dingusppc/devices/common/pci/pcidevice.cpp
Mihai Parparita 35c86ad6bf Clean up #includes
Result of running IWYU (https://include-what-you-use.org/) and
applying most of the suggestions about unncessary includes and
forward declarations.

Was motivated by observing that <thread> was being included in
ppcopcodes.cpp even though it was unused (found while researching
the use of threads), but seems generally good to help with build
times and correctness.
2023-11-03 00:33:47 -07:00

318 lines
10 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-23 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <devices/common/pci/pcidevice.h>
#include <loguru.hpp>
#include <cinttypes>
#include <fstream>
#include <cstring>
#include <string>
PCIDevice::PCIDevice(std::string name)
{
this->name = name;
this->pci_name = name;
this->pci_rd_stat = [this]() { return this->status; };
this->pci_rd_cmd = [this]() { return this->command; };
this->pci_rd_bist = []() { return 0; };
this->pci_rd_lat_timer = [this]() { return this->lat_timer; };
this->pci_rd_cache_lnsz = [this]() { return this->cache_ln_sz; };
this->pci_wr_stat = [](uint16_t val) {};
this->pci_wr_cmd = [this](uint16_t cmd) { this->command = cmd; };
this->pci_wr_bist = [](uint8_t val) {};
this->pci_wr_lat_timer = [this](uint8_t val) { this->lat_timer = val; };
this->pci_wr_cache_lnsz = [this](uint8_t val) { this->cache_ln_sz = val; };
this->pci_notify_bar_change = [](int bar_num) {};
};
uint32_t PCIDevice::pci_cfg_read(uint32_t reg_offs, AccessDetails &details)
{
switch (reg_offs) {
case PCI_CFG_DEV_ID:
return (this->device_id << 16) | (this->vendor_id);
case PCI_CFG_STAT_CMD:
return (this->pci_rd_stat() << 16) | (this->pci_rd_cmd());
case PCI_CFG_CLASS_REV:
return this->class_rev;
case PCI_CFG_DWORD_3:
return (pci_rd_bist() << 24) | (this->hdr_type << 16) |
(pci_rd_lat_timer() << 8) | pci_rd_cache_lnsz();
case PCI_CFG_BAR0:
case PCI_CFG_BAR1:
case PCI_CFG_BAR2:
case PCI_CFG_BAR3:
case PCI_CFG_BAR4:
case PCI_CFG_BAR5:
return this->bars[(reg_offs - 0x10) >> 2];
case PCI_CFG_SUBSYS_ID:
return (this->subsys_id << 16) | (this->subsys_vndr);
case PCI_CFG_ROM_BAR:
return this->exp_rom_bar;
case PCI_CFG_DWORD_15:
return (max_lat << 24) | (min_gnt << 16) | (irq_pin << 8) | irq_line;
case PCI_CFG_CAP_PTR:
return cap_ptr;
}
LOG_READ_UNIMPLEMENTED_CONFIG_REGISTER();
return 0;
}
void PCIDevice::pci_cfg_write(uint32_t reg_offs, uint32_t value, AccessDetails &details)
{
switch (reg_offs) {
case PCI_CFG_STAT_CMD:
this->pci_wr_stat(value >> 16);
this->pci_wr_cmd(value & 0xFFFFU);
break;
case PCI_CFG_DWORD_3:
this->pci_wr_bist(value >> 24);
this->pci_wr_lat_timer((value >> 8) & 0xFF);
this->pci_wr_cache_lnsz(value & 0xFF);
break;
case PCI_CFG_BAR0:
case PCI_CFG_BAR1:
case PCI_CFG_BAR2:
case PCI_CFG_BAR3:
case PCI_CFG_BAR4:
case PCI_CFG_BAR5:
this->set_bar_value((reg_offs - 0x10) >> 2, value);
break;
case PCI_CFG_ROM_BAR:
this->pci_wr_exp_rom_bar(value);
break;
case PCI_CFG_DWORD_15:
this->irq_line = value >> 24;
break;
default:
LOG_WRITE_UNIMPLEMENTED_CONFIG_REGISTER();
}
}
void PCIDevice::setup_bars(std::vector<BarConfig> cfg_data)
{
for (auto cfg_entry : cfg_data) {
if (cfg_entry.bar_num > 5) {
ABORT_F("BAR number %d out of range", cfg_entry.bar_num);
}
this->bars_cfg[cfg_entry.bar_num] = cfg_entry.bar_cfg;
}
this->finish_config_bars();
}
int PCIDevice::attach_exp_rom_image(const std::string img_path)
{
std::ifstream img_file;
int result = 0;
this->exp_bar_cfg = 0; // tell the world we got no ROM for now
try {
img_file.open(img_path, std::ios::in | std::ios::binary);
if (img_file.fail()) {
throw std::runtime_error("could not open specified ROM dump image");
}
// validate image file
uint8_t buf[4] = { 0 };
img_file.seekg(0, std::ios::beg);
img_file.read((char *)buf, sizeof(buf));
if (buf[0] != 0x55 || buf[1] != 0xAA) {
throw std::runtime_error("invalid expansion ROM signature");
}
// determine image size
img_file.seekg(0, std::ios::end);
size_t exp_rom_image_size = img_file.tellg();
if (exp_rom_image_size > 4*1024*1024) {
throw std::runtime_error("expansion ROM file too large");
}
// verify PCI struct offset
