dingusppc/cpu/ppc/poweropcodes.cpp
2024-03-24 12:21:19 -07:00

637 lines
20 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-23 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
// The Power-specific opcodes for the processor - ppcopcodes.cpp
// Any shared opcodes are in ppcopcodes.cpp
#include "ppcemu.h"
#include "ppcmacros.h"
#include "ppcmmu.h"
#include <stdint.h>
// Affects the XER register's SO and OV Bits
inline void power_setsoov(uint32_t a, uint32_t b, uint32_t d) {
if ((a ^ b) & (a ^ d) & 0x80000000UL) {
ppc_state.spr[SPR::XER] |= 0xC0000000UL;
} else {
ppc_state.spr[SPR::XER] &= 0xBFFFFFFFUL;
}
}
/** mask generator for rotate and shift instructions (§ 4.2.1.4 PowerpC PEM) */
static inline uint32_t power_rot_mask(unsigned rot_mb, unsigned rot_me) {
uint32_t m1 = 0xFFFFFFFFUL >> rot_mb;
uint32_t m2 = uint32_t(0xFFFFFFFFUL << (31 - rot_me));
return ((rot_mb <= rot_me) ? m2 & m1 : m1 | m2);
}
template <bool rec, bool ov>
void dppc_interpreter::power_abs() {
uint32_t ppc_result_d;
ppc_grab_regsda(ppc_cur_instruction);
if (ppc_result_a == 0x80000000) {
ppc_result_d = ppc_result_a;
if (ov)
ppc_state.spr[SPR::XER] |= 0xC0000000;
} else {
ppc_result_d = ppc_result_a & 0x7FFFFFFF;
}
if (rec)
ppc_changecrf0(ppc_result_d);
ppc_store_iresult_reg(reg_d, ppc_result_d);
}
template void dppc_interpreter::power_abs<RC0, OV0>();
template void dppc_interpreter::power_abs<RC0, OV1>();
template void dppc_interpreter::power_abs<RC1, OV0>();
template void dppc_interpreter::power_abs<RC1, OV1>();
void dppc_interpreter::power_clcs() {
uint32_t ppc_result_d;
ppc_grab_regsda(ppc_cur_instruction);
switch (reg_a) {
case 12: //instruction cache line size
case 13: //data cache line size
case 14: //minimum line size
case 15: //maximum line size
ppc_result_d = 64;
break;
default:
ppc_result_d = 0;
}
ppc_store_iresult_reg(reg_d, ppc_result_d);
}
template <bool rec, bool ov>
void dppc_interpreter::power_div() {
uint32_t ppc_result_d;
ppc_grab_regsdab(ppc_cur_instruction);
uint64_t dividend = ((uint64_t)ppc_result_a << 32) | ppc_state.spr[SPR::MQ];
int32_t divisor = ppc_result_b;
if ((ppc_result_a == 0x80000000UL && divisor == -1) || !divisor) {
ppc_state.spr[SPR::MQ] = 0;
ppc_result_d = 0x80000000UL; // -2^31 aka INT32_MIN
} else {
ppc_result_d = uint32_t(dividend / divisor);
ppc_state.spr[SPR::MQ] = dividend % divisor;
}
if (ov)
power_setsoov(ppc_result_b, ppc_result_a, ppc_result_d);
if (rec)
ppc_changecrf0(ppc_result_d);
ppc_store_iresult_reg(reg_d, ppc_result_d);
}
template void dppc_interpreter::power_div<RC0, OV0>();
template void dppc_interpreter::power_div<RC0, OV1>();
template void dppc_interpreter::power_div<RC1, OV0>();
template void dppc_interpreter::power_div<RC1, OV1>();
template <bool rec, bool ov>
void dppc_interpreter::power_divs() {
ppc_grab_regsdab(ppc_cur_instruction);
uint32_t ppc_result_d = ppc_result_a / ppc_result_b;
ppc_state.spr[SPR::MQ] = (ppc_result_a % ppc_result_b);
if (ov)
power_setsoov(ppc_result_b, ppc_result_a, ppc_result_d);
if (rec)
ppc_changecrf0(ppc_result_d);
ppc_store_iresult_reg(reg_d, ppc_result_d);
}
template void dppc_interpreter::power_divs<RC0, OV0>();
template void dppc_interpreter::power_divs<RC0, OV1>();
template void dppc_interpreter::power_divs<RC1, OV0>();
template void dppc_interpreter::power_divs<RC1, OV1>();
template <bool rec, bool ov>
void dppc_interpreter::power_doz() {
ppc_grab_regsdab(ppc_cur_instruction);
uint32_t ppc_result_d = (int32_t(ppc_result_a) >= int32_t(ppc_result_b))\
? 0 : ppc_result_b - ppc_result_a;
if (rec)
ppc_changecrf0(ppc_result_d);
if (ov)
power_setsoov(ppc_result_a, ppc_result_b, ppc_result_d);
ppc_store_iresult_reg(reg_d, ppc_result_d);
}
template void dppc_interpreter::power_doz<RC0, OV0>();
