_id = TimerManager::get_instance()->add_oneshot_timer( time_out, trigger_decrementer_exception ); } void dppc_interpreter::ppc_mfspr(uint32_t instr) { ppc_grab_dab(instr); uint32_t ref_spr = (reg_b << 5) | reg_a; if (ref_spr & 0x10) { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif if (ppc_state.msr & MSR::PR) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::NOT_ALLOWED); } } switch (ref_spr) { case SPR::MQ: if (!is_601) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } ppc_state.gpr[reg_d] = ppc_state.spr[ref_spr]; break; case SPR::RTCL_U: if (!is_601) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } calc_rtcl_value(); ppc_state.gpr[reg_d] = ppc_state.spr[SPR::RTCL_S] = rtc_lo & 0x3FFFFF80UL; ppc_state.spr[SPR::RTCU_S] = rtc_hi; break; case SPR::RTCU_U: if (!is_601) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } calc_rtcl_value(); ppc_state.gpr[reg_d] = ppc_state.spr[SPR::RTCU_S] = rtc_hi; ppc_state.spr[SPR::RTCL_S] = rtc_lo; break; case SPR::DEC_U: if (!is_601) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } // fallthrough case SPR::DEC_S: ppc_state.gpr[reg_d] = ppc_state.spr[SPR::DEC_S] = calc_dec_value(); break; default: // FIXME: Unknown SPR should be noop or illegal instruction. ppc_state.gpr[reg_d] = ppc_state.spr[ref_spr]; } } void dppc_interpreter::ppc_mtspr(uint32_t instr) { ppc_grab_dab(instr); uint32_t ref_spr = (reg_b << 5) | reg_a; if (ref_spr & 0x10) { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif if (ppc_state.msr & MSR::PR) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::NOT_ALLOWED); } } uint32_t val = ppc_state.gpr[reg_d]; switch (ref_spr) { case SPR::MQ: if (!is_601) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } ppc_state.spr[ref_spr] = val; break; case SPR::RTCL_U: case SPR::RTCU_U: case SPR::DEC_U: if (!is_601) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } break; case SPR::XER: ppc_state.spr[ref_spr] = val & 0xe000ff7f; break; case SPR::SDR1: if (ppc_state.spr[ref_spr] != val) { ppc_state.spr[ref_spr] = val; mmu_pat_ctx_changed(); // adapt to SDR1 changes } break; case SPR::RTCL_S: calc_rtcl_value(); ppc_state.spr[RTCL_S] = rtc_lo = val & 0x3FFFFF80UL; ppc_state.spr[RTCU_S] = rtc_hi; break; case SPR::RTCU_S: calc_rtcl_value(); ppc_state.spr[RTCL_S] = rtc_lo; ppc_state.spr[RTCU_S] = rtc_hi = val; break; case SPR::DEC_S: ppc_state.spr[DEC_S] = val; update_decrementer(val); break; case SPR::TBL_S: update_timebase(0xFFFFFFFF00000000ULL, val); ppc_state.spr[TBL_S] = val; ppc_state.spr[TBU_S] = tbr_wr_value >> 32; break; case SPR::TBU_S: update_timebase(0x00000000FFFFFFFFULL, uint64_t(val) << 32); ppc_state.spr[TBL_S] = (uint32_t)tbr_wr_value; ppc_state.spr[TBU_S] = val; break; case SPR::PVR: break; case 528: case 529: case 530: case 531: case 532: case 533: case 534: case 535: ppc_state.spr[ref_spr] = val; ibat_update(ref_spr); break; case 536: case 537: case 538: case 539: case 540: case 541: case 542: case 543: ppc_state.spr[ref_spr] = val; dbat_update(ref_spr); default: // FIXME: Unknown SPR should be noop or illegal instruction. ppc_state.spr[ref_spr] = val; } } void dppc_interpreter::ppc_mftb(uint32_t instr) { ppc_grab_dab(instr); uint32_t ref_spr = (reg_b << 5) | reg_a; uint64_t tbr_value = calc_tbr_value(); switch (ref_spr) { case SPR::TBL_U: ppc_state.gpr[reg_d] = ppc_state.spr[TBL_S] = uint32_t(tbr_value); ppc_state.spr[TBU_S] = uint32_t(tbr_value >> 32); break; case SPR::TBU_U: ppc_state.gpr[reg_d] = ppc_state.spr[TBU_S] = uint32_t(tbr_value >> 32); ppc_state.spr[TBL_S] = uint32_t(tbr_value); break; default: ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } } void