mirror of
https://github.com/dingusdev/dingusppc.git
synced 2024-11-18 22:05:51 +00:00
637 lines
20 KiB
C++
637 lines
20 KiB
C++
/*
|
|
DingusPPC - The Experimental PowerPC Macintosh emulator
|
|
Copyright (C) 2018-23 divingkatae and maximum
|
|
(theweirdo) spatium
|
|
|
|
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// The Power-specific opcodes for the processor - ppcopcodes.cpp
|
|
// Any shared opcodes are in ppcopcodes.cpp
|
|
|
|
#include "ppcemu.h"
|
|
#include "ppcmacros.h"
|
|
#include "ppcmmu.h"
|
|
#include <stdint.h>
|
|
|
|
// Affects the XER register's SO and OV Bits
|
|
|
|
inline void power_setsoov(uint32_t a, uint32_t b, uint32_t d) {
|
|
if ((a ^ b) & (a ^ d) & 0x80000000UL) {
|
|
ppc_state.spr[SPR::XER] |= 0xC0000000UL;
|
|
} else {
|
|
ppc_state.spr[SPR::XER] &= 0xBFFFFFFFUL;
|
|
}
|
|
}
|
|
|
|
/** mask generator for rotate and shift instructions (§ 4.2.1.4 PowerpC PEM) */
|
|
static inline uint32_t power_rot_mask(unsigned rot_mb, unsigned rot_me) {
|
|
uint32_t m1 = 0xFFFFFFFFUL >> rot_mb;
|
|
uint32_t m2 = uint32_t(0xFFFFFFFFUL << (31 - rot_me));
|
|
return ((rot_mb <= rot_me) ? m2 & m1 : m1 | m2);
|
|
}
|
|
|
|
template <bool rec, bool ov>
|
|
void dppc_interpreter::power_abs() {
|
|
uint32_t ppc_result_d;
|
|
ppc_grab_regsda(ppc_cur_instruction);
|
|
if (ppc_result_a == 0x80000000) {
|
|
ppc_result_d = ppc_result_a;
|
|
if (ov)
|
|
ppc_state.spr[SPR::XER] |= 0xC0000000;
|
|
|
|
} else {
|
|
ppc_result_d = ppc_result_a & 0x7FFFFFFF;
|
|
}
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_d);
|
|
|
|
ppc_store_iresult_reg(reg_d, ppc_result_d);
|
|
}
|
|
|
|
template void dppc_interpreter::power_abs<RC0, OV0>();
|
|
template void dppc_interpreter::power_abs<RC0, OV1>();
|
|
template void dppc_interpreter::power_abs<RC1, OV0>();
|
|
template void dppc_interpreter::power_abs<RC1, OV1>();
|
|
|
|
void dppc_interpreter::power_clcs() {
|
|
uint32_t ppc_result_d;
|
|
ppc_grab_regsda(ppc_cur_instruction);
|
|
switch (reg_a) {
|
|
case 12: //instruction cache line size
|
|
case 13: //data cache line size
|
|
case 14: //minimum line size
|
|
case 15: //maximum line size
|
|
ppc_result_d = 64;
|
|
break;
|
|
default:
|
|
ppc_result_d = 0;
|
|
}
|
|
|
|
ppc_store_iresult_reg(reg_d, ppc_result_d);
|
|
}
|
|
|
|
template <bool rec, bool ov>
|
|
void dppc_interpreter::power_div() {
|
|
uint32_t ppc_result_d;
|
|
ppc_grab_regsdab(ppc_cur_instruction);
|
|
|
|
uint64_t dividend = ((uint64_t)ppc_result_a << 32) | ppc_state.spr[SPR::MQ];
|
|
int32_t divisor = ppc_result_b;
|
|
|
|
if ((ppc_result_a == 0x80000000UL && divisor == -1) || !divisor) {
|
|
ppc_state.spr[SPR::MQ] = 0;
|
|
ppc_result_d = 0x80000000UL; // -2^31 aka INT32_MIN
|
|
} else {
|
|
ppc_result_d = uint32_t(dividend / divisor);
|
|
ppc_state.spr[SPR::MQ] = dividend % divisor;
|
|
}
|
|
|
|
if (ov)
|
|
power_setsoov(ppc_result_b, ppc_result_a, ppc_result_d);
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_d);
|
|
|
|
ppc_store_iresult_reg(reg_d, ppc_result_d);
|
|
}
|
|
|
|
template void dppc_interpreter::power_div<RC0, OV0>();