template void dppc_interpreter::power_doz<RC0, OV1>();
template void dppc_interpreter::power_doz<RC1, OV0>();
template void dppc_interpreter::power_doz<RC1, OV1>();
void dppc_interpreter::power_dozi() {
uint32_t ppc_result_d;
ppc_grab_regsdasimm(ppc_cur_instruction);
if (((int32_t)ppc_result_a) > simm) {
ppc_result_d = 0;
} else {
ppc_result_d = simm - ppc_result_a;
}
ppc_store_iresult_reg(reg_d, ppc_result_d);
}
template <bool rec>
void dppc_interpreter::power_lscbx() {
ppc_grab_regsdab(ppc_cur_instruction);
ppc_effective_address = ppc_result_b + (reg_a ? ppc_result_a : 0);
uint8_t return_value = 0;
uint32_t bytes_to_load = (ppc_state.spr[SPR::XER] & 0x7F);
uint32_t bytes_copied = 0;
uint8_t matching_byte = (uint8_t)(ppc_state.spr[SPR::XER] >> 8);
uint32_t ppc_result_d = 0;
// for storing each byte
uint32_t bitmask = 0xFF000000;
uint8_t shift_amount = 24;
while (bytes_to_load > 0) {
return_value = mmu_read_vmem<uint8_t>(ppc_effective_address);
ppc_result_d = (ppc_result_d & ~bitmask) | (return_value << shift_amount);
if (!shift_amount) {
if (reg_d != reg_a && reg_d != reg_b)
ppc_store_iresult_reg(reg_d, ppc_result_d);
reg_d = (reg_d + 1) & 31;
bitmask = 0xFF000000;
shift_amount = 24;
} else {
bitmask >>= 8;
shift_amount -= 8;
}
ppc_effective_address++;
bytes_copied++;
bytes_to_load--;
if (return_value == matching_byte)
break;
}
// store partiallly loaded register if any
if (shift_amount != 24 && reg_d != reg_a && reg_d != reg_b)
ppc_store_iresult_reg(reg_d, ppc_result_d);
ppc_state.spr[SPR::XER] = (ppc_state.spr[SPR::XER] & ~0x7F) | bytes_copied;
if (rec)
ppc_changecrf0(ppc_result_d);
}
template void dppc_interpreter::power_lscbx<RC0>();
template void dppc_interpreter::power_lscbx<RC1>();
template <bool rec>
void dppc_interpreter::power_maskg() {
ppc_grab_regssab(ppc_cur_instruction);
uint32_t mask_start = ppc_result_d & 31;
uint32_t mask_end = ppc_result_b & 31;
uint32_t insert_mask = 0;
if (mask_start < (mask_end + 1)) {
insert_mask = power_rot_mask(mask_start, mask_end);
}
else if (mask_start == (mask_end + 1)) {
insert_mask = 0xFFFFFFFF;
}
else {
insert_mask = ~(power_rot_mask(mask_end + 1, mask_start - 1));
}
ppc_result_a = insert_mask;
if (rec)
ppc_changecrf0(ppc_result_d);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_maskg<RC0>();
template void dppc_interpreter::power_maskg<true>();
template <bool rec>
void dppc_interpreter::power_maskir() {
ppc_grab_regssab(ppc_cur_instruction);
ppc_result_a = (ppc_result_a & ~ppc_result_b) | (ppc_result_d & ppc_result_b);
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_maskir<RC0>();
template void dppc_interpreter::power_maskir<true>();
template <bool rec, bool ov>
void dppc_interpreter::power_mul() {
ppc_grab_regsdab(ppc_cur_instruction);
uint64_t product;
product = ((uint64_t)ppc_result_a) * ((uint64_t)ppc_result_b);
uint32_t ppc_result_d = ((uint32_t)(product >> 32));
ppc_state.spr[SPR::MQ] = ((uint32_t)(product));
if (rec)
ppc_changecrf0(ppc_result_d);
if (ov)
power_setsoov(ppc_result_a, ppc_result_b, ppc_result_d);
ppc_store_iresult_reg(reg_d, ppc_result_d);
}
template void dppc_interpreter::power_mul<RC0, OV0>();
template void dppc_interpreter::power_mul<RC0, OV1>();
template void dppc_interpreter::power_mul<RC1, OV0>();
template void dppc_interpreter::power_mul<RC1, OV1>();
template <bool rec, bool ov>
void dppc_interpreter::power_nabs() {
ppc_grab_regsda(ppc_cur_instruction);
uint32_t ppc_result_d = ppc_result_a & 0x80000000 ? ppc_result_a : -ppc_result_a;
if (rec)
ppc_changecrf0(ppc_result_d);
if (ov)
ppc_state.spr[SPR::XER] &= 0xBFFFFFFFUL;
ppc_store_iresult_reg(reg_d, ppc_result_d);
}
template void dppc_interpreter::power_nabs<RC0, OV0>();