dppc_interpreter::ppc_mtcrf(uint32_t instr) { ppc_grab_s(instr); uint8_t crm = (instr >> 12) & 0xFFU; uint32_t cr_mask = 0; if (crm == 0xFFU) // the fast case cr_mask = 0xFFFFFFFFUL; else { // the slow case if (crm & 0x80) cr_mask |= 0xF0000000UL; if (crm & 0x40) cr_mask |= 0x0F000000UL; if (crm & 0x20) cr_mask |= 0x00F00000UL; if (crm & 0x10) cr_mask |= 0x000F0000UL; if (crm & 0x08) cr_mask |= 0x0000F000UL; if (crm & 0x04) cr_mask |= 0x00000F00UL; if (crm & 0x02) cr_mask |= 0x000000F0UL; if (crm & 0x01) cr_mask |= 0x0000000FUL; } ppc_state.cr = (ppc_state.cr & ~cr_mask) | (ppc_result_d & cr_mask); } void dppc_interpreter::ppc_mcrxr(uint32_t instr) { int crf_d = (instr >> 21) & 0x1C; ppc_state.cr = (ppc_state.cr & ~(0xF0000000UL >> crf_d)) | ((ppc_state.spr[SPR::XER] & 0xF0000000UL) >> crf_d); ppc_state.spr[SPR::XER] &= 0x0FFFFFFF; } template void dppc_interpreter::ppc_exts(uint32_t instr) { ppc_grab_regssa(instr); ppc_result_a = int32_t(T(ppc_result_d)); if (rec) ppc_changecrf0(ppc_result_a); ppc_store_iresult_reg(reg_a, ppc_result_a); } template void dppc_interpreter::ppc_exts(uint32_t instr); template void dppc_interpreter::ppc_exts(uint32_t instr); template void dppc_interpreter::ppc_exts(uint32_t instr); template void dppc_interpreter::ppc_exts(uint32_t instr); // Branching Instructions template void dppc_interpreter::ppc_b(uint32_t instr) { int32_t adr_li = int32_t((instr & ~3UL) << 6) >> 6; if (a) ppc_next_instruction_address = adr_li; else ppc_next_instruction_address = uint32_t(ppc_state.pc + adr_li); if (l) ppc_state.spr[SPR::LR] = uint32_t(ppc_state.pc + 4); exec_flags = EXEF_BRANCH; } template void dppc_interpreter::ppc_b(uint32_t instr); template void dppc_interpreter::ppc_b(uint32_t instr); template void dppc_interpreter::ppc_b(uint32_t instr); template void dppc_interpreter::ppc_b(uint32_t instr); template void dppc_interpreter::ppc_bc(uint32_t instr) { uint32_t ctr_ok; uint32_t cnd_ok; uint32_t br_bo = (instr >> 21) & 0x1F; uint32_t br_bi = (instr >> 16) & 0x1F; int32_t br_bd = int32_t(int16_t(instr & ~3UL)); if (!(br_bo & 0x04)) { (ppc_state.spr[SPR::CTR])--; /* decrement CTR */ } ctr_ok = (br_bo & 0x04) | ((ppc_state.spr[SPR::CTR] != 0) == !(br_bo & 0x02)); cnd_ok = (br_bo & 0x10) | (!(ppc_state.cr & (0x80000000UL >> br_bi)) == !(br_bo & 0x08)); if (ctr_ok && cnd_ok) { if (a) ppc_next_instruction_address = br_bd; else ppc_next_instruction_address = uint32_t(ppc_state.pc + br_bd); exec_flags = EXEF_BRANCH; } if (l) ppc_state.spr[SPR::LR] = ppc_state.pc + 4; } template void dppc_interpreter::ppc_bc(uint32_t instr); template void dppc_interpreter::ppc_bc(uint32_t instr); template void dppc_interpreter::ppc_bc(uint32_t instr); template void dppc_interpreter::ppc_bc(uint32_t instr); template void dppc_interpreter::ppc_bcctr(uint32_t instr) { uint32_t ctr_ok; uint32_t cnd_ok; uint32_t br_bo = (instr >> 21) & 0x1F; uint32_t br_bi = (instr >> 16) & 0x1F; uint32_t ctr = ppc_state.spr[SPR::CTR]; uint32_t new_ctr; if (for601) { new_ctr = ctr - 1; if (!(br_bo & 0x04)) { ppc_state.spr[SPR::CTR] = new_ctr; /* decrement CTR */ } } else { new_ctr = ctr; } ctr_ok = (br_bo & 0x04) | ((new_ctr != 0) == !(br_bo & 0x02)); cnd_ok = (br_bo & 0x10) | (!(ppc_state.cr & (0x80000000UL >> br_bi)) == !(br_bo & 0x08)); if (ctr_ok && cnd_ok) { ppc_next_instruction_address = (ctr & ~3UL); exec_flags = EXEF_BRANCH; } if (l) ppc_state.spr[SPR::LR] = ppc_state.pc + 4; } template void dppc_interpreter::ppc_bcctr(uint32_t instr); template void dppc_interpreter::ppc_bcctr(uint32_t instr); template void dppc_interpreter::ppc_bcctr(uint32_t instr); template void dppc_interpreter::ppc_bcctr(uint32_t instr); template void dppc_interpreter::ppc_bclr(uint32_t instr) { uint32_t br_bo = (instr >> 21) & 0x1F; uint32_t br_bi = (instr >> 16) & 0x1F; uint32_t ctr_ok; uint32_t cnd_ok; if (!