dingusppc/devices/video/control.cpp
2024-01-19 23:48:22 +01:00

641 lines
22 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-23 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/** @file TNT on-board video output emulation. */
/** TNT on-board video comprises several components:
- Chaos ASIC that provides data bus buffering between the video subsystem
and the processor bus
- Control ASIC that provides addressing and control for the video subsystem
- RaDACal RAMDAC ASIC for generating RGB video stream to the monitor
- Athens clock generator for generating pixel clock
Some TNT boards can generate composite video output and thus include
two additional components:
- Sixty6 ASIC that converts RGB pixels stored in the VRAM to YUV color space
- SAA7187 encoder that converts pixels from Sixty6 to composite video signal
Kudos to joevt#3510 for his precious technical help and HW hacking.
*/
#include <devices/common/i2c/athens.h>
#include <devices/common/i2c/i2c.h>
#include <devices/deviceregistry.h>
#include <devices/video/control.h>
#include <endianswap.h>
#include <loguru.hpp>
#include <machines/machinebase.h>
#include <machines/machineproperties.h>
#include <memaccess.h>
#include <cinttypes>
namespace loguru {
enum : Verbosity {
Verbosity_RADACAL = loguru::Verbosity_INFO,
Verbosity_CONTROL = loguru::Verbosity_INFO
};
}
ControlVideo::ControlVideo()
: PCIDevice("Control-Video"), VideoCtrlBase(640, 480)
{
supports_types(HWCompType::PCI_HOST | HWCompType::PCI_DEV);
// get VRAM size in MBs and convert it to bytes
this->vram_size = GET_INT_PROP("gfxmem_size") << 20;
// calculate number of VRAM banks from VRAM size
this->num_banks = this->vram_size >> 21; // 2 MB => 1 bank, 4 MB >> 2 banks
// allocate VRAM
this->vram_ptr = std::unique_ptr<uint8_t[]> (new uint8_t[this->vram_size]);
// set up PCI configuration space header
this->vendor_id = PCI_VENDOR_APPLE;
this->device_id = 3;
this->class_rev = 0;
this->setup_bars({
{0, 0xFFFFFFFFUL}, // I/O region (4 bytes but it's weird because bit 1 is set)
{1, 0xFFFFF000UL}, // base address for the HW registers (4KB)
{2, 0xFC000000UL} // base address for the VRAM (64MB)
});
this->pci_notify_bar_change = [this](int bar_num) {
this->notify_bar_change(bar_num);
};
// initialize the video clock generator
this->clk_gen = std::unique_ptr<AthensClocks> (new AthensClocks(0x28));
// register the video clock generator with the I2C host
I2CBus* i2c_bus = dynamic_cast<I2CBus*>(gMachineObj->get_comp_by_type(HWCompType::I2C_HOST));
i2c_bus->register_device(0x28, this->clk_gen.get());
// attach IOBus Device #2 0xF301B000 ; register RaDACal with the I/O controller
GrandCentral* gc_obj = dynamic_cast<GrandCentral*>(gMachineObj->get_comp_by_name("GrandCentral"));
gc_obj->attach_iodevice(1, this);
// initialize display identification
this->display_id = std::unique_ptr<DisplayID> (new DisplayID());
}
void ControlVideo::notify_bar_change(int bar_num) {
switch (bar_num) {
case 0:
this->io_base = this->bars[bar_num] & ~3;
LOG_F(INFO, "Control: I/O space address set to 0x%08X", this->io_base);
break;
case 1:
if (this->regs_base != (this->bars[bar_num] & 0xFFFFFFF0UL)) {
this->regs_base = this->bars[bar_num] & 0xFFFFFFF0UL;
this->host_instance->pci_register_mmio_region(this->regs_base,
0x1000, this);
LOG_F(INFO, "Control: register aperture set to 0x%08X", this->regs_base);
}
break;
case 2:
if (this->vram_base != (this->bars[bar_num] & 0xFFFFFFF0UL)) {
this->vram_base = this->bars[bar_num] & 0xFFFFFFF0UL;
this->host_instance->pci_register_mmio_region(this->vram_base,