template void dppc_interpreter::power_nabs<RC0, OV1>();
template void dppc_interpreter::power_nabs<RC1, OV0>();
template void dppc_interpreter::power_nabs<RC1, OV1>();
void dppc_interpreter::power_rlmi() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_mb = (ppc_cur_instruction >> 6) & 31;
unsigned rot_me = (ppc_cur_instruction >> 1) & 31;
unsigned rot_sh = ppc_result_b & 31;
uint32_t r = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
uint32_t mask = power_rot_mask(rot_mb, rot_me);
ppc_result_a = ((r & mask) | (ppc_result_a & ~mask));
if ((ppc_cur_instruction & 0x01) == 1)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template <bool rec>
void dppc_interpreter::power_rrib() {
ppc_grab_regssab(ppc_cur_instruction);
if (ppc_result_d & 0x80000000) {
ppc_result_a |= ((ppc_result_d & 0x80000000) >> ppc_result_b);
} else {
ppc_result_a &= ~((ppc_result_d & 0x80000000) >> ppc_result_b);
}
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_rrib<RC0>();
template void dppc_interpreter::power_rrib<RC1>();
template <bool rec>
void dppc_interpreter::power_sle() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 31;
ppc_result_a = ppc_result_d << rot_sh;
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
ppc_store_iresult_reg(reg_a, ppc_result_a);
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_sle<RC0>();
template void dppc_interpreter::power_sle<RC1>();
template <bool rec>
void dppc_interpreter::power_sleq() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 31;
uint32_t r = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
uint32_t mask = power_rot_mask(0, 31 - rot_sh);
ppc_result_a = ((r & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
ppc_state.spr[SPR::MQ] = r;
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_sleq<RC0>();
template void dppc_interpreter::power_sleq<RC1>();
template <bool rec>
void dppc_interpreter::power_sliq() {
ppc_grab_regssa(ppc_cur_instruction);
unsigned rot_sh = (ppc_cur_instruction >> 11) & 31;
ppc_result_a = ppc_result_d << rot_sh;
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_sliq<RC0>();
template void dppc_interpreter::power_sliq<RC1>();
template <bool rec>
void dppc_interpreter::power_slliq() {
ppc_grab_regssa(ppc_cur_instruction);
unsigned rot_sh = (ppc_cur_instruction >> 11) & 31;
uint32_t r = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
uint32_t mask = power_rot_mask(0, 31 - rot_sh);
ppc_result_a = ((r & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
ppc_state.spr[SPR::MQ] = r;
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_slliq<RC0>();
template void dppc_interpreter::power_slliq<RC1>();
template <bool rec>
void dppc_interpreter::power_sllq() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 31;
uint32_t r = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
uint32_t mask = power_rot_mask(0, 31 - rot_sh);
if (ppc_result_b >= 0x20) {
ppc_result_a = (ppc_state.spr[SPR::MQ] & mask);
}
else {
ppc_result_a = ((r & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
}
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_sllq<RC0>();
template void dppc_interpreter::power_sllq<RC1>();
template <bool rec>
void dppc_interpreter::power_slq() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 31;
if (ppc_result_b >= 0x20) {
ppc_result_a = ppc_result_d << rot_sh;
} else {
ppc_result_a = 0;
}
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
}
template void dppc_interpreter::power_slq<RC0>();
template void dppc_interpreter::power_slq<RC1>();
template <bool rec>
void dppc_interpreter::power_sraiq() {
ppc_grab_regssa(ppc_cur_instruction);
unsigned rot_sh = (ppc_cur_instruction >> 11) & 0x1F;
uint32_t mask = (1 << rot_sh) - 1;
ppc_result_a = (int32_t)ppc_result_d >> rot_sh;
