/* DingusPPC - The Experimental PowerPC Macintosh emulator Copyright (C) 2018-24 divingkatae and maximum (theweirdo) spatium (Contact divingkatae#1017 or powermax#2286 on Discord for more info) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include /* Mach64 post dividers. */ static const int mach64_post_div[8] = { 1, 2, 4, 8, // standard post dividers 3, 5, 6, 12 // alternate post dividers }; /* Human readable Mach64 HW register names for easier debugging. */ static const std::map mach64_reg_names = { #define one_reg_name(x) {ATI_ ## x, #x} one_reg_name(CRTC_H_TOTAL_DISP), one_reg_name(CRTC_H_SYNC_STRT_WID), one_reg_name(CRTC_V_TOTAL_DISP), one_reg_name(CRTC_V_SYNC_STRT_WID), one_reg_name(CRTC_VLINE_CRNT_VLINE), one_reg_name(CRTC_OFF_PITCH), one_reg_name(CRTC_INT_CNTL), one_reg_name(CRTC_GEN_CNTL), one_reg_name(DSP_CONFIG), one_reg_name(DSP_ON_OFF), one_reg_name(MEM_BUF_CNTL), one_reg_name(MEM_ADDR_CFG), one_reg_name(OVR_CLR), one_reg_name(OVR_WID_LEFT_RIGHT), one_reg_name(OVR_WID_TOP_BOTTOM), one_reg_name(CUR_CLR0), one_reg_name(CUR_CLR1), one_reg_name(CUR_OFFSET), one_reg_name(CUR_HORZ_VERT_POSN), one_reg_name(CUR_HORZ_VERT_OFF), one_reg_name(GP_IO), one_reg_name(HW_DEBUG), one_reg_name(SCRATCH_REG0), one_reg_name(SCRATCH_REG1), one_reg_name(SCRATCH_REG2), one_reg_name(SCRATCH_REG3), one_reg_name(CLOCK_CNTL), one_reg_name(BUS_CNTL), one_reg_name(EXT_MEM_CNTL), one_reg_name(MEM_CNTL), one_reg_name(DAC_REGS), one_reg_name(DAC_CNTL), one_reg_name(GEN_TEST_CNTL), one_reg_name(CUSTOM_MACRO_CNTL), one_reg_name(CONFIG_CHIP_ID), one_reg_name(CONFIG_STAT0), one_reg_name(SRC_CNTL), one_reg_name(SCALE_3D_CNTL), one_reg_name(FIFO_STAT), one_reg_name(GUI_STAT), one_reg_name(MPP_CONFIG), one_reg_name(MPP_STROBE_SEQ), one_reg_name(MPP_ADDR), one_reg_name(MPP_DATA), one_reg_name(TVO_CNTL), one_reg_name(SETUP_CNTL), }; ATIRage::ATIRage(uint16_t dev_id) : PCIDevice("ati-rage"), VideoCtrlBase() { uint8_t asic_id; supports_types(HWCompType::MMIO_DEV | HWCompType::PCI_DEV); this->vram_size = GET_INT_PROP("gfxmem_size") << 20; // convert MBs to bytes // allocate video RAM this->vram_ptr = std::unique_ptr (new uint8_t[this->vram_size]); // ATI Rage driver needs to know ASIC ID (manufacturer's internal chip code) // to operate properly switch (dev_id) { case ATI_RAGE_GT_DEV_ID: asic_id = 0x9A; // GT-B2U3 fabricated by UMC this->cmd_fifo_size = 48; break; case ATI_RAGE_PRO_DEV_ID: asic_id = 0x5C; // R3B/D/P-A4 fabricated by UMC this->cmd_fifo_size = 128; break; default: asic_id = 0xDD; LOG_F(WARNING, "ATI Rage: bogus ASIC ID assigned!"); } // set up PCI configuration space header this->vendor_id = PCI_VENDOR_ATI; this->device_id = dev_id; this->subsys_vndr = PCI_VENDOR_ATI; this->subsys_id = 0x6987; // adapter ID this->class_rev = (0x030000 << 8) | asic_id; this->min_gnt = 8; this->irq_pin = 1; for (int i = 0; i < this->aperture_count; i++) { this->bars_cfg[i] = (uint32_t)(-this->aperture_size[i] | this->aperture_flag[i]); } this->finish_config_bars(); this->pci_notify_bar_change = [this](int bar_num) { this->notify_bar_change(bar_num); }; // stuff default values into chip registers this->regs[ATI_CONFIG_CHIP_ID] = (asic_id << ATI_CFG_CHIP_MAJOR) | (dev_id << ATI_CFG_CHIP_TYPE); // initialize display identification this->disp_id = std::unique_ptr (new DisplayID()); uint8_t mon_code = this->disp_id->read_monitor_sense(0, 0); this->regs[ATI_GP_IO] = ((mon_code & 6) << 11) | ((mon_code & 1) << 8); insert_bits(this->regs[ATI_GUI_STAT], 32, ATI_FIFO_CNT, ATI_FIFO_CNT_size); set_bit(regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_DISPLAY_DIS); // because blank_on is true this->draw_fb_is_dynamic = true; } void ATIRage::change_one_bar(uint32_t &aperture, uint32_t aperture_size, uint32_t aperture_new, int bar_num) { if (aperture != aperture_new) { if (aperture) this->host_instance->pci_unregister_mmio_region(aperture, aperture_size, this); aperture = aperture_new; if (aperture) this->host_instance->pci_register_mmio_region(aperture, aperture_size, this); LOG_F(INFO, "%s: aperture[%d] set to 0x%08X", this->name.c_str(), bar_num, aperture); } } void ATIRage::notify_bar_change(int bar_num) { switch (bar_num) { case 0: change_one_bar(this->aperture_base[bar_num], this->aperture_size[bar_num] - this->vram_size, this->bars[bar_num] & ~15, bar_num); break; case 2: change_one_bar(this->aperture_base[bar_num], this->aperture_size[bar_num], this->bars[bar_num] & ~15, bar_num); break; case 1: this->aperture_base[1] = this->bars[bar_num] & ~3; LOG_F(INFO, "%s: I/O space address set to 0x%08X", this->name.c_str(), this->aperture_base[1]); break; } } uint32_t ATIRage::pci_cfg_read(uint32_t reg_offs, AccessDetails &details) { if (reg_offs < 64) { return PCIDevice::pci_cfg_read(reg_offs, details); } switch (reg_offs) { case 0x40: return this->user_cfg; default: LOG_READ_UNIMPLEMENTED_CONFIG_REGISTER(); } return 0; } void ATIRage::pci_cfg_write(uint32_t reg_offs, uint32_t value, AccessDetails &details) { if (reg_offs < 64) { PCIDevice::pci_cfg_write(reg_offs, value, details); return; } switch (reg_offs) { case 0x40: this->user_cfg = value; break; default: LOG_WRITE_UNIMPLEMENTED_CONFIG_REGISTER(); } } const char* ATIRage::get_reg_name(uint32_t reg_num) { auto iter = mach64_reg_names.find(reg_num); if (iter != mach64_reg_names.end()) { return iter->second.c_str(); } else { return "unknown Mach64 register"; } } uint32_t ATIRage::read_reg(uint32_t reg_offset, uint32_t size) { uint32_t reg_num = reg_offset >> 2; uint32_t offset = reg_offset & 3; uint64_t result = this->regs[reg_num]; switch (reg_num) { case ATI_CLOCK_CNTL: if (offset <= 2 && offset + size > 2) { uint8_t pll_addr = extract_bits(result, ATI_PLL_ADDR, ATI_PLL_ADDR_size); insert_bits(result, this->plls[pll_addr], ATI_PLL_DATA, ATI_PLL_DATA_size); } break; case ATI_DAC_REGS: switch (reg_offset) { case ATI_DAC_W_INDEX: insert_bits(result, this->dac_wr_index, 0, 8); break; case ATI_DAC_MASK: insert_bits(result, this->dac_mask, 16, 8); break; case ATI_DAC_R_INDEX: insert_bits(result, this->dac_rd_index, 24, 8); break; case ATI_DAC_DATA: if (!this->comp_index) { uint8_t alpha; // temp variable for unused alpha get_palette_color(this->dac_rd_index, color_buf[0], color_buf[1], color_buf[2], alpha); } insert_bits(result, color_buf[this->comp_index], 8, 8); if (++this->comp_index >= 3) { this->dac_rd_index++; // auto-increment reading index