0x04000000, this);
LOG_F(INFO, "Control: VRAM aperture set to 0x%08X", this->vram_base);
}
break;
}
}
int ControlVideo::device_postinit() {
this->int_ctrl = dynamic_cast<InterruptCtrl*>(
gMachineObj->get_comp_by_type(HWCompType::INT_CTRL));
this->irq_id = 1UL << 26; // FIXME: hardcoded IRQ ID
this->vbl_cb = [this](uint8_t irq_line_state) {
if (irq_line_state != !!(this->int_status & VBL_IRQ_STAT)) {
if (irq_line_state)
this->int_status |= VBL_IRQ_STAT;
else
this->int_status &= ~VBL_IRQ_STAT;
if (this->int_enable & VBL_IRQ_EN)
this->int_ctrl->ack_int(this->irq_id, irq_line_state);
}
};
return 0;
}
static const char * get_name_controlreg(int offset) {
switch (offset >> 4) {
case ControlRegs::CUR_LINE : return "CUR_LINE";
case ControlRegs::VFPEQ : return "VFPEQ";
case ControlRegs::VFP : return "VFP";
case ControlRegs::VAL : return "VAL";
case ControlRegs::VBP : return "VBP";
case ControlRegs::VBPEQ : return "VBPEQ";
case ControlRegs::VSYNC : return "VSYNC";
case ControlRegs::VHLINE : return "VHLINE";
case ControlRegs::PIPE_DELAY : return "PIPE_DELAY";
case ControlRegs::HPIX : return "HPIX";
case ControlRegs::HFP : return "HFP";
case ControlRegs::HAL : return "HAL";
case ControlRegs::HBWAY : return "HBWAY";
case ControlRegs::HSP : return "HSP";
case ControlRegs::HEQ : return "HEQ";
case ControlRegs::HLFLN : return "HLFLN";
case ControlRegs::HSERR : return "HSERR";
case ControlRegs::CNTTST : return "CNTTST";
case ControlRegs::SWATCH_CTRL : return "SWATCH_CTRL";
case ControlRegs::GBASE : return "GBASE";
case ControlRegs::ROW_WORDS : return "ROW_WORDS";
case ControlRegs::MON_SENSE : return "MON_SENSE";
case ControlRegs::MISC_ENABLES : return "MISC_ENABLES";
case ControlRegs::GSC_DIVIDE : return "GSC_DIVIDE";
case ControlRegs::REFRESH_COUNT : return "REFRESH_COUNT";
case ControlRegs::INT_ENABLE : return "INT_ENABLE";
case ControlRegs::INT_STATUS : return "INT_STATUS";
default : return "unknown";
}
}
uint32_t ControlVideo::read(uint32_t rgn_start, uint32_t offset, int size)
{
if (rgn_start == this->vram_base) {
if (offset >= 0x800000) {
// HACK: writing to VRAM in 128bit mode with only the standard
// bank populated seems to replicate the first 64bit portion of data
// in the second 64bit portion. This "feature" is used by
// the Mac OS driver to detect how much physical VRAM is installed.
// I handle this case here because reads from VRAM seem to happen
// far less frequently than writes.
if ((this->enables & VRAM_WIDE_MODE) && this->num_banks == 1)
offset &= ~8UL;
return read_mem(&this->vram_ptr[offset & 0x3FFFFF], size);
}
LOG_F(ERROR, "%s: read from unmapped aperture address 0x%X", this->name.c_str(),
this->vram_base + offset);
return 0;
}
uint32_t value;
if (rgn_start == this->regs_base) {
switch (offset >> 4) {
case ControlRegs::CUR_LINE:
value = 0; // current active video line should relate this to refresh rate
LOG_F(ERROR, "Control: read CUR_LINE %03x", offset);
break;
case ControlRegs::VFPEQ:
case ControlRegs::VFP:
case ControlRegs::VAL:
case ControlRegs::VBP:
case ControlRegs::VBPEQ:
case ControlRegs::VSYNC:
case ControlRegs::VHLINE:
case ControlRegs::PIPE_DELAY:
case ControlRegs::HPIX:
case ControlRegs::HFP:
case ControlRegs::HAL:
case ControlRegs::HBWAY:
case ControlRegs::HSP:
case ControlRegs::HEQ:
case ControlRegs::HLFLN:
case ControlRegs::HSERR:
value = this->swatch_params[(offset >> 4) - ControlRegs::VFPEQ];
break;
case ControlRegs::CNTTST:
value = 0;
break;
case ControlRegs::SWATCH_CTRL:
value = this->swatch_ctrl;
break;