(br_bo & 0x04)) { (ppc_state.spr[SPR::CTR])--; /* decrement CTR */ } ctr_ok = (br_bo & 0x04) | ((ppc_state.spr[SPR::CTR] != 0) == !(br_bo & 0x02)); cnd_ok = (br_bo & 0x10) | (!(ppc_state.cr & (0x80000000UL >> br_bi)) == !(br_bo & 0x08)); if (ctr_ok && cnd_ok) { ppc_next_instruction_address = (ppc_state.spr[SPR::LR] & ~3UL); exec_flags = EXEF_BRANCH; } if (l) ppc_state.spr[SPR::LR] = ppc_state.pc + 4; } template void dppc_interpreter::ppc_bclr(uint32_t instr); template void dppc_interpreter::ppc_bclr(uint32_t instr); // Compare Instructions void dppc_interpreter::ppc_cmp(uint32_t instr) { #ifdef CHECK_INVALID if (instr & 0x200000) { LOG_F(WARNING, "Invalid CMP instruction form (L=1)!"); return; } #endif int crf_d = (instr >> 21) & 0x1C; ppc_grab_regsab(instr); uint32_t xercon = (ppc_state.spr[SPR::XER] & XER::SO) >> 3; uint32_t cmp_c = (int32_t(ppc_result_a) == int32_t(ppc_result_b)) ? 0x20000000UL : \ (int32_t(ppc_result_a) > int32_t(ppc_result_b)) ? 0x40000000UL : 0x80000000UL; ppc_state.cr = ((ppc_state.cr & ~(0xf0000000UL >> crf_d)) | ((cmp_c + xercon) >> crf_d)); } void dppc_interpreter::ppc_cmpi(uint32_t instr) { #ifdef CHECK_INVALID if (instr & 0x200000) { LOG_F(WARNING, "Invalid CMPI instruction form (L=1)!"); return; } #endif int crf_d = (instr >> 21) & 0x1C; ppc_grab_regsasimm(instr); uint32_t xercon = (ppc_state.spr[SPR::XER] & XER::SO) >> 3; uint32_t cmp_c = (int32_t(ppc_result_a) == simm) ? 0x20000000UL : \ (int32_t(ppc_result_a) > simm) ? 0x40000000UL : 0x80000000UL; ppc_state.cr = ((ppc_state.cr & ~(0xf0000000UL >> crf_d)) | ((cmp_c + xercon) >> crf_d)); } void dppc_interpreter::ppc_cmpl(uint32_t instr) { #ifdef CHECK_INVALID if (instr & 0x200000) { LOG_F(WARNING, "Invalid CMPL instruction form (L=1)!"); return; } #endif int crf_d = (instr >> 21) & 0x1C; ppc_grab_regsab(instr); uint32_t xercon = (ppc_state.spr[SPR::XER] & XER::SO) >> 3; uint32_t cmp_c = (ppc_result_a == ppc_result_b) ? 0x20000000UL : \ (ppc_result_a > ppc_result_b) ? 0x40000000UL : 0x80000000UL; ppc_state.cr = ((ppc_state.cr & ~(0xf0000000UL >> crf_d)) | ((cmp_c + xercon) >> crf_d)); } void dppc_interpreter::ppc_cmpli(uint32_t instr) { #ifdef CHECK_INVALID if (instr & 0x200000) { LOG_F(WARNING, "Invalid CMPLI instruction form (L=1)!"); return; } #endif ppc_grab_crfd_regsauimm(instr); uint32_t xercon = (ppc_state.spr[SPR::XER] & XER::SO) >> 3; uint32_t cmp_c = (ppc_result_a == uimm) ? 0x20000000UL : \ (ppc_result_a > uimm) ? 0x40000000UL : 0x80000000UL; ppc_state.cr = ((ppc_state.cr & ~(0xf0000000UL >> crf_d)) | ((cmp_c + xercon) >> crf_d)); } // Condition Register Changes void dppc_interpreter::ppc_mcrf(uint32_t instr) { int crf_d = (instr >> 21) & 0x1C; int crf_s = (instr >> 16) & 0x1C; // extract and right justify source flags field uint32_t grab_s = (ppc_state.cr >> (28 - crf_s)) & 0xF; ppc_state.cr = (ppc_state.cr & ~(0xf0000000UL >> crf_d)) | (grab_s << (28 - crf_d)); } void dppc_interpreter::ppc_crand(uint32_t instr) { ppc_grab_dab(instr); uint8_t ir = (ppc_state.cr >> (31 - reg_a)) & (ppc_state.cr >> (31 - reg_b)); if (ir & 1) { ppc_state.cr |= (0x80000000UL >> reg_d); } else { ppc_state.cr &= ~(0x80000000UL >> reg_d); } } void dppc_interpreter::ppc_crandc(uint32_t instr) { ppc_grab_dab(instr); if ((ppc_state.cr & (0x80000000UL >> reg_a)) && !