dingusppc/devices/video/atirage.cpp
2024-03-06 07:04:25 -07:00

729 lines
26 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-24 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <core/bitops.h>
#include <devices/common/hwcomponent.h>
#include <devices/common/pci/pcidevice.h>
#include <devices/deviceregistry.h>
#include <devices/video/atirage.h>
#include <devices/video/displayid.h>
#include <endianswap.h>
#include <loguru.hpp>
#include <memaccess.h>
#include <map>
/* Mach64 post dividers. */
static const int mach64_post_div[8] = {
1, 2, 4, 8, // standard post dividers
3, 5, 6, 12 // alternate post dividers
};
/* Human readable Mach64 HW register names for easier debugging. */
static const std::map<uint16_t, std::string> mach64_reg_names = {
#define one_reg_name(x) {ATI_ ## x, #x}
one_reg_name(CRTC_H_TOTAL_DISP),
one_reg_name(CRTC_H_SYNC_STRT_WID),
one_reg_name(CRTC_V_TOTAL_DISP),
one_reg_name(CRTC_V_SYNC_STRT_WID),
one_reg_name(CRTC_VLINE_CRNT_VLINE),
one_reg_name(CRTC_OFF_PITCH),
one_reg_name(CRTC_INT_CNTL),
one_reg_name(CRTC_GEN_CNTL),
one_reg_name(DSP_CONFIG),
one_reg_name(DSP_ON_OFF),
one_reg_name(MEM_BUF_CNTL),
one_reg_name(MEM_ADDR_CFG),
one_reg_name(OVR_CLR),
one_reg_name(OVR_WID_LEFT_RIGHT),
one_reg_name(OVR_WID_TOP_BOTTOM),
one_reg_name(CUR_CLR0),
one_reg_name(CUR_CLR1),
one_reg_name(CUR_OFFSET),
one_reg_name(CUR_HORZ_VERT_POSN),
one_reg_name(CUR_HORZ_VERT_OFF),
one_reg_name(GP_IO),
one_reg_name(HW_DEBUG),
one_reg_name(SCRATCH_REG0),
one_reg_name(SCRATCH_REG1),
one_reg_name(SCRATCH_REG2),
one_reg_name(SCRATCH_REG3),
one_reg_name(CLOCK_CNTL),
one_reg_name(BUS_CNTL),
one_reg_name(EXT_MEM_CNTL),
one_reg_name(MEM_CNTL),
one_reg_name(DAC_REGS),
one_reg_name(DAC_CNTL),
one_reg_name(GEN_TEST_CNTL),
one_reg_name(CUSTOM_MACRO_CNTL),
one_reg_name(CONFIG_CHIP_ID),
one_reg_name(CONFIG_STAT0),
one_reg_name(SRC_CNTL),
one_reg_name(SCALE_3D_CNTL),
one_reg_name(FIFO_STAT),
one_reg_name(GUI_STAT),
one_reg_name(MPP_CONFIG),
one_reg_name(MPP_STROBE_SEQ),
one_reg_name(MPP_ADDR),
one_reg_name(MPP_DATA),
one_reg_name(TVO_CNTL),
one_reg_name(SETUP_CNTL),
};
ATIRage::ATIRage(uint16_t dev_id)
: PCIDevice("ati-rage"), VideoCtrlBase(640, 480)
{
uint8_t asic_id;
supports_types(HWCompType::MMIO_DEV | HWCompType::PCI_DEV);
this->vram_size = GET_INT_PROP("gfxmem_size") << 20; // convert MBs to bytes
// allocate video RAM
this->vram_ptr = std::unique_ptr<uint8_t[]> (new uint8_t[this->vram_size]);
// ATI Rage driver needs to know ASIC ID (manufacturer's internal chip code)
// to operate properly
switch (dev_id) {
case ATI_RAGE_GT_DEV_ID:
asic_id = 0x9A; // GT-B2U3 fabricated by UMC
this->cmd_fifo_size = 48;
break;
case ATI_RAGE_PRO_DEV_ID:
asic_id = 0x5C; // R3B/D/P-A4 fabricated by UMC
this->cmd_fifo_size = 128;
break;
default:
asic_id = 0xDD;
LOG_F(WARNING, "ATI Rage: bogus ASIC ID assigned!");
}
// set up PCI configuration space header
this->vendor_id = PCI_VENDOR_ATI;
this->device_id = dev_id;
this->subsys_vndr = PCI_VENDOR_ATI;
this->subsys_id = 0x6987; // adapter ID
this->class_rev = (0x030000 << 8) | asic_id;
