dingusppc/devices/mpc106.cpp
2021-02-03 23:39:19 +01:00

254 lines
8.2 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-20 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/** MPC106 (Grackle) emulation
Author: Max Poliakovski
*/
#include <cinttypes>
#include <cstring>
#include <iostream>
#include <thirdparty/loguru/loguru.hpp>
#include "hwcomponent.h"
#include "memctrlbase.h"
#include "memaccess.h"
#include "mmiodevice.h"
#include "mpc106.h"
MPC106::MPC106() : MemCtrlBase(), PCIDevice("Grackle PCI host bridge") {
this->name = "Grackle";
/* add PCI/ISA I/O space, 64K for now */
add_mmio_region(0xFE000000, 0x10000, this);
/* add memory mapped I/O region for MPC106 registers */
add_mmio_region(0xFEC00000, 0x300000, this);
this->pci_0_bus.clear();
this->io_space_devs.clear();
}
MPC106::~MPC106() {
this->pci_0_bus.clear();
}
bool MPC106::supports_type(HWCompType type) {
if (type == HWCompType::MEM_CTRL || type == HWCompType::MMIO_DEV ||
type == HWCompType::PCI_HOST || type == HWCompType::PCI_DEV) {
return true;
} else {
return false;
}
}
uint32_t MPC106::read(uint32_t reg_start, uint32_t offset, int size) {
uint32_t result;
if (reg_start == 0xFE000000) {
/* broadcast I/O request to devices that support I/O space
until a device returns true that means "request accepted" */
for (auto& dev : this->io_space_devs) {
if (dev->pci_io_read(offset, size, &result)) {
return result;
}
}
LOG_F(ERROR, "Attempt to read from unmapped PCI I/O space, offset=0x%X", offset);
} else {
if (offset >= 0x200000) {
if (this->config_addr & 0x80) // process only if bit E (enable) is set
return pci_read(size);
}
}
/* FIXME: reading from CONFIG_ADDR is ignored for now */
return 0;
}
void MPC106::write(uint32_t reg_start, uint32_t offset, uint32_t value, int size) {
if (reg_start == 0xFE000000) {
/* broadcast I/O request to devices that support I/O space
until a device returns true that means "request accepted" */
for (auto& dev : this->io_space_devs) {
if (dev->pci_io_write(offset, value, size)) {
return;
}
}
LOG_F(ERROR, "Attempt to write to unmapped PCI I/O space, offset=0x%X", offset);
} else {
if (offset < 0x200000) {
this->config_addr = value;
} else {
if (this->config_addr & 0x80) // process only if bit E (enable) is set
return pci_write(value, size);
}
}
}
uint32_t MPC106::pci_read(uint32_t size) {
int bus_num, dev_num, fun_num, reg_offs;
bus_num = (this->config_addr >> 8) & 0xFF;
if (bus_num) {
LOG_F(
ERROR,
"%s err: read attempt from non-local PCI bus, config_addr = %x \n",
this->name.c_str(),
this->config_addr);
return 0;
}
dev_num = (this->config_addr >> 19) & 0x1F;
fun_num = (this->config_addr >> 16) & 0x07;
reg_offs = (this->config_addr >> 24) & 0xFC;
if (dev_num == 0 && fun_num == 0) { // dev_num 0 is assigned to myself
return this->pci_cfg_read(reg_offs, size);
} else {
if (this->pci_0_bus.count(dev_num)) {
return this->pci_0_bus[dev_num]->pci_cfg_read(reg_offs, size);
} else {
LOG_F(
ERROR,
"%s err: read attempt from non-existing PCI device %d \n",
this->name.c_str(),
dev_num);
return 0;
}
}
return 0;
}