case ControlRegs::GBASE:
value = this->fb_base;
break;
case ControlRegs::ROW_WORDS:
value = this->row_words;
break;
case ControlRegs::MON_SENSE:
value = this->cur_mon_id << 6;
break;
case ControlRegs::MISC_ENABLES:
value = this->enables;
break;
case ControlRegs::GSC_DIVIDE:
value = this->clock_divider;
break;
case ControlRegs::REFRESH_COUNT:
value = 0;
break;
case ControlRegs::INT_STATUS:
value = this->int_status;
break;
case ControlRegs::INT_ENABLE:
value = this->int_enable;
break;
default:
LOG_F(ERROR, "Control: read %03x", offset);
value = 0;
}
if (offset & 3)
LOG_F(WARNING, "Control: unaligned read from register 0x%X", offset >> 4);
return BYTESWAP_SIZED(value, size);;
}
return 0;
}
void ControlVideo::write(uint32_t rgn_start, uint32_t offset, uint32_t value, int size)
{
if (rgn_start == this->vram_base) {
if (offset >= 0x800000) {
write_mem(&this->vram_ptr[offset & 0x3FFFFF], value, size);
} else {
LOG_F(ERROR, "%s: write to unmapped aperture address 0x%X", this->name.c_str(),
this->vram_base + offset);
}
return;
}
if (rgn_start == this->regs_base) {
value = BYTESWAP_32(value);
switch (offset >> 4) {
case ControlRegs::PIPE_DELAY:
this->swatch_params[(offset >> 4) - ControlRegs::VFPEQ] = value & 0x3FF;
break;
case ControlRegs::HEQ:
this->swatch_params[(offset >> 4) - ControlRegs::VFPEQ] = value & 0xFFU;
break;
case ControlRegs::VFPEQ:
case ControlRegs::VFP:
case ControlRegs::VAL:
case ControlRegs::VBP:
case ControlRegs::VBPEQ:
case ControlRegs::VSYNC:
case ControlRegs::VHLINE:
case ControlRegs::HPIX:
case ControlRegs::HFP:
case ControlRegs::HAL:
case ControlRegs::HBWAY:
case ControlRegs::HSP:
case ControlRegs::HLFLN:
case ControlRegs::HSERR:
this->swatch_params[(offset >> 4) - ControlRegs::VFPEQ] = value & 0xFFF;
break;
case ControlRegs::CNTTST:
if (value)
LOG_F(WARNING, "%s: CNTTST set to 0x%X", this->name.c_str(), value);
break;
case ControlRegs::SWATCH_CTRL:
if ((this->swatch_ctrl ^ value) & DISABLE_TIMING) {
this->swatch_ctrl = value;
this->strobe_counter = 0;
} else if ((this->swatch_ctrl ^ value) & RESET_TIMING) {
this->swatch_ctrl = value;
if (value & RESET_TIMING) { // count 0-to-1 transitions
this->strobe_counter++;
if (this->strobe_counter >= 2) {
if (value & DISABLE_TIMING)
disable_display();
else
enable_display();
}
}
} else
this->swatch_ctrl = value;
break;
case ControlRegs::GBASE:
this->fb_base = value & 0x3FFFE0;
break;
case ControlRegs::ROW_WORDS:
this->row_words = value & 0x7FE0;
break;
case ControlRegs::MON_SENSE: {
uint8_t dirs = ((value >> 3) & 7) ^ 7;
uint8_t levels = ((value & 7) & dirs) | (dirs ^ 7);
this->cur_mon_id = this->display_id->read_monitor_sense(levels, dirs);
}
break;
case ControlRegs::MISC_ENABLES:
if ((this->enables ^ value) & BLANK_DISABLE) {
if (value & BLANK_DISABLE)
this->blank_on = false;
else {
this->blank_on = true;
this->blank_display();
}
}
this->enables = value;
if (this->enables & FB_ENDIAN_LITTLE)
ABORT_F("%s: little-endian framebuffer is not implemented yet",
this->name.c_str());
break;
case ControlRegs::GSC_DIVIDE:
this->clock_divider = value & 3;
break;
case ControlRegs::REFRESH_COUNT:
LOG_F(9, "Control: VRAM refresh count set to %d", value);
break;
case ControlRegs::INT_ENABLE:
if ((this->int_enable ^ value) & VBL_IRQ_CLR) {
// clear VBL IRQ on a 1-to-0 transition of INT_ENABLE[VBL_IRQ_CLR]
if (!(value & VBL_IRQ_CLR))
this->vbl_cb(0);
}
this->int_enable = value & 0x0F;
break;
default:
LOG_F(ERROR, "Control: write %03x = %0*x", offset, size * 2, value);
}
}
}
void ControlVideo::enable_display()