this->min_gnt = 8;
this->irq_pin = 1;
for (int i = 0; i < this->aperture_count; i++) {
this->bars_cfg[i] = (uint32_t)(-this->aperture_size[i] | this->aperture_flag[i]);
}
this->finish_config_bars();
this->pci_notify_bar_change = [this](int bar_num) {
this->notify_bar_change(bar_num);
};
// stuff default values into chip registers
this->regs[ATI_CONFIG_CHIP_ID] = (asic_id << ATI_CFG_CHIP_MAJOR) | (dev_id << ATI_CFG_CHIP_TYPE);
// initialize display identification
this->disp_id = std::unique_ptr<DisplayID> (new DisplayID());
uint8_t mon_code = this->disp_id->read_monitor_sense(0, 0);
this->regs[ATI_GP_IO] = ((mon_code & 6) << 11) | ((mon_code & 1) << 8);
insert_bits<uint32_t>(this->regs[ATI_GUI_STAT], 32, ATI_FIFO_CNT, ATI_FIFO_CNT_size);
set_bit(regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_DISPLAY_DIS); // because blank_on is true
}
void ATIRage::change_one_bar(uint32_t &aperture, uint32_t aperture_size, uint32_t aperture_new, int bar_num) {
if (aperture != aperture_new) {
if (aperture)
this->host_instance->pci_unregister_mmio_region(aperture, aperture_size, this);
aperture = aperture_new;
if (aperture)
this->host_instance->pci_register_mmio_region(aperture, aperture_size, this);
LOG_F(INFO, "%s: aperture[%d] set to 0x%08X", this->name.c_str(), bar_num, aperture);
}
}
void ATIRage::notify_bar_change(int bar_num)
{
switch (bar_num) {
case 0:
change_one_bar(this->aperture_base[bar_num], this->aperture_size[bar_num] - this->vram_size, this->bars[bar_num] & ~15, bar_num);
break;
case 2:
change_one_bar(this->aperture_base[bar_num], this->aperture_size[bar_num], this->bars[bar_num] & ~15, bar_num);
break;
case 1:
this->aperture_base[1] = this->bars[bar_num] & ~3;
LOG_F(INFO, "%s: I/O space address set to 0x%08X", this->name.c_str(), this->aperture_base[1]);
break;
}
}
uint32_t ATIRage::pci_cfg_read(uint32_t reg_offs, AccessDetails &details)
{
if (reg_offs < 64) {
return PCIDevice::pci_cfg_read(reg_offs, details);
}
switch (reg_offs) {
case 0x40:
return this->user_cfg;
default:
LOG_READ_UNIMPLEMENTED_CONFIG_REGISTER();
}
return 0;
}
void ATIRage::pci_cfg_write(uint32_t reg_offs, uint32_t value, AccessDetails &details)
{
if (reg_offs < 64) {
PCIDevice::pci_cfg_write(reg_offs, value, details);
return;
}
switch (reg_offs) {
case 0x40:
this->user_cfg = value;
break;
default:
LOG_WRITE_UNIMPLEMENTED_CONFIG_REGISTER();
}
}
const char* ATIRage::get_reg_name(uint32_t reg_num) {
auto iter = mach64_reg_names.find(reg_num);
if (iter != mach64_reg_names.end()) {
return iter->second.c_str();
} else {
return "unknown Mach64 register";
}
}
uint32_t ATIRage::read_reg(uint32_t reg_offset, uint32_t size) {
uint32_t reg_num = reg_offset >> 2;
uint32_t offset = reg_offset & 3;
uint64_t result = this->regs[reg_num];
switch (reg_num) {
case ATI_CLOCK_CNTL:
if (offset <= 2 && offset + size > 2) {
uint8_t pll_addr = extract_bits<uint64_t>(result, ATI_PLL_ADDR, ATI_PLL_ADDR_size);
insert_bits<uint64_t>(result, this->plls[pll_addr], ATI_PLL_DATA, ATI_PLL_DATA_size);
}
break;
case ATI_DAC_REGS:
switch (reg_offset) {
case ATI_DAC_W_INDEX:
