dingusppc/devices/floppy/floppyimg.cpp
Mihai Parparita 1f7edfdb3b Make Emscripten build not depend on SDL2 or cubeb
While Emscripten has an SDL compabtility layer, it assumes that the
code is executing in the main browser process (and thus has access to
them DOM). The Infinite Mac project runs emulators in a worker thread
(for better performance) and has a custom API for the display, sound,
input, etc. Similarly, it does not need the cross-platform sound support
from cubeb, there there is a sound API as well.

This commit makes SDL (*_sdl.cpp) and cubeb-based (*_cubeb.cpp) code be
skipped when targeting Emscripten, and instead *_js.cpp files are used
instead (this is the cross-platform convention used by Chromium[^1], and
could be extended for other targets).

For hostevents.cpp and soundserver.cpp the entire file was replaced,
whereas for videoctrl.cpp there was enough shared logic that it was
kept, and the platform-specific bits were moved behind a Display class
that can have per-platform implementations. For cases where we need
additional private fields in the platform-specific classes, we use
a PIMPL pattern.

The *_js.cpp files with implementations are not included in this
commit, since they are closely tied to the Infinite Mac project, and
will live in its fork of DingusPPC.

[^1]: https://www.chromium.org/developers/design-documents/conventions-and-patterns-for-multi-platform-development/
2023-10-25 22:25:53 -07:00