{
int new_width, new_height, clk_divisor;
// get pixel frequency from Athens
this->pixel_clock = this->clk_gen->get_dot_freq();
// get RaDACal clock divisor
clk_divisor = 1 << ((rad_cr >> 6) + 1);
// calculate active_width and active_height from video timing parameters
new_width = swatch_params[ControlRegs::HFP-1] - swatch_params[ControlRegs::HAL-1];
new_height = swatch_params[ControlRegs::VFP-1] - swatch_params[ControlRegs::VAL-1];
new_width *= clk_divisor;
new_height >>= 1; // FIXME: assume non-interlaced mode for now
this->active_width = new_width;
this->active_height = new_height;
// set framebuffer parameters
this->fb_ptr = &this->vram_ptr[this->fb_base];
this->fb_pitch = this->row_words;
// get pixel depth from RaDACal
switch ((this->rad_cr >> 2) & 3) {
case 0:
this->pixel_depth = 8;
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->convert_frame_8bpp_indexed(dst_buf, dst_pitch);
};
break;
case 1:
this->pixel_depth = 16;
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->convert_frame_15bpp(dst_buf, dst_pitch);
};
break;
case 2:
this->pixel_depth = 32;
this->fb_ptr += 16;
this->convert_fb_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->convert_frame_32bpp_BE(dst_buf, dst_pitch);
};
break;
default:
LOG_F(ERROR, "RaDACal: Invalid pixel depth code!");
}
// calculate display refresh rate
this->hori_blank = swatch_params[ControlRegs::HAL-1] +
(swatch_params[ControlRegs::HSP-1] - swatch_params[ControlRegs::HFP-1]);
this->hori_blank *= clk_divisor;
this->vert_blank = swatch_params[ControlRegs::VAL-1] +
(swatch_params[ControlRegs::VSYNC-1] - swatch_params[ControlRegs::VFP-1]);
this->vert_blank >>= 1;
this->hori_total = this->hori_blank + new_width;
this->vert_total = this->vert_blank + new_height;
this->stop_refresh_task();
// set up periodic timer for display updates
if (this->active_width > 0 && this->active_height > 0 && this->pixel_clock > 0) {
this->refresh_rate = (double)(this->pixel_clock) / (this->hori_total * this->vert_total);
LOG_F(INFO, "Control: refresh rate set to %f Hz", this->refresh_rate);
this->start_refresh_task();
this->blank_on = false;
LOG_F(CONTROL, "Control: display enabled");
this->crtc_on = true;
}
else {
LOG_F(CONTROL, "Control: display not enabled");
this->blank_on = true;
this->crtc_on = false;
}
}
void ControlVideo::disable_display()
{
this->crtc_on = false;
LOG_F(INFO, "Control: display disabled");
}
void ControlVideo::measure_hw_cursor() {
uint8_t *src_fw_ptr = &this->vram_ptr[this->fb_base];
uint8_t *src_bw_ptr = &this->vram_ptr[this->fb_base +
this->fb_pitch * (this->active_height - 1)];
int cur_pos_y_start = -1;
int cur_pos_y_end = -1;
// forward scanning to find the first line of the cursor
for (int h = 0; h < this->active_height; h++, src_fw_ptr += this->fb_pitch) {
if (((uint64_t *)src_fw_ptr)[0] | ((uint64_t *)src_fw_ptr)[1]) {
cur_pos_y_start = h;
break;
}
}
if (cur_pos_y_start < 0)
return; // bail out because no cursor data start was found
// backward scanning to find the last line of the cursor
for (int h = this->active_height - 1; h >= 0; h--, src_bw_ptr -= this->fb_pitch) {
if (((uint64_t *)src_bw_ptr)[0] | ((uint64_t *)src_bw_ptr)[1]) {
cur_pos_y_end = h;
break;
}
}
if (cur_pos_y_end < 0)
return; // bail out because no cursor data end was found
this->rad_cursor_height = cur_pos_y_end - cur_pos_y_start + 1;
this->rad_cur_ypos = cur_pos_y_start;
}
void ControlVideo::draw_hw_cursor(uint8_t *dst_buf, int dst_pitch) {
uint8_t *src_row = &this->vram_ptr[this->fb_base];
uint8_t *dst_row = dst_buf;