this->comp_index = 0; // reset color component index } } break; case ATI_GUI_STAT: result = this->cmd_fifo_size << 16; // HACK: tell the guest the command FIFO is empty break; } if (offset || size != 4) { // slow path if ((offset + size) > 4) { result |= (uint64_t)(this->regs[reg_num + 1]) << 32; } result = extract_bits(result, offset * 8, size * 8); } return static_cast(result); } #define WRITE_VALUE_AND_LOG(level) \ do { \ this->regs[reg_num] = new_value; \ if (reg_num != ATI_CRTC_INT_CNTL) { \ LOG_F(level, "%s: write %s %04x.%c = %0*x = %08x", this->name.c_str(), \ get_reg_name(reg_num), reg_offset, SIZE_ARG(size), size * 2, \ (uint32_t)extract_bits(value, offset * 8, size * 8), new_value \ ); \ } \ } while (0) void ATIRage::write_reg(uint32_t reg_offset, uint32_t value, uint32_t size) { uint32_t reg_num = reg_offset >> 2; uint32_t offset = reg_offset & 3; uint32_t old_value = this->regs[reg_num]; uint32_t new_value; if (offset || size != 4) { // slow path if ((offset + size) > 4) { ABORT_F("%s: unaligned DWORD writes not implemented", this->name.c_str()); } uint64_t val = old_value; insert_bits(val, value, offset * 8, size * 8); value = static_cast(val); } switch (reg_num) { case ATI_CRTC_H_TOTAL_DISP: new_value = value; LOG_F(9, "%s: ATI_CRTC_H_TOTAL_DISP set to 0x%08X", this->name.c_str(), value); break; case ATI_CRTC_VLINE_CRNT_VLINE: new_value = old_value; insert_bits(new_value, value, ATI_CRTC_VLINE, ATI_CRTC_VLINE_size); break; case ATI_CRTC_OFF_PITCH: new_value = value; WRITE_VALUE_AND_LOG(9); this->crtc_update(); return; case ATI_CRTC_INT_CNTL: { uint32_t bits_read_only = (1 << ATI_CRTC_VBLANK) | (1 << ATI_CRTC_VLINE_SYNC) | (1 << ATI_CRTC_FRAME) | #if 1 #else (1 << ATI_CRTC2_VBLANK) | (1 << ATI_CRTC2_VLINE_SYNC) | #endif 0; uint32_t bits_AK = (1 << ATI_CRTC_VBLANK_INT_AK) | (1 << ATI_CRTC_VLINE_INT_AK) | #if 1 (1 << ATI_VIDEOIN_EVEN_INT_AK) | (1 << ATI_VIDEOIN_ODD_INT_AK) | (1 << ATI_OVERLAY_EOF_INT_AK) | (1 << ATI_VMC_EC_INT_AK) | #else (1 << ATI_SNAPSHOT_INT_AK) | (1 << ATI_I2C_INT_AK) | (1 << ATI_CRTC2_VBLANK_INT_AK) | (1 << ATI_CRTC2_VLINE_INT_AK) | (1 << ATI_CUPBUF0_INT_AK) | (1 << ATI_CUPBUF1_INT_AK) | (1 << ATI_OVERLAY_EOF_INT_AK) | (1 << ATI_ONESHOT_CAP_INT_AK) | (1 << ATI_BUSMASTER_EOL_INT_AK) | (1 << ATI_GP_INT_AK) | (1 << ATI_SNAPSHOT2_INT_AK) | (1 << ATI_VBLANK_BIT2_INT_AK) | #endif 0; /* uint32_t bits_EN = (1 << ATI_CRTC_VBLANK_INT_EN) | (1 << ATI_CRTC_VLINE_INT_EN) | #if 1 (1 << ATI_VIDEOIN_EVEN_INT_EN) | (1 << ATI_VIDEOIN_ODD_INT_EN) | (1 << ATI_OVERLAY_EOF_INT_EN) | (1 << ATI_VMC_EC_INT_EN) | #else (1 << ATI_SNAPSHOT_INT_EN) | (1 << ATI_I2C_INT_EN) | (1 << ATI_CRTC2_VBLANK_INT_EN) | (1 << ATI_CRTC2_VLINE_INT_EN) | (1 << ATI_CUPBUF0_INT_EN) | (1 << ATI_CUPBUF1_INT_EN) | (1 << ATI_OVERLAY_EOF_INT_EN) | (1 << ATI_ONESHOT_CAP_INT_EN) | (1 << ATI_BUSMASTER_EOL_INT_EN) | (1 << ATI_GP_INT_EN) | (1 << ATI_SNAPSHOT2_INT_EN) | #endif 0; */ uint32_t bits_AKed = bits_AK & value; // AK bits that are to be AKed uint32_t bits_not_AKed = bits_AK & ~value; // AK bits that are not to be AKed new_value = value & ~bits_AKed; // clear the AKed bits bits_read_only |= bits_not_AKed; // the not AKed bits will remain unchanged