(ppc_state.cr & (0x80000000UL >> reg_b))) { ppc_state.cr |= (0x80000000UL >> reg_d); } else { ppc_state.cr &= ~(0x80000000UL >> reg_d); } } void dppc_interpreter::ppc_creqv(uint32_t instr) { ppc_grab_dab(instr); uint8_t ir = (ppc_state.cr >> (31 - reg_a)) ^ (ppc_state.cr >> (31 - reg_b)); if (ir & 1) { // compliment is implemented by swapping the following if/else bodies ppc_state.cr &= ~(0x80000000UL >> reg_d); } else { ppc_state.cr |= (0x80000000UL >> reg_d); } } void dppc_interpreter::ppc_crnand(uint32_t instr) { ppc_grab_dab(instr); uint8_t ir = (ppc_state.cr >> (31 - reg_a)) & (ppc_state.cr >> (31 - reg_b)); if (ir & 1) { ppc_state.cr &= ~(0x80000000UL >> reg_d); } else { ppc_state.cr |= (0x80000000UL >> reg_d); } } void dppc_interpreter::ppc_crnor(uint32_t instr) { ppc_grab_dab(instr); uint8_t ir = (ppc_state.cr >> (31 - reg_a)) | (ppc_state.cr >> (31 - reg_b)); if (ir & 1) { ppc_state.cr &= ~(0x80000000UL >> reg_d); } else { ppc_state.cr |= (0x80000000UL >> reg_d); } } void dppc_interpreter::ppc_cror(uint32_t instr) { ppc_grab_dab(instr); uint8_t ir = (ppc_state.cr >> (31 - reg_a)) | (ppc_state.cr >> (31 - reg_b)); if (ir & 1) { ppc_state.cr |= (0x80000000UL >> reg_d); } else { ppc_state.cr &= ~(0x80000000UL >> reg_d); } } void dppc_interpreter::ppc_crorc(uint32_t instr) { ppc_grab_dab(instr); if ((ppc_state.cr & (0x80000000UL >> reg_a)) || !(ppc_state.cr & (0x80000000UL >> reg_b))) { ppc_state.cr |= (0x80000000UL >> reg_d); } else { ppc_state.cr &= ~(0x80000000UL >> reg_d); } } void dppc_interpreter::ppc_crxor(uint32_t instr) { ppc_grab_dab(instr); uint8_t ir = (ppc_state.cr >> (31 - reg_a)) ^ (ppc_state.cr >> (31 - reg_b)); if (ir & 1) { ppc_state.cr |= (0x80000000UL >> reg_d); } else { ppc_state.cr &= ~(0x80000000UL >> reg_d); } } // Processor MGMT Fns. void dppc_interpreter::ppc_rfi(uint32_t instr) { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif uint32_t new_srr1_val = (ppc_state.spr[SPR::SRR1] & 0x87C0FF73UL); uint32_t new_msr_val = (ppc_state.msr & ~0x87C0FF73UL); ppc_state.msr = (new_msr_val | new_srr1_val) & 0xFFFBFFFFUL; // generate External Interrupt Exception // if CPU interrupt line is still asserted if (ppc_state.msr & MSR::EE && int_pin) { uint32_t save_srr0 = ppc_state.spr[SPR::SRR0] & ~3UL; ppc_exception_handler(Except_Type::EXC_EXT_INT, 0); ppc_state.spr[SPR::SRR0] = save_srr0; return; } if ((ppc_state.msr & MSR::EE) && dec_exception_pending) { dec_exception_pending = false; //LOG_F(WARNING, "decrementer exception from rfi msr:0x%X", ppc_state.msr); uint32_t save_srr0 = ppc_state.spr[SPR::SRR0] & ~3UL; ppc_exception_handler(Except_Type::EXC_DECR, 0); ppc_state.spr[SPR::SRR0] = save_srr0; return; } ppc_next_instruction_address = ppc_state.spr[SPR::SRR0] & ~3UL; do_ctx_sync(); // RFI is context synchronizing mmu_change_mode(); exec_flags = EXEF_RFI; } void dppc_interpreter::ppc_sc(uint32_t instr) { do_ctx_sync(); // SC is context synchronizing! ppc_exception_handler(Except_Type::EXC_SYSCALL, 0x20000); } void dppc_interpreter::ppc_tw(uint32_t instr) { uint32_t reg_a = (instr >> 11) & 0x1F; uint32_t reg_b = (instr >> 16) & 0x1F; uint32_t ppc_to = (instr >> 21) & 0x1F; if (((int32_t(ppc_state.gpr[reg_a]) < int32_t(ppc_state.gpr[reg_b])) && (ppc_to & 0x10)) || ((int32_t(ppc_state.gpr[reg_a]) > int32_t(ppc_state.gpr[reg_b])) && (ppc_to & 0x08)) || ((int32_t(ppc_state.gpr[reg_a]) == int32_t(ppc_state.gpr[reg_b])) && (ppc_to & 0x04)) || ((ppc_state.gpr[reg_a] < ppc_state.gpr[reg_b]) && (ppc_to & 0x02)) || ((ppc_state.gpr[reg_a] > ppc_state.gpr[reg_b]) && (ppc_to & 0x01))) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::TRAP); } } void dppc_interpreter::ppc_twi(uint32_t instr) { int32_t simm = int32_t(int16_t(instr)); uint32_t