this->measure_hw_cursor();
if (this->rad_cur_rgn_pos >= this->active_width)
return;
src_row += this->fb_pitch * this->rad_cur_ypos;
dst_row += this->rad_cur_ypos * dst_pitch + this->rad_cur_rgn_pos * sizeof(uint32_t);
dst_pitch -= 32 * sizeof(uint32_t);
for (int h = 0; h < this->rad_cursor_height; h++) {
for (int x = 0; x < 2; x++) { // two sets of 16 pixels
uint64_t pix_data = READ_QWORD_BE_A(src_row + x * 8);
if (!pix_data) { // skip processing of 16 transparent pixels
dst_row += 16 * sizeof(uint32_t);
break;
}
for (int p = 0; p < 16; p++) {
uint8_t pix = pix_data >> 60; // each pixel is 4 bits wide
if (pix & 8) { // check control bit: 0 - transparent, 1 - opaque
WRITE_DWORD_LE_A(dst_row, this->cursor_clut[pix & 7]);
}
pix_data <<= 4;
dst_row += sizeof(uint32_t);
}
}
src_row += this->fb_pitch;
dst_row += dst_pitch;
}
}
// ========================== RaDACal related stuff ==========================
uint16_t ControlVideo::iodev_read(uint32_t address)
{
uint16_t result;
switch (address) {
case RadacalRegs::MULTI:
switch (this->rad_addr) {
case RadacalRegs::MISC_CTRL:
result = this->rad_cr;
break;
default:
LOG_F(ERROR, "RaDACal: read MULTI 0x%02x", this->rad_addr);
result = 0;
}
break;
case RadacalRegs::CLUT_DATA:
LOG_F(ERROR, "RaDACal: read CLUT_DATA 0x%02x", rad_addr);
result = 0;
break;
default:
LOG_F(ERROR, "RaDACal: read 0x%02x", address);
result = 0;
}
return result;
}
void ControlVideo::iodev_write(uint32_t address, uint16_t value)
{
switch (address) {
case RadacalRegs::ADDRESS:
this->rad_addr = value;
this->comp_index = 0;
break;
case RadacalRegs::CURSOR_CLUT:
this->clut_color[this->comp_index++] = value;
if (this->comp_index >= 3) {
this->cursor_clut[this->rad_addr & 7] = (this->clut_color[0] << 16) |
(this->clut_color[1] << 8) | this->clut_color[2];
this->rad_addr++; // auto-increment CLUT address
this->comp_index = 0;
}
break;
case RadacalRegs::MULTI:
switch (this->rad_addr) {
case RadacalRegs::CURSOR_POS_HI:
this->rad_cur_rgn_pos = (value << 8) | this->rad_cur_pos_lo;
break;
case RadacalRegs::CURSOR_POS_LO:
this->rad_cur_pos_lo = value;
break;
case RadacalRegs::MISC_CTRL:
if (bit_changed(this->rad_cr, value, 1)) {
if (value & 2) {
//LOG_F(WARNING, "RaDACal: HW cursor enabled!");
this->measure_hw_cursor();
this->cursor_ovl_cb = [this](uint8_t *dst_buf, int dst_pitch) {
this->draw_hw_cursor(dst_buf, dst_pitch);
};
} else {
//LOG_F(WARNING, "RaDACal: HW cursor disabled!");
this->cursor_ovl_cb = nullptr;
}
}
this->rad_cr = value;
break;
case RadacalRegs::DBL_BUF_CTRL:
this->rad_dbl_buf_cr = value;
break;
case RadacalRegs::TEST_CTRL:
this->rad_tst_cr = value;
if (value & 1)
LOG_F(WARNING, "RaDACal: DAC test enabled!");
break;
default:
LOG_F(ERROR, "RaDACal: write MULTI 0x%02x = 0x%02x", this->rad_addr, value);
}
break;
case RadacalRegs::CLUT_DATA:
this->clut_color[this->comp_index++] = value;
if (this->comp_index >= 3) {
this->set_palette_color(this->rad_addr, clut_color[0],
clut_color[1], clut_color[2], 0xFF);
this->rad_addr++; // auto-increment CLUT address
this->comp_index = 0;
}
break;
default:
LOG_F(ERROR, "RaDACal: write 0x%02x = 0x%02x", address, value);
}
}
// ========================== Device registry stuff ==========================
static const PropMap Control_Properties = {
{"gfxmem_size",
new IntProperty( 2, vector<uint32_t>({2, 4}))},
{"mon_id",
new StrProperty("AppleVision1710")},
};
static const DeviceDescription Control_Descriptor = {
ControlVideo::create, {}, Control_Properties
};
REGISTER_DEVICE(ControlVideo, Control_Descriptor);