new_value = (old_value & bits_read_only) | (new_value & ~bits_read_only); break; } case ATI_CRTC_GEN_CNTL: new_value = value; if (bit_changed(old_value, new_value, ATI_CRTC_DISPLAY_DIS)) { if (bit_set(new_value, ATI_CRTC_DISPLAY_DIS)) { this->blank_on = true; this->blank_display(); } else { this->blank_on = false; } } this->regs[reg_num] = new_value; if (bit_changed(old_value, new_value, ATI_CRTC_ENABLE)) { if (bit_set(new_value, ATI_CRTC_ENABLE) && !bit_set(new_value, ATI_CRTC_DISPLAY_DIS)) { this->crtc_update(); } } break; case ATI_CUR_CLR0: case ATI_CUR_CLR1: new_value = value; this->cursor_dirty = true; draw_fb = true; WRITE_VALUE_AND_LOG(9); return; case ATI_CUR_OFFSET: new_value = value; if (old_value != new_value) this->cursor_dirty = true; draw_fb = true; WRITE_VALUE_AND_LOG(9); return; case ATI_CUR_HORZ_VERT_OFF: new_value = value; if ( extract_bits(new_value, ATI_CUR_VERT_OFF, ATI_CUR_VERT_OFF_size) != extract_bits(old_value, ATI_CUR_VERT_OFF, ATI_CUR_VERT_OFF_size) ) this->cursor_dirty = true; draw_fb = true; WRITE_VALUE_AND_LOG(9); return; case ATI_CUR_HORZ_VERT_POSN: new_value = value; draw_fb = true; break; case ATI_GP_IO: new_value = value; if (offset <= 1 && offset + size > 1) { uint8_t gpio_levels = (new_value >> 8) & 0xFFU; gpio_levels = ((gpio_levels & 0x30) >> 3) | (gpio_levels & 1); uint8_t gpio_dirs = (new_value >> 24) & 0xFFU; gpio_dirs = ((gpio_dirs & 0x30) >> 3) | (gpio_dirs & 1); gpio_levels = this->disp_id->read_monitor_sense(gpio_levels, gpio_dirs); insert_bits(new_value, ((gpio_levels & 6) << 3) | (gpio_levels & 1), 8, 8); } break; case ATI_CLOCK_CNTL: { uint32_t bits_write_only = (1 << ATI_CLOCK_STROBE); new_value = value & ~bits_write_only; // clear the write only bits uint8_t pll_addr = extract_bits(new_value, ATI_PLL_ADDR, ATI_PLL_ADDR_size); if (offset <= 2 && offset + size > 2 && bit_set(new_value, ATI_PLL_WR_EN)) { uint8_t pll_data = extract_bits(new_value, ATI_PLL_DATA, ATI_PLL_DATA_size); this->plls[pll_addr] = pll_data; LOG_F(9, "%s: PLL #%d set to 0x%02X", this->name.c_str(), pll_addr, pll_data); } else { insert_bits(new_value, this->plls[pll_addr], ATI_PLL_DATA, ATI_PLL_DATA_size); } break; } case ATI_DAC_REGS: new_value = old_value; // no change switch (reg_offset) { case ATI_DAC_W_INDEX: this->dac_wr_index = value & 0xFFU; this->comp_index = 0; break; case ATI_DAC_MASK: this->dac_mask = (value >> 16) & 0xFFU; break; case ATI_DAC_R_INDEX: this->dac_rd_index = (value >> 24) & 0xFFU; this->comp_index = 0; break; case ATI_DAC_DATA: this->color_buf[this->comp_index] = (value >> 8) & this->dac_mask; if (++this->comp_index >= 3) { this->set_palette_color(this->dac_wr_index, color_buf[0], color_buf[1], color_buf[2], 0xFF); this->dac_wr_index++; // auto-increment color index this->comp_index = 0; // reset color component index draw_fb = true; } } break; case ATI_GEN_TEST_CNTL: new_value = value; if (bit_changed(old_value, new_value, ATI_GEN_CUR_ENABLE)) { if (bit_set(new_value, ATI_GEN_CUR_ENABLE)) this->cursor_on = true; else this->cursor_on = false; draw_fb = true; } if (bit_changed(old_value, new_value, ATI_GEN_GUI_RESETB)) { if (!bit_set(new_value, ATI_GEN_GUI_RESETB)) LOG_F(9, "%s: reset GUI