void MPC106::pci_write(uint32_t value, uint32_t size) {
int bus_num, dev_num, fun_num, reg_offs;
bus_num = (this->config_addr >> 8) & 0xFF;
if (bus_num) {
LOG_F(
ERROR,
"%s err: write attempt to non-local PCI bus, config_addr = %x \n",
this->name.c_str(),
this->config_addr);
return;
}
dev_num = (this->config_addr >> 19) & 0x1F;
fun_num = (this->config_addr >> 16) & 0x07;
reg_offs = (this->config_addr >> 24) & 0xFC;
if (dev_num == 0 && fun_num == 0) { // dev_num 0 is assigned to myself
this->pci_cfg_write(reg_offs, value, size);
} else {
if (this->pci_0_bus.count(dev_num)) {
this->pci_0_bus[dev_num]->pci_cfg_write(reg_offs, value, size);
} else {
LOG_F(
ERROR,
"%s err: write attempt to non-existing PCI device %d \n",
this->name.c_str(),
dev_num);
}
}
}
uint32_t MPC106::pci_cfg_read(uint32_t reg_offs, uint32_t size) {
#ifdef MPC106_DEBUG
LOG_F(9, "read from Grackle register %08X\n", reg_offs);
#endif
return read_mem(&this->my_pci_cfg_hdr[reg_offs], size);
}
void MPC106::pci_cfg_write(uint32_t reg_offs, uint32_t value, uint32_t size) {
#ifdef MPC106_DEBUG
LOG_F(9, "write %08X to Grackle register %08X\n", value, reg_offs);
#endif
// FIXME: implement write-protection for read-only registers
write_mem(&this->my_pci_cfg_hdr[reg_offs], value, size);
if (this->my_pci_cfg_hdr[0xF2] & 8) {
#ifdef MPC106_DEBUG
LOG_F(9, "MPC106: MCCR1[MEMGO] was set! \n");
#endif
setup_ram();
}
}
bool MPC106::pci_register_device(int dev_num, PCIDevice* dev_instance) {
if (this->pci_0_bus.count(dev_num)) // is dev_num already registered?
return false;
this->pci_0_bus[dev_num] = dev_instance;
dev_instance->set_host(this);
if (dev_instance->supports_io_space()) {
this->io_space_devs.push_back(dev_instance);
}
return true;
}
bool MPC106::pci_register_mmio_region(uint32_t start_addr, uint32_t size, PCIDevice* obj) {
// FIXME: add sanity checks!
return this->add_mmio_region(start_addr, size, obj);
}
void MPC106::setup_ram() {
uint32_t mem_start, mem_end, ext_mem_start, ext_mem_end, bank_start, bank_end;
uint32_t ram_size = 0;
uint8_t bank_en = this->my_pci_cfg_hdr[0xA0];
for (int bank = 0; bank < 8; bank++) {
if (bank_en & (1 << bank)) {
if (bank < 4) {
mem_start = READ_DWORD_LE_A(&this->my_pci_cfg_hdr[0x80]);
ext_mem_start = READ_DWORD_LE_A(&this->my_pci_cfg_hdr[0x88]);
mem_end = READ_DWORD_LE_A(&this->my_pci_cfg_hdr[0x90]);
ext_mem_end = READ_DWORD_LE_A(&this->my_pci_cfg_hdr[0x98]);
} else {
mem_start = READ_DWORD_LE_A(&this->my_pci_cfg_hdr[0x84]);
ext_mem_start = READ_DWORD_LE_A(&this->my_pci_cfg_hdr[0x8C]);
mem_end = READ_DWORD_LE_A(&this->my_pci_cfg_hdr[0x94]);
ext_mem_end = READ_DWORD_LE_A(&this->my_pci_cfg_hdr[0x9C]);
}
bank_start = (((ext_mem_start >> bank * 8) & 3) << 30) |
(((mem_start >> bank * 8) & 0xFF) << 20);
bank_end = (((ext_mem_end >> bank * 8) & 3) << 30) |
(((mem_end >> bank * 8) & 0xFF) << 20) | 0xFFFFFUL;
if (bank && bank_start != ram_size)
LOG_F(WARNING, "MPC106: RAM not contiguous! \n");
ram_size += bank_end - bank_start + 1;
}
}
if (!this->add_ram_region(0, ram_size)) {
LOG_F(ERROR, "MPC106 RAM allocation failed! \n");
}
}