dingusppc/devices/video/atimach64gx.cpp
2023-04-11 01:25:00 +02:00

403 lines
13 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-23 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/** ATI Mach64 GX emulation.
It emulates an ATI88800GX controller with an IBM RGB514 style RAMDAC.
Emulation is limited to a basic frame buffer for now.
*/
#include <core/bitops.h>
#include <core/timermanager.h>
#include <devices/deviceregistry.h>
#include <devices/video/atimach64defs.h>
#include <devices/video/atimach64gx.h>
#include <devices/video/displayid.h>
#include <devices/video/rgb514defs.h>
#include <loguru.hpp>
#include <memaccess.h>
#include <string>
AtiMach64Gx::AtiMach64Gx()
: PCIDevice("ati-mach64-gx"), VideoCtrlBase(1024, 768)
{
supports_types(HWCompType::MMIO_DEV | HWCompType::PCI_DEV);
// set up PCI configuration space header
this->vendor_id = PCI_VENDOR_ATI;
this->device_id = ATI_MACH64_GX_DEV_ID;
this->class_rev = (0x030000 << 8) | 3;
this->setup_bars({{0, 0xFF000000UL}}); // declare main aperture (16MB)
this->pci_notify_bar_change = [this](int bar_num) {
this->notify_bar_change(bar_num);
};
// declare expansion ROM containing FCode and Mac OS drivers
if (this->attach_exp_rom_image(std::string("113-32900-004_Apple_MACH64.bin"))) {
ABORT_F("%s: could not load ROM - this device won't work properly!",
this->name.c_str());
}
// initialize display identification
this->disp_id = std::unique_ptr<DisplayID> (new DisplayID(0x07, 0x3A));
// allocate video RAM
this->vram_size = 2 << 20;
this->vram_ptr = std::unique_ptr<uint8_t[]> (new uint8_t[this->vram_size]);
// set up RAMDAC identification
this->regs[ATI_CONFIG_STAT0] = 1 << 9;
}
void AtiMach64Gx::notify_bar_change(int bar_num)
{
if (bar_num) // only BAR0 is supported
return;
if (this->aperture_base != (this->bars[bar_num] & 0xFFFFFFF0UL)) {
if (this->aperture_base) {
LOG_F(WARNING, "AtiMach64Gx: deallocating I/O memory not implemented");
}
this->aperture_base = this->bars[0] & 0xFFFFFFF0UL;
this->host_instance->pci_register_mmio_region(this->aperture_base,
APERTURE_SIZE, this);
// copy aperture address to CONFIG_CNTL:CFG_MEM_AP_LOC
this->config_cntl = (this->config_cntl & 0xFFFFC00FUL) |
((this->aperture_base >> 18) & 0x3FF0U);
LOG_F(INFO, "AtiMach64Gx: aperture address set to 0x%08X", this->aperture_base);
}
}
// map I/O register index to MMIO register offset
static const uint32_t io_idx_to_reg_offset[32] = {
ATI_CRTC_H_TOTAL_DISP, ATI_CRTC_H_SYNC_STRT_WID,
ATI_CRTC_V_TOTAL_DISP, ATI_CRTC_V_SYNC_STRT_WID,
ATI_CRTC_VLINE_CRNT_VLINE, ATI_CRTC_OFF_PITCH,
ATI_CRTC_INT_CNTL, ATI_CRTC_GEN_CNTL,
ATI_OVR_CLR, ATI_OVR_WID_LEFT_RIGHT,
ATI_OVR_WID_TOP_BOTTOM, ATI_CUR_CLR0,
ATI_CUR_CLR1, ATI_CUR_OFFSET,
ATI_CUR_HORZ_VERT_POSN, ATI_CUR_HORZ_VERT_OFF,
ATI_SCRATCH_REG0, ATI_SCRATCH_REG1,
ATI_CLOCK_CNTL, ATI_BUS_CNTL,
ATI_MEM_CNTL, ATI_MEM_VGA_WP_SEL,
ATI_MEM_VGA_RP_SEL, ATI_DAC_REGS,
ATI_DAC_CNTL, ATI_GEN_TEST_CNTL,
ATI_CONFIG_CNTL, ATI_CONFIG_CHIP_ID,
ATI_CONFIG_STAT0, ATI_GX_CONFIG_STAT1,
ATI_INVALID, ATI_CRTC_H_TOTAL_DISP
};
bool AtiMach64Gx::pci_io_read(uint32_t offset, uint32_t size, uint32_t* res)
{
*res = 0;
// check for valid I/O base and I/O access permission
if ((offset & 0x3FC) != 0x2EC || !(this->command & 1)) {
return false;
}
// convert ISA-style I/O address to MMIO register offset
offset = io_idx_to_reg_offset[(offset >> 10) & 0x1F] * 4 + (offset & 3);
// CONFIG_CNTL is accessible from I/O space only
if ((offset >> 2) == ATI_CONFIG_CNTL) {
*res = read_mem(((uint8_t *)&this->config_cntl) + (offset & 3), size);
} else {
*res = BYTESWAP_SIZED(this->read_reg(offset, size), size);
}
return true;
}