insert_bits<uint64_t>(result, this->dac_wr_index, 0, 8);
break;
case ATI_DAC_MASK:
insert_bits<uint64_t>(result, this->dac_mask, 16, 8);
break;
case ATI_DAC_R_INDEX:
insert_bits<uint64_t>(result, this->dac_rd_index, 24, 8);
break;
case ATI_DAC_DATA:
if (!this->comp_index) {
uint8_t alpha; // temp variable for unused alpha
get_palette_color(this->dac_rd_index, color_buf[0],
color_buf[1], color_buf[2], alpha);
}
insert_bits<uint64_t>(result, color_buf[this->comp_index], 8, 8);
if (++this->comp_index >= 3) {
this->dac_rd_index++; // auto-increment reading index
this->comp_index = 0; // reset color component index
}
}
break;
case ATI_GUI_STAT:
result = this->cmd_fifo_size << 16; // HACK: tell the guest the command FIFO is empty
break;
}
if (offset || size != 4) { // slow path
if ((offset + size) > 4) {
result |= (uint64_t)(this->regs[reg_num + 1]) << 32;
}
result = extract_bits<uint64_t>(result, offset * 8, size * 8);
}
return static_cast<uint32_t>(result);
}
void ATIRage::write_reg(uint32_t reg_offset, uint32_t value, uint32_t size) {
uint32_t reg_num = reg_offset >> 2;
uint32_t offset = reg_offset & 3;
uint32_t old_value = this->regs[reg_num];
uint32_t new_value;
if (offset || size != 4) { // slow path
if ((offset + size) > 4) {
ABORT_F("%s: unaligned DWORD writes not implemented", this->name.c_str());
}
uint64_t val = old_value;
insert_bits<uint64_t>(val, value, offset * 8, size * 8);
value = static_cast<uint32_t>(val);
}
switch (reg_num) {
case ATI_CRTC_H_TOTAL_DISP:
new_value = value;
LOG_F(9, "%s: ATI_CRTC_H_TOTAL_DISP set to 0x%08X", this->name.c_str(), value);
break;
case ATI_CRTC_OFF_PITCH:
new_value = value;
if (old_value != new_value) {
this->regs[reg_num] = new_value;
this->crtc_update();
}
break;
case ATI_CRTC_GEN_CNTL:
new_value = value;
if (bit_changed(old_value, new_value, ATI_CRTC_DISPLAY_DIS)) {
if (bit_set(new_value, ATI_CRTC_DISPLAY_DIS)) {
this->blank_on = true;
this->blank_display();
} else {
this->blank_on = false;
}
}
this->regs[reg_num] = new_value;
if (bit_changed(old_value, new_value, ATI_CRTC_ENABLE)) {
if (bit_set(new_value, ATI_CRTC_ENABLE) &&
!bit_set(new_value, ATI_CRTC_DISPLAY_DIS)) {
this->crtc_update();
}
}
break;
case ATI_GP_IO:
new_value = value;
if (offset <= 1 && offset + size > 1) {
uint8_t gpio_levels = (new_value >> 8) & 0xFFU;
gpio_levels = ((gpio_levels & 0x30) >> 3) | (gpio_levels & 1);
uint8_t gpio_dirs = (new_value >> 24) & 0xFFU;
gpio_dirs = ((gpio_dirs & 0x30) >> 3) | (gpio_dirs & 1);
gpio_levels = this->disp_id->read_monitor_sense(gpio_levels, gpio_dirs);
insert_bits<uint32_t>(new_value,
((gpio_levels & 6) << 3) | (gpio_levels & 1), 8, 8);
}
break;
case ATI_CLOCK_CNTL:
{
uint32_t bits_write_only =
(1 << ATI_CLOCK_STROBE);
new_value = value & ~bits_write_only; // clear the write only bits
uint8_t pll_addr = extract_bits<uint32_t>(new_value, ATI_PLL_ADDR, ATI_PLL_ADDR_size);
if (offset <= 2 && offset + size > 2 && bit_set(new_value, ATI_PLL_WR_EN)) {
uint8_t pll_data = extract_bits<uint32_t>(new_value, ATI_PLL_DATA, ATI_PLL_DATA_size);