reg_a = (instr >> 16) & 0x1F; uint32_t ppc_to = (instr >> 21) & 0x1F; if (((int32_t(ppc_state.gpr[reg_a]) < simm) && (ppc_to & 0x10)) || ((int32_t(ppc_state.gpr[reg_a]) > simm) && (ppc_to & 0x08)) || ((int32_t(ppc_state.gpr[reg_a]) == simm) && (ppc_to & 0x04)) || (ppc_state.gpr[reg_a] < uint32_t(simm) && (ppc_to & 0x02)) || (ppc_state.gpr[reg_a] > uint32_t(simm) && (ppc_to & 0x01))) { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::TRAP); } } void dppc_interpreter::ppc_eieio(uint32_t instr) { /* placeholder */ } void dppc_interpreter::ppc_isync(uint32_t instr) { do_ctx_sync(); } void dppc_interpreter::ppc_sync(uint32_t instr) { /* placeholder */ } void dppc_interpreter::ppc_icbi(uint32_t instr) { /* placeholder */ } void dppc_interpreter::ppc_dcbf(uint32_t instr) { /* placeholder */ } void dppc_interpreter::ppc_dcbi(uint32_t instr) { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif /* placeholder */ } void dppc_interpreter::ppc_dcbst(uint32_t instr) { /* placeholder */ } void dppc_interpreter::ppc_dcbt(uint32_t instr) { // Not needed, the HDI reg is touched to no-op this instruction. return; } void dppc_interpreter::ppc_dcbtst(uint32_t instr) { // Not needed, the HDI reg is touched to no-op this instruction. return; } void dppc_interpreter::ppc_dcbz(uint32_t instr) { ppc_grab_regsab(instr); uint32_t ea = ppc_result_b + (reg_a ? ppc_result_a : 0); ea &= 0xFFFFFFE0UL; // align EA on a 32-byte boundary // the following is not especially efficient but necessary // to make BlockZero under Mac OS 8.x and later to work mmu_write_vmem(ea + 0, instr, 0); mmu_write_vmem(ea + 8, instr, 0); mmu_write_vmem(ea + 16, instr, 0); mmu_write_vmem(ea + 24, instr, 0); } // Integer Load and Store Functions template void dppc_interpreter::ppc_st(uint32_t instr) { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssa(instr); uint32_t ea = int32_t(int16_t(instr)); ea += reg_a ? ppc_result_a : 0; mmu_write_vmem(ea, instr, ppc_result_d); } template void dppc_interpreter::ppc_st(uint32_t instr); template void dppc_interpreter::ppc_st(uint32_t instr); template void dppc_interpreter::ppc_st(uint32_t instr); template void dppc_interpreter::ppc_stx(uint32_t instr) { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssab(instr); uint32_t ea = ppc_result_b + (reg_a ? ppc_result_a : 0); mmu_write_vmem(ea, instr, ppc_result_d); } template void dppc_interpreter::ppc_stx(uint32_t instr); template void dppc_interpreter::ppc_stx(uint32_t instr); template void dppc_interpreter::ppc_stx(uint32_t instr); template void dppc_interpreter::ppc_stu(uint32_t instr) { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssa(instr); if (reg_a != 0) { uint32_t ea = int32_t(int16_t(instr)); ea += ppc_result_a; mmu_write_vmem(ea, instr, ppc_result_d); ppc_state.gpr[reg_a] = ea; } else { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } } template void dppc_interpreter::ppc_stu(uint32_t instr); template void dppc_interpreter::ppc_stu(uint32_t instr); template void dppc_interpreter::ppc_stu(uint32_t instr); template void dppc_interpreter::ppc_stux(uint32_t instr) { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssab(instr); if (reg_a != 0) { uint32_t ea = ppc_result_a + ppc_result_b; mmu_write_vmem(ea, instr, ppc_result_d); ppc_state.gpr[reg_a] = ea; } else { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } } template void dppc_interpreter::ppc_stux(uint32_t instr); template void dppc_interpreter::ppc_stux(uint32_t instr); template void dppc_interpreter::ppc_stux(uint32_t instr); void dppc_interpreter::ppc_sthbrx(uint32_t instr) { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssab(instr); uint32_t