bool AtiMach64Gx::pci_io_write(uint32_t offset, uint32_t value, uint32_t size)
{
// check for valid I/O base and I/O access permission
if ((offset & 0x3FC) != 0x2EC || !(this->command & 1)) {
return false;
}
// convert ISA-style I/O address to MMIO register offset
offset = io_idx_to_reg_offset[(offset >> 10) & 0x1F] * 4 + (offset & 3);
// CONFIG_CNTL is accessible from I/O space only
if ((offset >> 2) == ATI_CONFIG_CNTL) {
write_mem(((uint8_t *)&this->config_cntl) + (offset & 3), value, size);
switch (this->config_cntl & 3) {
case 0:
LOG_F(WARNING, "%s: linear aperture disabled!", this->name.c_str());
break;
case 1:
LOG_F(INFO, "%s: aperture size set to 4MB", this->name.c_str());
this->mm_regs_offset = MM_REGS_2_OFF;
break;
case 2:
LOG_F(INFO, "%s: aperture size set to 8MB", this->name.c_str());
this->mm_regs_offset = MM_REGS_0_OFF;
break;
default:
LOG_F(ERROR, "%s: invalid aperture size in CONFIG_CNTL", this->name.c_str());
}
} else {
this->write_reg(offset, BYTESWAP_SIZED(value, size), size);
}
return true;
}
uint32_t AtiMach64Gx::read_reg(uint32_t reg_offset, uint32_t size)
{
uint32_t offset = reg_offset & 3;
uint64_t result = this->regs[reg_offset >> 2];
if (!offset && size == 4) { // fast path
return result;
} else { // slow path
if ((offset + size) > 4) {
result |= (uint64_t)(this->regs[(reg_offset >> 2) + 1]) << 32;
}
return extract_bits<uint64_t>(result, offset * 8, size * 8);
}
}
void AtiMach64Gx::write_reg(uint32_t reg_offset, uint32_t value, uint32_t size)
{
uint8_t gpio_dirs, gpio_levels;
int crtc_en;
uint32_t offset = reg_offset & 3;
reg_offset >>= 2;
if (offset || size != 4) { // slow path
if ((offset + size) > 4) {
ABORT_F("%s: unaligned DWORD writes not implemented", this->name.c_str());
}
uint64_t old_val = this->regs[reg_offset];
insert_bits<uint64_t>(old_val, value, offset * 8, size * 8);
value = old_val;
}
switch (reg_offset) {
case ATI_CRTC_OFF_PITCH:
this->fb_pitch = extract_bits<uint32_t>(value, 22, 10) * 8;
this->fb_ptr = &this->vram_ptr[extract_bits<uint32_t>(value, 0, 20) * 8];
break;
case ATI_CRTC_GEN_CNTL:
if (bit_changed(this->regs[reg_offset], value, 6)) {
if (value & 0x40) {
this->blank_on = true;
this->blank_display();
} else {
this->blank_on = false;
}
}
if (bit_changed(this->regs[reg_offset], value, 25)) {
if (!bit_set(value, 25)) {
this->disable_crtc_internal();
} else {
this->blank_on = false;
}
}
break;
case ATI_DAC_REGS:
if (size == 1) { // only byte accesses are allowed for DAC registers
int dac_reg_addr = ((this->regs[ATI_DAC_CNTL] & 1) << 2) | offset;
rgb514_write_reg(dac_reg_addr, extract_bits<uint32_t>(value, offset * 8, 8));
}
break;
case ATI_DAC_CNTL:
// monitor ID is usually accessed using 8bit writes
if (offset == 3) {
gpio_dirs = extract_bits<uint32_t>(value, 27, 3);
gpio_levels = extract_bits<uint32_t>(value, 24, 3);
gpio_levels = this->disp_id->read_monitor_sense(gpio_levels, gpio_dirs);
insert_bits<uint32_t>(value, gpio_levels, 24, 3);
}
break;
case ATI_CONFIG_STAT0:
return; // prevent writes to this read-only register
}
this->regs[reg_offset] = value;
}
uint32_t AtiMach64Gx::read(uint32_t rgn_start, uint32_t offset, int size)
{
if (rgn_start == this->aperture_base) {
if (offset < this->vram_size) {
return read_mem(&this->vram_ptr[offset], size);
} else if (offset >= this->mm_regs_offset) {
return BYTESWAP_SIZED(read_reg(offset - this->mm_regs_offset, size), size);
}
}
// memory mapped expansion ROM region
if (rgn_start == this->exp_rom_addr && offset < this->exp_rom_size) {
return read_mem(&this->exp_rom_data[offset], size);
}
return 0;
}
void AtiMach64Gx::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size)
{
if (rgn_start == this->aperture_base) {