engine", this->name.c_str()); } if (bit_changed(old_value, new_value, ATI_GEN_SOFT_RESET)) { if (bit_set(new_value, ATI_GEN_SOFT_RESET)) LOG_F(9, "%s: reset memory controller", this->name.c_str()); } if (new_value & 0xFFFFFC00) { LOG_F(WARNING, "%s: unhandled GEN_TEST_CNTL state=0x%X", this->name.c_str(), new_value); } break; case ATI_CONFIG_CHIP_ID: new_value = old_value; // prevent writes to this read-only register break; case ATI_CONFIG_STAT0: { uint32_t bits_read_only = #if 1 #else (1 << ATI_MACROVISION_ENABLE) | (1 << ATI_ARITHMOS_ENABLE) | #endif 0; new_value = value; new_value = (old_value & bits_read_only) | (new_value & ~bits_read_only); break; } default: new_value = value; break; } WRITE_VALUE_AND_LOG(9); } bool ATIRage::io_access_allowed(uint32_t offset) { if (offset >= this->aperture_base[1] && offset < (this->aperture_base[1] + 0x100)) { if (this->command & 1) { return true; } LOG_F(WARNING, "ATI I/O space disabled in the command reg"); } return false; } bool ATIRage::pci_io_read(uint32_t offset, uint32_t size, uint32_t* res) { if (!this->io_access_allowed(offset)) { return false; } *res = BYTESWAP_SIZED(this->read_reg(offset - this->aperture_base[1], size), size); return true; } bool ATIRage::pci_io_write(uint32_t offset, uint32_t value, uint32_t size) { if (!this->io_access_allowed(offset)) { return false; } this->write_reg(offset - this->aperture_base[1], BYTESWAP_SIZED(value, size), size); return true; } uint32_t ATIRage::read(uint32_t rgn_start, uint32_t offset, int size) { if (rgn_start == this->aperture_base[0] && offset < this->aperture_size[0]) { if (offset < this->vram_size) { // little-endian VRAM region return read_mem(&this->vram_ptr[offset], size); } if (offset >= BE_FB_OFFSET) { // big-endian VRAM region return read_mem(&this->vram_ptr[offset - BE_FB_OFFSET], size); } //if (!bit_set(this->regs[ATI_BUS_CNTL], ATI_BUS_APER_REG_DIS)) { if (offset >= MM_REGS_0_OFF) { // memory-mapped registers, block 0 return BYTESWAP_SIZED(this->read_reg(offset & 0x3FF, size), size); } if (offset >= MM_REGS_1_OFF //&& bit_set(this->regs[ATI_BUS_CNTL], ATI_BUS_EXT_REG_EN) ) { // memory-mapped registers, block 1 return BYTESWAP_SIZED(this->read_reg((offset & 0x3FF) + 0x400, size), size); } //} LOG_F(WARNING, "%s: read unmapped aperture[0] region %08x.%c", this->name.c_str(), offset, SIZE_ARG(size)); return 0; } if (rgn_start == this->aperture_base[2] && offset < this->aperture_size[2]) { LOG_F(WARNING, "%s: read unmapped aperture[2] region %08x.%c", this->name.c_str(), offset, SIZE_ARG(size)); return 0; } // memory mapped expansion ROM region if (rgn_start == this->exp_rom_addr) { if (offset < this->exp_rom_size) return read_mem(&this->exp_rom_data[offset], size); LOG_F(WARNING, "%s: read unmapped ROM region %08x.%c", this->name.c_str(), offset, SIZE_ARG(size)); return 0; } LOG_F(WARNING, "%s: read unmapped aperture region %08x.