337 lines
9.4 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-22 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/** @file Support for reading and writing of various floppy images. */
#include <devices/floppy/floppyimg.h>
#include <machines/machineproperties.h>
#include <loguru.hpp>
#include <memaccess.h>
#include <cinttypes>
#include <cstring>
#include <fstream>
#include <string>
static FlopImgType identify_image(std::ifstream& img_file)
{
// WOZ images identification strings
static uint8_t WOZ1_SIG[] = {0x57, 0x4F, 0x5A, 0x31, 0xFF, 0x0A, 0x0D, 0x0A};
static uint8_t WOZ2_SIG[] = {0x57, 0x4F, 0x5A, 0x32, 0xFF, 0x0A, 0x0D, 0x0A};
uint8_t buf[8] = { 0 };
img_file.seekg(0, std::ios::beg);
img_file.read((char *)buf, sizeof(buf));
// WOZ files are easily identified
if (!std::memcmp(buf, WOZ1_SIG, sizeof(buf))) {
return FlopImgType::WOZ1;
} else if (!std::memcmp(buf, WOZ2_SIG, sizeof(buf))) {
return FlopImgType::WOZ2;
} else {
for (int offset = 0; offset <=84; offset += 84) {
// rewind to logical block 2
img_file.seekg(2*BLOCK_SIZE + offset, std::ios::beg);
img_file.read((char *)buf, sizeof(buf));
// check for HFS/MFS signature at the start of the logical block 2
if ((buf[0] == 0x42 && buf[1] == 0x44) ||
(buf[0] == 0xD2 && buf[1] == 0xD7)) {
if (offset) {
return FlopImgType::DC42;
} else {
return FlopImgType::RAW;
}
}
}
}
return FlopImgType::UNKNOWN;
}
//======================= RAW IMAGE CONVERTER ============================
RawFloppyImg::RawFloppyImg(std::string& file_path) : FloppyImgConverter()
{
this->img_path = file_path;
}
/**
For raw images, we'll attempt to guess disk format based on image size.
*/
int RawFloppyImg::calc_phys_params()
{
std::ifstream img_file;
img_file.open(img_path, std::ios::in | std::ios::binary);
if (img_file.fail()) {
img_file.close();
LOG_F(ERROR, "RawFloppyImg: Could not open specified floppy image!");
return -1;
}
// determine image size
img_file.seekg(0, img_file.end);
size_t img_size = img_file.tellg();
if (img_size > 2*1024*1024) {
LOG_F(ERROR, "RawFloppyImg: image size is too large to determine disk format from image size!");
return -1;
}
this->img_size = (int)img_size;
img_file.seekg(0, img_file.beg);
img_file.close();
// verify image size
if (this->img_size < 5*BLOCK_SIZE) {
LOG_F(ERROR, "RawFloppyImg: image too short!");
return -1;
}
if (this->img_size > MFM_HD_SIZE) {
LOG_F(ERROR, "RawFloppyImg: image too big!");
return -1;
}
// raw images don't include anything other than raw disk data
this->data_size = this->img_size;
// see if user has specified disk format manually
std::string fmt = GET_STR_PROP("fdd_fmt");
if (!fmt.empty()) {
if (fmt == "GCR_400K") {
this->img_size = 409600;
} else if (fmt == "GCR_800K") {
this->img_size = 819200;
} else if (fmt == "MFM_720K") {
this->img_size = 737280;
} else if (fmt == "MFM_1440K") {
this->img_size = 1474560;
} else {
LOG_F(WARNING, "Invalid floppy disk format %s", fmt.c_str());
}
}
// guess disk format from image file size
static struct {
int capacity;
int rec_method;
int num_tracks;
int num_sectors;
int num_sides;
int density;
} size_to_params[] = {
{ 409600, 0, 80, 800, 1, 0}, // 400K GCR
{ 819200, 0, 80, 800, 2, 0}, // 800K GCR
{ 737280, 1, 80, 1440, 2, 0}, // 720K MFM
{1474560, 1, 80, 2880, 2, 1}, // 1440K MFM
};
this->rec_method = -1;
for (int i = 0; i < 4; i++) {
if (this->img_size == size_to_params[i].capacity) {
this->rec_method = size_to_params[i].rec_method;
this->num_tracks = size_to_params[i].num_tracks;
this->num_sectors = size_to_params[i].num_sectors;
this->num_sides = size_to_params[i].num_sides;
this->density = size_to_params[i].density;
// fake format byte for GCR disks
if (!this->rec_method) {
this->format_byte = (this->num_sides == 2) ? 0x22 : 0x2;
} else {
// For MFM disks this byte indicates sector size in blocks
this->format_byte = 2;
}
break;
}
}
if (this->rec_method == -1) {
LOG_F(ERROR, "RawFloppyImg: could't determine disk format from image size!");
return -1;
}
return 0;
}
/** Retrieve raw disk data. */
int RawFloppyImg::get_raw_disk_data(char* buf)
{
std::ifstream img_file;
img_file.open(img_path, std::ios::in | std::ios::binary);
if (img_file.fail()) {
img_file.close();
LOG_F(ERROR, "RawFloppyImg: Could not open specified floppy image!");
return -1;
}
img_file.seekg(0, img_file.beg);
img_file.read(buf, this->data_size);
img_file.close();
return 0;
}
/** Convert low-level disk data to high-level image data. */
int RawFloppyImg::export_data()
{
return 0;
}
// ====================== DISK COPY 4.2 IMAGE CONVERTER ======================
DiskCopy42Img::DiskCopy42Img(std::string& file_path) : FloppyImgConverter()
{
this->img_path = file_path;
}
int DiskCopy42Img::calc_phys_params() {
std::ifstream img_file;
img_file.open(img_path, std::ios::in | std::ios::binary);
if (img_file.fail()) {
img_file.close();
LOG_F(ERROR, "DiskCopy42Img: could not open specified floppy image!");
return -1;
}
// determine image size
img_file.seekg(0, img_file.end);
size_t img_size = img_file.tellg();
img_file.seekg(0, img_file.beg);
// get data size from image
uint8_t buf[4];
img_file.seekg(0x40, img_file.beg);
img_file.read((char *)&buf, 4);
this->data_size = READ_DWORD_BE_U(buf);
if (this->data_size > img_size) {
img_file.close();
LOG_F(ERROR, "DiskCopy42Img: invalid data size %d", this->data_size);
return -1;
}
this->img_size = (int)img_size;
uint8_t disk_format = 0xFFU;
img_file.seekg(0x50, img_file.beg);
img_file.read((char *)&disk_format, 1);
img_file.read((char *)&this->format_byte, 1);
img_file.close();
this->density = 0; // assume double density by default
this->num_tracks = 80;
this->num_sides = ((this->format_byte >> 5) & 1) + 1;
switch (disk_format) {
case 0:
case 1:
this->rec_method = 0; // GCR
this->num_sectors = 800;
break;
case 2:
this->rec_method = 1; // MFM
this->num_sectors = 1440;
this->format_byte = 2;
break;
case 3:
this->rec_method = 1; // MFM
this->density = 1; // report high density
this->num_sectors = 2880;
this->format_byte = 2;
break;
default:
LOG_F(ERROR, "DiskCopy42Img: invalid disk format %X", disk_format);
return -1;
}
return 0;
}
int DiskCopy42Img::get_raw_disk_data(char* buf) {
std::ifstream img_file;
img_file.open(img_path, std::ios::in | std::ios::binary);
if (img_file.fail()) {
img_file.close();
LOG_F(ERROR, "DiskCopy42Img: could not open specified floppy image!");
return -1;
}
img_file.seekg(0x54, img_file.beg);
img_file.read(buf, this->data_size);
img_file.close();
return 0;
}
int DiskCopy42Img::export_data(void) {
return 0;
}
FloppyImgConverter* open_floppy_image(std::string& img_path)
{
FloppyImgConverter *fconv = nullptr;
std::ifstream img_file;
img_file.open(img_path, std::ios::in | std::ios::binary);
if (img_file.fail()) {
img_file.close();
LOG_F(ERROR, "Could not open specified floppy image (%s)!", img_path.c_str());
return nullptr;
}
FlopImgType itype = identify_image(img_file);
img_file.close();
switch(itype) {
case FlopImgType::RAW:
LOG_F(INFO, "Raw floppy image");
fconv = new RawFloppyImg(img_path);
break;
case FlopImgType::DC42:
LOG_F(INFO, "Disk Copy 4.2 image");
fconv = new DiskCopy42Img(img_path);
break;
case FlopImgType::WOZ1:
case FlopImgType::WOZ2:
LOG_F(INFO, "WOZ v%s image", (itype == FlopImgType::WOZ2) ? "2" : "1");
break;
default:
LOG_F(WARNING, "Unknown image format - assume RAW");
fconv = new RawFloppyImg(img_path);
}
if (fconv->calc_phys_params()) {
delete fconv;
return nullptr;
}
return fconv;
}