if (offset < this->vram_size) {
write_mem(&this->vram_ptr[offset], value, size);
} else if (offset >= this->mm_regs_offset) {
write_reg(offset - this->mm_regs_offset, BYTESWAP_SIZED(value, size), size);
}
}
}
void AtiMach64Gx::enable_crtc_internal()
{
uint32_t new_width, new_height;
// check for unsupported modes and fail early
if (!bit_set(this->regs[ATI_CRTC_GEN_CNTL], 24))
ABORT_F("%s: VGA not supported", this->name.c_str());
new_width = (extract_bits<uint32_t>(this->regs[ATI_CRTC_H_TOTAL_DISP], 16, 8) + 1) * 8;
new_height = extract_bits<uint32_t>(this->regs[ATI_CRTC_V_TOTAL_DISP], 16, 11) + 1;
if (new_width != this->active_width || new_height != this->active_height) {
this->create_display_window(new_width, new_height);
}
// calculate display refresh rate
this->hori_total = (extract_bits<uint32_t>(this->regs[ATI_CRTC_H_TOTAL_DISP], 0, 9) + 1) * 8;
this->vert_total = extract_bits<uint32_t>(this->regs[ATI_CRTC_V_TOTAL_DISP], 0, 11) + 1;
this->refresh_rate = this->pixel_clock / this->hori_total / this->vert_total;
// specify framebuffer converter
switch (this->pixel_depth) {
case 8:
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->convert_frame_8bpp(dst_buf, dst_pitch);
};
break;
default:
ABORT_F("%s: unsupported pixel depth %d", this->name.c_str(), this->pixel_depth);
}
if (this->refresh_task_id) {
TimerManager::get_instance()->cancel_timer(this->refresh_task_id);
}
uint64_t refresh_interval = static_cast<uint64_t>(1.0f / this->refresh_rate * NS_PER_SEC + 0.5);
this->refresh_task_id = TimerManager::get_instance()->add_cyclic_timer(
refresh_interval,
[this]() {
this->update_screen();
}
);
this->crtc_on = true;
this->crtc_enable = 1;
}
void AtiMach64Gx::disable_crtc_internal()
{
this->blank_on = true;
this->blank_display();
this->crtc_enable = 0;
}
// ========================== IBM RGB514 related code ==========================
void AtiMach64Gx::rgb514_write_reg(uint8_t reg_addr, uint8_t value)
{
switch (reg_addr) {
case Rgb514::CLUT_ADDR_WR:
this->clut_index = value;
break;
case Rgb514::CLUT_DATA:
this->clut_color[this->comp_index++] = value;
if (this->comp_index >= 3) {
this->set_palette_color(this->clut_index, clut_color[0],
clut_color[1], clut_color[2], 0xFF);
this->clut_index++;
this->comp_index = 0;
}
break;
case Rgb514::CLUT_MASK:
if (value != 0xFF) {
LOG_F(WARNING, "RGB514: pixel mask set to 0x%X", value);
}
break;
case Rgb514::INDEX_LOW:
this->dac_idx_lo = value;
break;
case Rgb514::INDEX_HIGH:
this->dac_idx_hi = value;
break;
case Rgb514::INDEX_DATA:
this->rgb514_write_ind_reg((this->dac_idx_hi << 8) + this->dac_idx_lo, value);
break;
default:
ABORT_F("RGB514: access to unimplemented register at 0x%X", reg_addr);
}
}
void AtiMach64Gx::rgb514_write_ind_reg(uint8_t reg_addr, uint8_t value)
{
this->dac_regs[reg_addr] = value;
switch (reg_addr) {
case Rgb514::MISC_CLK_CNTL:
if (value & PLL_ENAB) {
if ((this->dac_regs[Rgb514::PLL_CTL_1] & 3) != 1)
ABORT_F("RGB514: unsupported PLL source");
int m = 8 >> (this->dac_regs[Rgb514::F0_M0] >> 6);
int vco_div = (this->dac_regs[Rgb514::F0_M0] & 0x3F) + 65;
int ref_div = (this->dac_regs[Rgb514::F1_N0] & 0x1F) * m;
this->pixel_clock = ATI_XTAL * vco_div / ref_div;
LOG_F(INFO, "RGB514: dot clock set to %f Hz", this->pixel_clock);
}
break;
case Rgb514::PIX_FORMAT:
if (value == 3) {
this->pixel_depth = 8;
// HACK: not the best place for enabling display output!
this->enable_crtc_internal();
} else {
ABORT_F("RGB514: unimplemented pixel format %d", value);
}
break;
}
}
static const DeviceDescription AtiMach64Gx_Descriptor = {
AtiMach64Gx::create, {}, {}
};
REGISTER_DEVICE(AtiMach64Gx, AtiMach64Gx_Descriptor);