%c", this->name.c_str(), offset, SIZE_ARG(size)); return 0; } void ATIRage::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size) { if (rgn_start == this->aperture_base[0] && offset < this->aperture_size[0]) { if (offset < this->vram_size) { // little-endian VRAM region draw_fb = true; return write_mem(&this->vram_ptr[offset], value, size); } if (offset >= BE_FB_OFFSET) { // big-endian VRAM region draw_fb = true; return write_mem(&this->vram_ptr[offset & (BE_FB_OFFSET - 1)], value, size); } //if (!bit_set(this->regs[ATI_BUS_CNTL], ATI_BUS_APER_REG_DIS)) { if (offset >= MM_REGS_0_OFF) { // memory-mapped registers, block 0 return this->write_reg(offset & 0x3FF, BYTESWAP_SIZED(value, size), size); } if (offset >= MM_REGS_1_OFF //&& bit_set(this->regs[ATI_BUS_CNTL], ATI_BUS_EXT_REG_EN) ) { // memory-mapped registers, block 1 return this->write_reg((offset & 0x3FF) + 0x400, BYTESWAP_SIZED(value, size), size); } //} LOG_F(WARNING, "%s: write unmapped aperture[0] region %08x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value); return; } if (rgn_start == this->aperture_base[2] && offset < this->aperture_size[2]) { LOG_F(WARNING, "%s: write unmapped aperture[2] region %08x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value); return; } LOG_F(WARNING, "%s: write unmapped aperture region %08x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value); } float ATIRage::calc_pll_freq(int scale, int fb_div) { return (ATI_XTAL * scale * fb_div) / this->plls[PLL_REF_DIV]; } void ATIRage::verbose_pixel_format(int crtc_index) { if (crtc_index) { LOG_F(ERROR, "CRTC2 not supported yet"); return; } uint32_t pix_fmt = extract_bits(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_PIX_WIDTH, ATI_CRTC_PIX_WIDTH_size); const char* what = "Pixel format:"; switch (pix_fmt) { case 1: LOG_F(INFO, "%s 4 bpp with DAC palette", what); break; case 2: // check the undocumented DAC_DIRECT bit if (bit_set(this->regs[ATI_DAC_CNTL], ATI_DAC_DIRECT)) { LOG_F(INFO, "%s 8 bpp direct color (RGB332)", what); } else { LOG_F(INFO, "%s 8 bpp with DAC palette", what); } break; case 3: LOG_F(INFO, "%s 15 bpp direct color (RGB555)", what); break; case 4: LOG_F(INFO, "%s 16 bpp direct color (RGB565)", what); break; case 5: LOG_F(INFO, "%s 24 bpp direct color (RGB888)", what); break; case 6: LOG_F(INFO, "%s 32 bpp direct color (ARGB8888)", what); break; default: LOG_F(ERROR, "%s: CRTC pixel format %d not supported", this->name.c_str(), pix_fmt); } } void ATIRage::crtc_update() { uint32_t new_width, new_height, new_htotal, new_vtotal; // check for unsupported modes and fail early if (!bit_set(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_EXT_DISP_EN)) ABORT_F("%s: VGA not supported", this->name.c_str()); if ((this->plls[PLL_VCLK_CNTL] & 3) != 3) ABORT_F("%s: VLCK source != VPLL", this->name.c_str()); bool need_recalc = false; new_width = (extract_bits(this->regs[ATI_CRTC_H_TOTAL_DISP], ATI_CRTC_H_DISP, ATI_CRTC_H_DISP_size) + 1) * 8; new_height = extract_bits(this->regs[ATI_CRTC_V_TOTAL_DISP], ATI_CRTC_V_DISP, ATI_CRTC_V_DISP_size) + 1; if (new_width != this->active_width || new_height != this->active_height) { this->create_display_window(new_width, new_height); need_recalc = true; } new_htotal = (extract_bits(this->regs[ATI_CRTC_H_TOTAL_DISP], ATI_CRTC_H_TOTAL, ATI_CRTC_H_TOTAL_size) + 1) * 8; new_vtotal = extract_bits(this->regs[ATI_CRTC_V_TOTAL_DISP], ATI_CRTC_V_TOTAL, ATI_CRTC_V_TOTAL_size) + 1; if (new_htotal != this->hori_total || new_vtotal != this->vert_total) { this->hori_total = new_htotal; this->vert_total = new_vtotal; need_recalc = true; } uint32_t new_vert_blank = new_vtotal - new_height; if (new_vert_blank != this->vert_blank) { this->vert_blank = new_vert_blank; need_recalc = true; } int new_pixel_format = extract_bits(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_PIX_WIDTH, ATI_CRTC_PIX_WIDTH_size); if (new_pixel_format != this->pixel_format) { this->pixel_format = new_pixel_format; need_recalc = true; } static uint8_t bits_per_pixel[8] = {0, 4, 8, 16, 16, 24, 32, 0}; int new_fb_pitch = extract_bits(this->regs[ATI_CRTC_OFF_PITCH], ATI_CRTC_PITCH, ATI_CRTC_PITCH_size) * bits_per_pixel[this->pixel_format]; if (new_fb_pitch != this->fb_pitch) { this->fb_pitch = new_fb_pitch; need_recalc = true; } uint8_t* new_fb_ptr = &this->vram_ptr[extract_bits(this->regs[ATI_CRTC_OFF_PITCH], ATI_CRTC_OFFSET, ATI_CRTC_OFFSET_size) * 8]; if (new_fb_ptr != this->fb_ptr) { this->fb_ptr = new_fb_ptr; need_recalc = true; } // look up which VPLL ouput is requested int clock_sel = extract_bits(this->regs[ATI_CLOCK_CNTL], ATI_CLOCK_SEL, ATI_CLOCK_SEL_size); // calculate VPLL output frequency float vpll_freq = calc_pll_freq(2, this->plls[VCLK0_FB_DIV + clock_sel]); // calculate post divider's index // NOTE: post divider's index has been extended by an additional // bit in Rage Pro. This bit is resided in PLL_EXT_CNTL register. int post_div_idx = ((this->plls[PLL_EXT_CNTL] >> (clock_sel + 2)) & 4) | ((this->plls[VCLK_POST_DIV] >> (clock_sel * 2)) & 3); // pixel clock = source_freq / post_div float new_pixel_clock = vpll_freq / mach64_post_div[post_div_idx]; if (new_pixel_clock != this->pixel_clock) { this->pixel_clock = new_pixel_clock; need_recalc = true; } if (!need_recalc) return; this->draw_fb = true; // calculate display refresh rate this->refresh_rate = pixel_clock / this->hori_total / this->vert_total; if (this->refresh_rate < 24 || this->refresh_rate > 120) { LOG_F(ERROR, "%s: Refresh rate is weird. Will try 60 Hz", this->name.c_str()); this->refresh_rate = 60; this->pixel_clock = this->refresh_rate * this->hori_total / this->vert_total; } // set up frame buffer converter switch (this->pixel_format) { case 1: this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { draw_fb = false; this->convert_frame_4bpp_indexed(dst_buf, dst_pitch); }; break; case 2: if (bit_set(this->regs[ATI_DAC_CNTL], ATI_DAC_DIRECT)) { this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { draw_fb = false; this->convert_frame_8bpp(dst_buf, dst_pitch); }; } else { this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { draw_fb = false; this->convert_frame_8bpp_indexed(dst_buf, dst_pitch); }; } break; case 3: this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { draw_fb = false; this->convert_frame_15bpp_BE(dst_buf, dst_pitch); }; break; case 4: this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { draw_fb = false; this->convert_frame_16bpp(dst_buf, dst_pitch); }; break; case 5: this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { draw_fb = false; this->convert_frame_24bpp(dst_buf, dst_pitch); }; break; case 6: this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) { draw_fb = false; this->convert_frame_32bpp_BE(dst_buf, dst_pitch); }; break; default: LOG_F(ERROR, "%s: unsupported pixel format %d", this->name.c_str(), this->pixel_format); } LOG_F(INFO, "%s: primary CRT controller enabled:", this->name.c_str()); LOG_F(INFO, "Video mode: %s", bit_set(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_EXT_DISP_EN) ? "extended" : "VGA"); LOG_F(INFO, "Video width: %d px", this->active_width); LOG_F(INFO, "Video height: %d px", this->active_height); verbose_pixel_format(0); LOG_F(INFO, "VPLL frequency: %f MHz", vpll_freq * 1e-6); LOG_F(INFO, "Pixel (dot) clock: %f MHz", this->pixel_clock * 1e-6); LOG_F(INFO, "Refresh rate: %f Hz", this->refresh_rate); this->stop_refresh_task(); this->start_refresh_task(); this->crtc_on = true; } void ATIRage::draw_hw_cursor(uint8_t* dst_row, int dst_pitch) { int vert_offset = extract_bits( this->regs[ATI_CUR_HORZ_VERT_OFF], ATI_CUR_VERT_OFF, ATI_CUR_VERT_OFF_size); int cur_height = 64 - vert_offset; uint32_t color0 = this->regs[ATI_CUR_CLR0] | 0x000000FFUL; uint32_t color1 = this->regs[ATI_CUR_CLR1] | 0x000000FFUL; uint64_t* src_row = (uint64_t*)&this->vram_ptr[this->regs[ATI_CUR_OFFSET] * 8]; dst_pitch -= 64 * 4; for (int h = cur_height; h > 0; h--) { for (int x = 2; x > 0; x--) { uint64_t px = *src_row++; for (int p = 32; p > 0; p--, px >>= 2, dst_row += 4) { switch (px & 3) { case 0: // cursor color 0 WRITE_DWORD_BE_A(dst_row, color0); break; case 1: // cursor color 1 WRITE_DWORD_BE_A(dst_row, color1); break; case 2: // transparent WRITE_DWORD_BE_A(dst_row, 0); break; case 3: // 1's complement of display pixel WRITE_DWORD_BE_A(dst_row, 0x0000007F); break; } } } dst_row += dst_pitch; } } void ATIRage::get_cursor_position(int& x, int& y) { x = extract_bits(this->regs[ATI_CUR_HORZ_VERT_POSN], ATI_CUR_HORZ_POSN, ATI_CUR_HORZ_POSN_size) - extract_bits(this->regs[ATI_CUR_HORZ_VERT_OFF ], ATI_CUR_HORZ_OFF , ATI_CUR_HORZ_OFF_size ); y = extract_bits(this->regs[ATI_CUR_HORZ_VERT_POSN], ATI_CUR_VERT_POSN, ATI_CUR_VERT_POSN_size); } int ATIRage::device_postinit() { this->vbl_cb = [this](uint8_t irq_line_state) { insert_bits(this->regs[ATI_CRTC_INT_CNTL], irq_line_state, ATI_CRTC_VBLANK, irq_line_state); if (irq_line_state) { set_bit(this->regs[ATI_CRTC_INT_CNTL], ATI_CRTC_VBLANK_INT); set_bit(this->regs[ATI_CRTC_INT_CNTL], ATI_CRTC_VLINE_INT); #if 1 #else set_bit(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_VSYNC_INT); #endif } bool do_interrupt = bit_set(this->regs[ATI_CRTC_INT_CNTL], ATI_CRTC_VBLANK_INT_EN) || bit_set(this->regs[ATI_CRTC_INT_CNTL], ATI_CRTC_VLINE_INT_EN) || #if 1 #else bit_set(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_VSYNC_INT_EN) || #endif 0; if (do_interrupt) { this->pci_interrupt(irq_line_state); } }; return 0; } static const PropMap AtiRage_Properties = { {"gfxmem_size", new IntProperty( 2, vector({2, 4, 6}))}, {"mon_id", new StrProperty("")}, }; static const DeviceDescription AtiRageGT_Descriptor = { ATIRage::create_gt, {}, AtiRage_Properties }; static const DeviceDescription AtiRagePro_Descriptor = { ATIRage::create_pro, {}, AtiRage_Properties }; REGISTER_DEVICE(AtiRageGT, AtiRageGT_Descriptor); REGISTER_DEVICE(AtiRagePro, AtiRagePro_Descriptor);