ea = ppc_result_b + (reg_a ? ppc_result_a : 0); ppc_result_d = uint32_t(BYTESWAP_16(uint16_t(ppc_result_d))); mmu_write_vmem(ea, instr, ppc_result_d); } void dppc_interpreter::ppc_stwcx(uint32_t instr) { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssab(instr); uint32_t ea = (reg_a == 0) ? ppc_result_b : (ppc_result_a + ppc_result_b); ppc_state.cr &= 0x0FFFFFFFUL; // clear CR0 ppc_state.cr |= (ppc_state.spr[SPR::XER] & XER::SO) >> 3; // copy XER[SO] to CR0[SO] if (ppc_state.reserve) { mmu_write_vmem(ea, instr, ppc_result_d); ppc_state.reserve = false; ppc_state.cr |= 0x20000000UL; // set CR0[EQ] } } void dppc_interpreter::ppc_stwbrx(uint32_t instr) { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssab(instr); uint32_t ea = ppc_result_b + (reg_a ? ppc_result_a : 0); ppc_result_d = BYTESWAP_32(ppc_result_d); mmu_write_vmem(ea, instr, ppc_result_d); } void dppc_interpreter::ppc_stmw(uint32_t instr) { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssa_stmw(instr); uint32_t ea = int32_t(int16_t(instr)); ea += reg_a ? ppc_result_a : 0; /* what should we do if EA is unaligned? */ if (ea & 3) { ppc_alignment_exception(ea, instr); } for (; reg_s <= 31; reg_s++) { mmu_write_vmem(ea, instr, ppc_state.gpr[reg_s]); ea += 4; } } template void dppc_interpreter::ppc_lz(uint32_t instr) { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsda(instr); uint32_t ea = int32_t(int16_t(instr)); ea += reg_a ? ppc_result_a : 0; uint32_t ppc_result_d = mmu_read_vmem(ea, instr); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_lz(uint32_t instr); template void dppc_interpreter::ppc_lz(uint32_t instr); template void dppc_interpreter::ppc_lz(uint32_t instr); template void dppc_interpreter::ppc_lzu(uint32_t instr) { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsda(instr); uint32_t ea = int32_t(int16_t(instr)); if ((reg_a != reg_d) && reg_a != 0) { ea += ppc_result_a; uint32_t ppc_result_d = mmu_read_vmem(ea, instr); uint32_t ppc_result_a = ea; ppc_store_iresult_reg(reg_d, ppc_result_d); ppc_store_iresult_reg(reg_a, ppc_result_a); } else { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } } template void dppc_interpreter::ppc_lzu(uint32_t instr); template void dppc_interpreter::ppc_lzu(uint32_t instr); template void dppc_interpreter::ppc_lzu(uint32_t instr); template void dppc_interpreter::ppc_lzx(uint32_t instr) { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsdab(instr); uint32_t ea = ppc_result_b + (reg_a ? ppc_result_a : 0); uint32_t ppc_result_d = mmu_read_vmem(ea, instr); ppc_store_iresult_reg(reg_d, ppc_result_d); } template void dppc_interpreter::ppc_lzx(uint32_t instr); template void dppc_interpreter::ppc_lzx(uint32_t instr); template void dppc_interpreter::ppc_lzx(uint32_t instr); template void dppc_interpreter::ppc_lzux(uint32_t instr) { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsdab(instr); if ((reg_a != reg_d) && reg_a != 0) { uint32_t ea = ppc_result_a + ppc_result_b; uint32_t ppc_result_d = mmu_read_vmem(ea, instr); ppc_result_a = ea; ppc_store_iresult_reg(reg_d, ppc_result_d); ppc_store_iresult_reg(reg_a, ppc_result_a); } else { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } } template void dppc_interpreter::ppc_lzux(uint32_t instr); template void dppc_interpreter::ppc_lzux(uint32_t instr); template void dppc_interpreter::ppc_lzux(uint32_t instr); void dppc_interpreter::ppc_lha(uint32_t instr) { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsda(instr); uint32_t ea = int32_t(int16_t(instr)); ea += (reg_a ? ppc_result_a : 0); int16_t val = mmu_read_vmem(ea, instr); ppc_store_iresult_reg(reg_d, int32_t(val)); } void