this->plls[pll_addr] = pll_data;
LOG_F(9, "%s: PLL #%d set to 0x%02X", this->name.c_str(), pll_addr, pll_data);
}
else {
insert_bits<uint32_t>(new_value, this->plls[pll_addr], ATI_PLL_DATA, ATI_PLL_DATA_size);
}
break;
}
case ATI_DAC_REGS:
new_value = old_value; // no change
switch (reg_offset) {
case ATI_DAC_W_INDEX:
this->dac_wr_index = value & 0xFFU;
this->comp_index = 0;
break;
case ATI_DAC_MASK:
this->dac_mask = (value >> 16) & 0xFFU;
break;
case ATI_DAC_R_INDEX:
this->dac_rd_index = (value >> 24) & 0xFFU;
this->comp_index = 0;
break;
case ATI_DAC_DATA:
this->color_buf[this->comp_index] = (value >> 8) & this->dac_mask;
if (++this->comp_index >= 3) {
this->set_palette_color(this->dac_wr_index, color_buf[0],
color_buf[1], color_buf[2], 0xFF);
this->dac_wr_index++; // auto-increment color index
this->comp_index = 0; // reset color component index
}
}
break;
case ATI_GEN_TEST_CNTL:
new_value = value;
if (bit_changed(old_value, new_value, ATI_GEN_CUR_ENABLE)) {
if (bit_set(new_value, ATI_GEN_CUR_ENABLE))
this->setup_hw_cursor();
else
this->cursor_on = false;
}
if (bit_changed(old_value, new_value, ATI_GEN_GUI_RESETB)) {
if (!bit_set(new_value, ATI_GEN_GUI_RESETB))
LOG_F(9, "%s: reset GUI engine", this->name.c_str());
}
if (bit_changed(old_value, new_value, ATI_GEN_SOFT_RESET)) {
if (bit_set(new_value, ATI_GEN_SOFT_RESET))
LOG_F(9, "%s: reset memory controller", this->name.c_str());
}
if (new_value & 0xFFFFFC00) {
LOG_F(WARNING, "%s: unhandled GEN_TEST_CNTL state=0x%X",
this->name.c_str(), new_value);
}
break;
case ATI_CONFIG_CHIP_ID:
new_value = old_value; // prevent writes to this read-only register
break;
default:
new_value = value;
break;
}
this->regs[reg_num] = new_value;
}
bool ATIRage::io_access_allowed(uint32_t offset) {
if (offset >= this->aperture_base[1] && offset < (this->aperture_base[1] + 0x100)) {
if (this->command & 1) {
return true;
}
LOG_F(WARNING, "ATI I/O space disabled in the command reg");
}
return false;
}
bool ATIRage::pci_io_read(uint32_t offset, uint32_t size, uint32_t* res) {
if (!this->io_access_allowed(offset)) {
return false;
}
*res = BYTESWAP_SIZED(this->read_reg(offset - this->aperture_base[1], size), size);
return true;
}
bool ATIRage::pci_io_write(uint32_t offset, uint32_t value, uint32_t size) {
if (!this->io_access_allowed(offset)) {
return false;
}
this->write_reg(offset - this->aperture_base[1], BYTESWAP_SIZED(value, size), size);
return true;
}
uint32_t ATIRage::read(uint32_t rgn_start, uint32_t offset, int size)
{
if (rgn_start == this->aperture_base[0] && offset < this->aperture_size[0]) {
if (offset < this->vram_size) { // little-endian VRAM region
return read_mem(&this->vram_ptr[offset], size);
}
if (offset >= BE_FB_OFFSET) { // big-endian VRAM region
return read_mem(&this->vram_ptr[offset - BE_FB_OFFSET], size);
}
//if (!bit_set(this->regs[ATI_BUS_CNTL], ATI_BUS_APER_REG_DIS)) {
if (offset >= MM_REGS_0_OFF) { // memory-mapped registers, block 0
return BYTESWAP_SIZED(this->read_reg(offset & 0x3FF, size), size);
}
if (offset >= MM_REGS_1_OFF
//&& bit_set(this->regs[ATI_BUS_CNTL], ATI_BUS_EXT_REG_EN)