uint16_t pci_struct_offset = 0;
img_file.seekg(0x18, std::ios::beg);
img_file.read((char *)&pci_struct_offset, sizeof(pci_struct_offset));
if (pci_struct_offset > exp_rom_image_size) {
throw std::runtime_error("invalid PCI structure offset");
}
// verify PCI struct signature
img_file.seekg(pci_struct_offset, std::ios::beg);
img_file.read((char *)buf, sizeof(buf));
if (buf[0] != 'P' || buf[1] != 'C' || buf[2] != 'I' || buf[3] != 'R') {
throw std::runtime_error("unexpected PCI struct signature");
}
// find minimum rom size for the rom file (power of 2 >= 0x800)
for (this->exp_rom_size = 1 << 11; this->exp_rom_size < exp_rom_image_size; this->exp_rom_size <<= 1) {}
// ROM image ok - go ahead and load it
this->exp_rom_data = std::unique_ptr<uint8_t[]> (new uint8_t[this->exp_rom_size]);
img_file.seekg(0, std::ios::beg);
img_file.read((char *)this->exp_rom_data.get(), exp_rom_image_size);
memset(&this->exp_rom_data[exp_rom_image_size], 0xff, this->exp_rom_size - exp_rom_image_size);
if (exp_rom_image_size == this->exp_rom_size) {
LOG_F(INFO, "%s: loaded expansion rom (%d bytes).",
this->pci_name.c_str(), this->exp_rom_size);
}
else {
LOG_F(WARNING, "%s: loaded expansion rom (%d bytes adjusted to %d bytes).",
this->pci_name.c_str(), (int)exp_rom_image_size, this->exp_rom_size);
}
this->exp_bar_cfg = ~(this->exp_rom_size - 1);
}
catch (const std::exception& exc) {
LOG_F(ERROR, "PCIDevice: %s", exc.what());
result = -1;
}
img_file.close();
return result;
}
void PCIDevice::set_bar_value(int bar_num, uint32_t value)
{
uint32_t bar_cfg = this->bars_cfg[bar_num];
switch (bars_typ[bar_num]) {
case PCIBarType::Unused:
return;
case PCIBarType::Io_16_Bit:
case PCIBarType::Io_32_Bit:
this->bars[bar_num] = (value & bar_cfg & ~3) | (bar_cfg & 3);
break;
case PCIBarType::Mem_20_Bit:
case PCIBarType::Mem_32_Bit:
case PCIBarType::Mem_64_Bit_Lo:
this->bars[bar_num] = (value & bar_cfg & ~0xF) | (bar_cfg & 0xF);
break;
case PCIBarType::Mem_64_Bit_Hi:
this->bars[bar_num] = value & bar_cfg;
break;
}
if (value != 0xFFFFFFFFUL) // don't notify the device during BAR sizing
this->pci_notify_bar_change(bar_num);
}
void PCIDevice::finish_config_bars()
{
for (int bar_num = 0; bar_num < this->num_bars; bar_num++) {
uint32_t bar_cfg = this->bars_cfg[bar_num];
if (!bar_cfg) // skip unimplemented BARs
continue;
if (bar_cfg & 1) {
bars_typ[bar_num] = (bar_cfg & 0xffff0000) ? PCIBarType::Io_32_Bit :
PCIBarType::Io_16_Bit;
has_io_space = true;
}
else {
int pci_space_type = (bar_cfg >> 1) & 3;
switch (pci_space_type) {
case 0:
bars_typ[bar_num] = PCIBarType::Mem_32_Bit;
break;
case 1:
bars_typ[bar_num] = PCIBarType::Mem_20_Bit;
break;
case 2:
if (bar_num >= num_bars - 1) {
ABORT_F("%s: BAR %d cannot be 64-bit",
this->pci_name.c_str(), bar_num);
}
else if (this->bars_cfg[bar_num+1] == 0) {
ABORT_F("%s: 64-bit BAR %d has zero for upper 32 bits",
this->pci_name.c_str(), bar_num);
}
else {
bars_typ[bar_num++] = PCIBarType::Mem_64_Bit_Lo;
bars_typ[bar_num ] = PCIBarType::Mem_64_Bit_Hi;
}
break;
default:
ABORT_F("%s: invalid or unsupported PCI space type %d for BAR %d",
this->pci_name.c_str(), pci_space_type, bar_num);
} // switch pci_space_type
}
} // for bar_num
}
void PCIDevice::map_exp_rom_mem()
{
uint32_t rom_addr = this->exp_rom_bar & this->exp_bar_cfg;
if (rom_addr) {
if (this->exp_rom_addr != rom_addr) {
this->unmap_exp_rom_mem();
uint32_t rom_size = ~this->exp_bar_cfg + 1;
this->host_instance->pci_register_mmio_region(rom_addr, rom_size, this);
this->exp_rom_addr = rom_addr;
}
}
else {
this->unmap_exp_rom_mem();
}
}
void PCIDevice::unmap_exp_rom_mem()
{
if (this->exp_rom_addr) {
uint32_t rom_size = ~this->exp_bar_cfg + 1;
this->host_instance->pci_unregister_mmio_region(exp_rom_addr, rom_size, this);
this->exp_rom_addr = 0;
}
}
void PCIDevice::pci_wr_exp_rom_bar(uint32_t data)
{
if (!this->exp_bar_cfg) {
return;
}
if ((data & this->exp_bar_cfg) == this->exp_bar_cfg) {
// doing sizing
this->exp_rom_bar = (data & (this->exp_bar_cfg | 1));
} else {
this->exp_rom_bar = (data & (this->exp_bar_cfg | 1));
if (this->exp_rom_bar & 1) {
this->map_exp_rom_mem();
}
else {
this->unmap_exp_rom_mem();
}
}
}