dppc_interpreter::ppc_lhau(uint32_t instr) { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsda(instr); if ((reg_a != reg_d) && reg_a != 0) { uint32_t ea = int32_t(int16_t(instr)); ea += ppc_result_a; int16_t val = mmu_read_vmem(ea, instr); ppc_store_iresult_reg(reg_d, int32_t(val)); uint32_t ppc_result_a = ea; ppc_store_iresult_reg(reg_a, ppc_result_a); } else { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } } void dppc_interpreter::ppc_lhaux(uint32_t instr) { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsdab(instr); if ((reg_a != reg_d) && reg_a != 0) { uint32_t ea = ppc_result_a + ppc_result_b; int16_t val = mmu_read_vmem(ea, instr); ppc_store_iresult_reg(reg_d, int32_t(val)); uint32_t ppc_result_a = ea; ppc_store_iresult_reg(reg_a, ppc_result_a); } else { ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } } void dppc_interpreter::ppc_lhax(uint32_t instr) { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsdab(instr); uint32_t ea = ppc_result_b + (reg_a ? ppc_result_a : 0); int16_t val = mmu_read_vmem(ea, instr); ppc_store_iresult_reg(reg_d, int32_t(val)); } void dppc_interpreter::ppc_lhbrx(uint32_t instr) { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsdab(instr); uint32_t ea = ppc_result_b + (reg_a ? ppc_result_a : 0); uint32_t ppc_result_d = uint32_t(BYTESWAP_16(mmu_read_vmem(ea, instr))); ppc_store_iresult_reg(reg_d, ppc_result_d); } void dppc_interpreter::ppc_lwbrx(uint32_t instr) { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsdab(instr); uint32_t ea = ppc_result_b + (reg_a ? ppc_result_a : 0); uint32_t ppc_result_d = BYTESWAP_32(mmu_read_vmem(ea, instr)); ppc_store_iresult_reg(reg_d, ppc_result_d); } void dppc_interpreter::ppc_lwarx(uint32_t instr) { #ifdef CPU_PROFILING num_int_loads++; #endif // Placeholder - Get the reservation of memory implemented! ppc_grab_regsdab(instr); uint32_t ea = ppc_result_b + (reg_a ? ppc_result_a : 0); ppc_state.reserve = true; uint32_t ppc_result_d = mmu_read_vmem(ea, instr); ppc_store_iresult_reg(reg_d, ppc_result_d); } void dppc_interpreter::ppc_lmw(uint32_t instr) { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsda(instr); uint32_t ea = int32_t(int16_t(instr)); ea += (reg_a ? ppc_result_a : 0); // How many words to load in memory - using a do-while for this do { ppc_state.gpr[reg_d] = mmu_read_vmem(ea, instr); ea += 4; reg_d++; } while (reg_d < 32); } void dppc_interpreter::ppc_lswi(uint32_t instr) { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsda(instr); uint32_t ea = reg_a ? ppc_result_a : 0; uint32_t grab_inb = (instr >> 11) & 0x1F; grab_inb = grab_inb ? grab_inb : 32; while (grab_inb >= 4) { ppc_state.gpr[reg_d] = mmu_read_vmem(ea, instr); reg_d++; if (reg_d >= 32) { // wrap around through GPR0 reg_d = 0; } ea += 4; grab_inb -= 4; } // handle remaining bytes switch (grab_inb) { case 1: ppc_state.gpr[reg_d] = mmu_read_vmem(ea, instr) << 24; break; case 2: ppc_state.gpr[reg_d] = mmu_read_vmem(ea, instr) << 16; break; case 3: ppc_state.gpr[reg_d] = mmu_read_vmem(ea, instr) << 16; ppc_state.gpr[reg_d] += mmu_read_vmem(ea + 2, instr) << 8; break; default: break; } } void dppc_interpreter::ppc_lswx(uint32_t instr) { #ifdef CPU_PROFILING num_int_loads++; #endif ppc_grab_regsdab(instr); /* // Invalid instruction forms if ((reg_d == 0 && reg_a == 0) || (reg_d == reg_a) || (reg_d == reg_b)) { // UNTESTED! Does invalid form really cause exception? // G4 doesn't do exception ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP); } */ uint32_t ea = ppc_result_b + (reg_a ? ppc_result_a : 0); uint32_t grab_inb = ppc_state.spr[SPR::XER] & 