) { // memory-mapped registers, block 1
return BYTESWAP_SIZED(this->read_reg((offset & 0x3FF) + 0x400, size), size);
}
//}
LOG_F(WARNING, "%s: read unmapped aperture[0] region %08x.%c", this->name.c_str(), offset, SIZE_ARG(size));
return 0;
}
if (rgn_start == this->aperture_base[2] && offset < this->aperture_size[2]) {
LOG_F(WARNING, "%s: read unmapped aperture[2] region %08x.%c", this->name.c_str(), offset, SIZE_ARG(size));
return 0;
}
LOG_F(WARNING, "%s: read unmapped aperture region %08x.%c", this->name.c_str(), offset, SIZE_ARG(size));
return 0;
}
void ATIRage::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size)
{
if (rgn_start == this->aperture_base[0] && offset < this->aperture_size[0]) {
if (offset < this->vram_size) { // little-endian VRAM region
return write_mem(&this->vram_ptr[offset], value, size);
}
if (offset >= BE_FB_OFFSET) { // big-endian VRAM region
return write_mem(&this->vram_ptr[offset & (BE_FB_OFFSET - 1)], value, size);
}
//if (!bit_set(this->regs[ATI_BUS_CNTL], ATI_BUS_APER_REG_DIS)) {
if (offset >= MM_REGS_0_OFF) { // memory-mapped registers, block 0
return this->write_reg(offset & 0x3FF, BYTESWAP_SIZED(value, size), size);
}
if (offset >= MM_REGS_1_OFF
//&& bit_set(this->regs[ATI_BUS_CNTL], ATI_BUS_EXT_REG_EN)
) { // memory-mapped registers, block 1
return this->write_reg((offset & 0x3FF) + 0x400, BYTESWAP_SIZED(value, size), size);
}
//}
LOG_F(WARNING, "%s: write unmapped aperture[0] region %08x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value);
return;
}
if (rgn_start == this->aperture_base[2] && offset < this->aperture_size[2]) {
LOG_F(WARNING, "%s: write unmapped aperture[2] region %08x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value);
return;
}
LOG_F(WARNING, "%s: write unmapped aperture region %08x.%c = %0*x", this->name.c_str(), offset, SIZE_ARG(size), size * 2, value);
}
float ATIRage::calc_pll_freq(int scale, int fb_div) {
return (ATI_XTAL * scale * fb_div) / this->plls[PLL_REF_DIV];
}
void ATIRage::verbose_pixel_format(int crtc_index) {
if (crtc_index) {
LOG_F(ERROR, "CRTC2 not supported yet");
return;
}
uint32_t pix_fmt = extract_bits<uint32_t>(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_PIX_WIDTH, ATI_CRTC_PIX_WIDTH_size);
const char* what = "Pixel format:";
switch (pix_fmt) {
case 1:
LOG_F(INFO, "%s 4 bpp with DAC palette", what);
break;
case 2:
// check the undocumented DAC_DIRECT bit
if (bit_set(this->regs[ATI_DAC_CNTL], ATI_DAC_DIRECT)) {
LOG_F(INFO, "%s 8 bpp direct color (RGB332)", what);
} else {
LOG_F(INFO, "%s 8 bpp with DAC palette", what);
}
break;
case 3:
LOG_F(INFO, "%s 15 bpp direct color (RGB555)", what);
break;
case 4:
LOG_F(INFO, "%s 16 bpp direct color (RGB565)", what);
break;
case 5:
LOG_F(INFO, "%s 24 bpp direct color (RGB888)", what);
break;
case 6:
LOG_F(INFO, "%s 32 bpp direct color (ARGB8888)", what);
break;
default:
LOG_F(ERROR, "%s: CRTC pixel format %d not supported", this->name.c_str(), pix_fmt);
}
}
void ATIRage::crtc_update() {
uint32_t new_width, new_height, new_htotal, new_vtotal;