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
if ((ppc_result_d & 0x80000000UL) && (ppc_result_d & mask)) {
ppc_state.spr[SPR::XER] |= 0x20000000UL;
} else {
ppc_state.spr[SPR::XER] &= 0xDFFFFFFFUL;
}
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_sraiq<RC0>();
template void dppc_interpreter::power_sraiq<RC1>();
template <bool rec>
void dppc_interpreter::power_sraq() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 0x1F;
uint32_t mask = (1 << rot_sh) - 1;
ppc_result_a = (int32_t)ppc_result_d >> rot_sh;
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
if ((ppc_result_d & 0x80000000UL) && (ppc_result_d & mask)) {
ppc_state.spr[SPR::XER] |= 0x20000000UL;
} else {
ppc_state.spr[SPR::XER] &= 0xDFFFFFFFUL;
}
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_sraq<RC0>();
template void dppc_interpreter::power_sraq<RC1>();
template <bool rec>
void dppc_interpreter::power_sre() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 31;
ppc_result_a = ppc_result_d >> rot_sh;
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_sre<RC0>();
template void dppc_interpreter::power_sre<RC1>();
template <bool rec>
void dppc_interpreter::power_srea() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 0x1F;
ppc_result_a = (int32_t)ppc_result_d >> rot_sh;
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
if ((ppc_result_d & 0x80000000UL) && (ppc_result_d & rot_sh)) {
ppc_state.spr[SPR::XER] |= 0x20000000UL;
} else {
ppc_state.spr[SPR::XER] &= 0xDFFFFFFFUL;
}
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_srea<RC0>();
template void dppc_interpreter::power_srea<RC1>();
template <bool rec>
void dppc_interpreter::power_sreq() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 31;
unsigned mask = power_rot_mask(rot_sh, 31);
ppc_result_a = ((rot_sh & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
ppc_state.spr[SPR::MQ] = rot_sh;
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_sreq<RC0>();
template void dppc_interpreter::power_sreq<RC1>();
template <bool rec>
void dppc_interpreter::power_sriq() {
ppc_grab_regssa(ppc_cur_instruction);
unsigned rot_sh = (ppc_cur_instruction >> 11) & 31;
ppc_result_a = ppc_result_d >> rot_sh;
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_sriq<RC0>();
template void dppc_interpreter::power_sriq<RC1>();
template <bool rec>
void dppc_interpreter::power_srliq() {
ppc_grab_regssa(ppc_cur_instruction);
unsigned rot_sh = (ppc_cur_instruction >> 11) & 31;
uint32_t r = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
unsigned mask = power_rot_mask(rot_sh, 31);
ppc_result_a = ((r & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
ppc_state.spr[SPR::MQ] = r;
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_srliq<RC0>();
template void dppc_interpreter::power_srliq<RC1>();
template <bool rec>
void dppc_interpreter::power_srlq() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 31;
uint32_t r = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
unsigned mask = power_rot_mask(rot_sh, 31);
if (ppc_result_b >= 0x20) {
ppc_result_a = (ppc_state.spr[SPR::MQ] & mask);
}
else {
ppc_result_a = ((r & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
}
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_srlq<RC0>();
template void dppc_interpreter::power_srlq<RC1>();
template <bool rec>
void dppc_interpreter::power_srq() {
ppc_grab_regssab(ppc_cur_instruction);
unsigned rot_sh = ppc_result_b & 31;
if (ppc_result_b >= 0x20) {
ppc_result_a = 0;
} else {
ppc_result_a = ppc_result_d >> rot_sh;
}
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_store_iresult_reg(reg_a, ppc_result_a);
}
template void dppc_interpreter::power_srq<RC0>();
template void dppc_interpreter::power_srq<RC1>();