0x7F; for (;;) { if (is_601 && (reg_d == reg_b || (reg_a != 0 && reg_d == reg_a))) { // UNTESTED! MPC601 manual is inconsistant on whether reg_b is skipped or not reg_d = (reg_d + 1) & 0x1F; // wrap around through GPR0 } switch (grab_inb) { case 0: return; case 1: ppc_state.gpr[reg_d] = mmu_read_vmem(ea, instr) << 24; return; case 2: ppc_state.gpr[reg_d] = mmu_read_vmem(ea, instr) << 16; return; case 3: ppc_state.gpr[reg_d] = (mmu_read_vmem(ea, instr) << 16) | (mmu_read_vmem(ea + 2, instr) << 8); return; } ppc_state.gpr[reg_d] = mmu_read_vmem(ea, instr); reg_d = (reg_d + 1) & 0x1F; // wrap around through GPR0 ea += 4; grab_inb -= 4; } } void dppc_interpreter::ppc_stswi(uint32_t instr) { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssash_stswi(instr); uint32_t ea = reg_a ? ppc_result_a : 0; uint32_t grab_inb = rot_sh ? rot_sh : 32; while (grab_inb >= 4) { mmu_write_vmem(ea, instr, ppc_state.gpr[reg_s]); reg_s++; if (reg_s >= 32) { // wrap around through GPR0 reg_s = 0; } ea += 4; grab_inb -= 4; } // handle remaining bytes switch (grab_inb) { case 1: mmu_write_vmem(ea, instr, ppc_state.gpr[reg_s] >> 24); break; case 2: mmu_write_vmem(ea, instr, ppc_state.gpr[reg_s] >> 16); break; case 3: mmu_write_vmem(ea, instr, ppc_state.gpr[reg_s] >> 16); mmu_write_vmem(ea + 2, instr, (ppc_state.gpr[reg_s] >> 8) & 0xFF); break; default: break; } } void dppc_interpreter::ppc_stswx(uint32_t instr) { #ifdef CPU_PROFILING num_int_stores++; #endif ppc_grab_regssab_stswx(instr); uint32_t ea = ppc_result_b + (reg_a ? ppc_result_a : 0); uint32_t grab_inb = ppc_state.spr[SPR::XER] & 127; while (grab_inb >= 4) { mmu_write_vmem(ea, instr, ppc_state.gpr[reg_s]); reg_s++; if (reg_s >= 32) { // wrap around through GPR0 reg_s = 0; } ea += 4; grab_inb -= 4; } // handle remaining bytes switch (grab_inb) { case 1: mmu_write_vmem(ea, instr, ppc_state.gpr[reg_s] >> 24); break; case 2: mmu_write_vmem(ea, instr, ppc_state.gpr[reg_s] >> 16); break; case 3: mmu_write_vmem(ea, instr, ppc_state.gpr[reg_s] >> 16); mmu_write_vmem(ea + 2, instr, (ppc_state.gpr[reg_s] >> 8) & 0xFF); break; default: break; } } void dppc_interpreter::ppc_eciwx(uint32_t instr) { uint32_t ear_enable = 0x80000000; // error if EAR[E] != 1 if (!(ppc_state.spr[282] && ear_enable)) { ppc_exception_handler(Except_Type::EXC_DSI, 0x0); } ppc_grab_regsdab(instr); uint32_t ea = ppc_result_b + (reg_a ? ppc_result_a : 0); if (ea & 0x3) { ppc_alignment_exception(ea, instr); } uint32_t ppc_result_d = mmu_read_vmem(ea, instr); ppc_store_iresult_reg(reg_d, ppc_result_d); } void dppc_interpreter::ppc_ecowx(uint32_t instr) { uint32_t ear_enable = 0x80000000; // error if EAR[E] != 1 if (!(ppc_state.spr[282] && ear_enable)) { ppc_exception_handler(Except_Type::EXC_DSI, 0x0); } ppc_grab_regssab(instr); uint32_t ea = ppc_result_b + (reg_a ? ppc_result_a : 0); if (ea & 0x3) { ppc_alignment_exception(ea, instr); } mmu_write_vmem(ea, instr, ppc_result_d); } // TLB Instructions void dppc_interpreter::ppc_tlbie(uint32_t instr) { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif tlb_flush_entry(ppc_state.gpr[(instr >> 11) & 0x1F]); } void dppc_interpreter::ppc_tlbia(uint32_t instr) { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif /* placeholder */ } void dppc_interpreter::ppc_tlbld(uint32_t instr) { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif /* placeholder */ } void dppc_interpreter::ppc_tlbli(uint32_t instr) { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif /* placeholder */ } void dppc_interpreter::ppc_tlbsync(uint32_t instr) { #ifdef CPU_PROFILING num_supervisor_instrs++; #endif /* placeholder */ }