// check for unsupported modes and fail early
if (!bit_set(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_EXT_DISP_EN))
ABORT_F("%s: VGA not supported", this->name.c_str());
if ((this->plls[PLL_VCLK_CNTL] & 3) != 3)
ABORT_F("%s: VLCK source != VPLL", this->name.c_str());
bool need_recalc = false;
new_width = (extract_bits<uint32_t>(this->regs[ATI_CRTC_H_TOTAL_DISP], ATI_CRTC_H_DISP, ATI_CRTC_H_DISP_size) + 1) * 8;
new_height = extract_bits<uint32_t>(this->regs[ATI_CRTC_V_TOTAL_DISP], ATI_CRTC_V_DISP, ATI_CRTC_V_DISP_size) + 1;
if (new_width != this->active_width || new_height != this->active_height) {
this->create_display_window(new_width, new_height);
need_recalc = true;
}
new_htotal = (extract_bits<uint32_t>(this->regs[ATI_CRTC_H_TOTAL_DISP], ATI_CRTC_H_TOTAL, ATI_CRTC_H_TOTAL_size) + 1) * 8;
new_vtotal = extract_bits<uint32_t>(this->regs[ATI_CRTC_V_TOTAL_DISP], ATI_CRTC_V_TOTAL, ATI_CRTC_V_TOTAL_size) + 1;
if (new_htotal != this->hori_total || new_vtotal != this->vert_total) {
this->hori_total = new_htotal;
this->vert_total = new_vtotal;
need_recalc = true;
}
int new_pixel_format = extract_bits<uint32_t>(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_PIX_WIDTH, ATI_CRTC_PIX_WIDTH_size);
if (new_pixel_format != this->pixel_format) {
this->pixel_format = new_pixel_format;
need_recalc = true;
}
// look up which VPLL ouput is requested
int clock_sel = extract_bits<uint32_t>(this->regs[ATI_CLOCK_CNTL], ATI_CLOCK_SEL, ATI_CLOCK_SEL_size);
// calculate VPLL output frequency
float vpll_freq = calc_pll_freq(2, this->plls[VCLK0_FB_DIV + clock_sel]);
// calculate post divider's index
// NOTE: post divider's index has been extended by an additional
// bit in Rage Pro. This bit is resided in PLL_EXT_CNTL register.
int post_div_idx = ((this->plls[PLL_EXT_CNTL] >> (clock_sel + 2)) & 4) |
((this->plls[VCLK_POST_DIV] >> (clock_sel * 2)) & 3);
// pixel clock = source_freq / post_div
float new_pixel_clock = vpll_freq / mach64_post_div[post_div_idx];
if (new_pixel_clock != this->pixel_clock) {
this->pixel_clock = new_pixel_clock;
need_recalc = true;
}
if (!need_recalc)
return;
// calculate display refresh rate
this->refresh_rate = pixel_clock / this->hori_total / this->vert_total;
if (this->refresh_rate < 24 || this->refresh_rate > 120) {
LOG_F(ERROR, "%s: Refresh rate is weird. Will try 60 Hz", this->name.c_str());
this->refresh_rate = 60;
this->pixel_clock = this->refresh_rate * this->hori_total / this->vert_total;
}
// set up frame buffer converter
switch (this->pixel_format) {
case 1:
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->convert_frame_4bpp_indexed(dst_buf, dst_pitch);
};
break;
case 2:
if (bit_set(this->regs[ATI_DAC_CNTL], ATI_DAC_DIRECT)) {
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->convert_frame_8bpp(dst_buf, dst_pitch);
};
}
else {
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->convert_frame_8bpp_indexed(dst_buf, dst_pitch);
};
}
break;
case 3:
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->convert_frame_15bpp_BE(dst_buf, dst_pitch);
};
break;
case 4:
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->convert_frame_16bpp(dst_buf, dst_pitch);
};
break;
case 5:
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->convert_frame_24bpp(dst_buf, dst_pitch);
};
break;
case 6:
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->convert_frame_32bpp_BE(dst_buf, dst_pitch);
};
break;
default:
LOG_F(ERROR, "%s: unsupported pixel format %d", this->name.c_str(), this->pixel_format);
}
static uint8_t bits_per_pixel[8] = {0, 4, 8, 16, 16, 24, 32, 0};
this->fb_pitch = extract_bits<uint32_t>(this->regs[ATI_CRTC_OFF_PITCH], ATI_CRTC_PITCH, ATI_CRTC_PITCH_size) *
(bits_per_pixel[this->pixel_format & 7] * 8) >> 3;
this->fb_ptr = &this->vram_ptr[extract_bits<uint32_t>(this->regs[ATI_CRTC_OFF_PITCH], ATI_CRTC_OFFSET, ATI_CRTC_OFFSET_size) * 8];
LOG_F(INFO, "%s: primary CRT controller enabled:", this->name.c_str());
LOG_F(INFO, "Video mode: %s",
bit_set(this->regs[ATI_CRTC_GEN_CNTL], ATI_CRTC_EXT_DISP_EN) ? "extended" : "VGA");
LOG_F(INFO, "Video width: %d px", this->active_width);
LOG_F(INFO, "Video height: %d px", this->active_height);
verbose_pixel_format(0);
LOG_F(INFO, "VPLL frequency: %f MHz", vpll_freq * 1e-6);
LOG_F(INFO, "Pixel (dot) clock: %f MHz", this->pixel_clock * 1e-6);
LOG_F(INFO, "Refresh rate: %f Hz", this->refresh_rate);
this->stop_refresh_task();
this->start_refresh_task();
this->crtc_on = true;
}
void ATIRage::draw_hw_cursor(uint8_t *dst_buf, int dst_pitch) {
uint8_t *src_buf, *src_row, *dst_row, px4;
int vert_offset = extract_bits<uint32_t>(this->regs[ATI_CUR_HORZ_VERT_OFF], ATI_CUR_VERT_OFF, ATI_CUR_VERT_OFF_size);
src_buf = &this->vram_ptr[this->regs[ATI_CUR_OFFSET] * 8];
int cur_height = 64 - vert_offset;
uint32_t color0 = this->regs[ATI_CUR_CLR0] | 0x000000FFUL;
uint32_t color1 = this->regs[ATI_CUR_CLR1] | 0x000000FFUL;
for (int h = 0; h < cur_height; h++) {
dst_row = &dst_buf[h * dst_pitch];
src_row = &src_buf[h * 16];
for (int x = 0; x < 16; x++) {
px4 = src_row[x];
for (int p = 0; p < 4; p++, px4 >>= 2, dst_row += 4) {
switch(px4 & 3) {
case 0: // cursor color 0
WRITE_DWORD_BE_A(dst_row, color0);
break;
case 1: // cursor color 1
WRITE_DWORD_BE_A(dst_row, color1);
break;
case 2: // transparent
WRITE_DWORD_BE_A(dst_row, 0);
break;
case 3: // 1's complement of display pixel
WRITE_DWORD_BE_A(dst_row, 0x0000007F);
break;
}
}
}
}
}
void ATIRage::get_cursor_position(int& x, int& y) {
x = extract_bits<uint32_t>(this->regs[ATI_CUR_HORZ_VERT_POSN], ATI_CUR_HORZ_POSN, ATI_CUR_HORZ_POSN_size);
y = extract_bits<uint32_t>(this->regs[ATI_CUR_HORZ_VERT_POSN], ATI_CUR_VERT_POSN, ATI_CUR_VERT_POSN_size);
}
static const PropMap AtiRage_Properties = {
{"gfxmem_size",
new IntProperty( 2, vector<uint32_t>({2, 4, 6}))},
{"mon_id",
new StrProperty("")},
};
static const DeviceDescription AtiRageGT_Descriptor = {
ATIRage::create_gt, {}, AtiRage_Properties
};
static const DeviceDescription AtiRagePro_Descriptor = {
ATIRage::create_pro, {}, AtiRage_Properties
};
REGISTER_DEVICE(AtiRageGT, AtiRageGT_Descriptor);
REGISTER_DEVICE(AtiRagePro, AtiRagePro_Descriptor);