|
|
template void dppc_interpreter::power_div<RC0, OV1>();
|
|
template void dppc_interpreter::power_div<RC1, OV0>();
|
|
template void dppc_interpreter::power_div<RC1, OV1>();
|
|
|
|
template <bool rec, bool ov>
|
|
void dppc_interpreter::power_divs() {
|
|
ppc_grab_regsdab(ppc_cur_instruction);
|
|
uint32_t ppc_result_d = ppc_result_a / ppc_result_b;
|
|
ppc_state.spr[SPR::MQ] = (ppc_result_a % ppc_result_b);
|
|
|
|
if (ov)
|
|
power_setsoov(ppc_result_b, ppc_result_a, ppc_result_d);
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_d);
|
|
|
|
ppc_store_iresult_reg(reg_d, ppc_result_d);
|
|
}
|
|
|
|
template void dppc_interpreter::power_divs<RC0, OV0>();
|
|
template void dppc_interpreter::power_divs<RC0, OV1>();
|
|
template void dppc_interpreter::power_divs<RC1, OV0>();
|
|
template void dppc_interpreter::power_divs<RC1, OV1>();
|
|
|
|
template <bool rec, bool ov>
|
|
void dppc_interpreter::power_doz() {
|
|
ppc_grab_regsdab(ppc_cur_instruction);
|
|
uint32_t ppc_result_d = (int32_t(ppc_result_a) >= int32_t(ppc_result_b))\
|
|
? 0 : ppc_result_b - ppc_result_a;
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_d);
|
|
if (ov)
|
|
power_setsoov(ppc_result_a, ppc_result_b, ppc_result_d);
|
|
|
|
ppc_store_iresult_reg(reg_d, ppc_result_d);
|
|
}
|
|
|
|
template void dppc_interpreter::power_doz<RC0, OV0>();
|
|
template void dppc_interpreter::power_doz<RC0, OV1>();
|
|
template void dppc_interpreter::power_doz<RC1, OV0>();
|
|
template void dppc_interpreter::power_doz<RC1, OV1>();
|
|
|
|
void dppc_interpreter::power_dozi() {
|
|
uint32_t ppc_result_d;
|
|
ppc_grab_regsdasimm(ppc_cur_instruction);
|
|
if (((int32_t)ppc_result_a) > simm) {
|
|
ppc_result_d = 0;
|
|
} else {
|
|
ppc_result_d = simm - ppc_result_a;
|
|
}
|
|
ppc_store_iresult_reg(reg_d, ppc_result_d);
|
|
}
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_lscbx() {
|
|
ppc_grab_regsdab(ppc_cur_instruction);
|
|
ppc_effective_address = ppc_result_b + (reg_a ? ppc_result_a : 0);
|
|
|
|
uint8_t return_value = 0;
|
|
uint32_t bytes_to_load = (ppc_state.spr[SPR::XER] & 0x7F);
|
|
uint32_t bytes_copied = 0;
|
|
uint8_t matching_byte = (uint8_t)(ppc_state.spr[SPR::XER] >> 8);
|
|
uint32_t ppc_result_d = 0;
|
|
|
|
// for storing each byte
|
|
uint32_t bitmask = 0xFF000000;
|
|
uint8_t shift_amount = 24;
|
|
|
|
while (bytes_to_load > 0) {
|
|
return_value = mmu_read_vmem<uint8_t>(ppc_effective_address);
|
|
|
|
ppc_result_d = (ppc_result_d & ~bitmask) | (return_value << shift_amount);
|
|
if (!shift_amount) {
|
|
if (reg_d != reg_a && reg_d != reg_b)
|
|
ppc_store_iresult_reg(reg_d, ppc_result_d);
|
|
reg_d = (reg_d + 1) & 31;
|
|
bitmask = 0xFF000000;
|
|
shift_amount = 24;
|
|
} else {
|
|
bitmask >>= 8;
|
|
shift_amount -= 8;
|
|
}
|
|
|
|
ppc_effective_address++;
|
|
bytes_copied++;
|
|
bytes_to_load--;
|
|
|
|
if (return_value == matching_byte)
|
|
break;
|
|
}
|
|
|
|
// store partiallly loaded register if any
|
|
if (shift_amount != 24 && reg_d != reg_a && reg_d != reg_b)
|
|
ppc_store_iresult_reg(reg_d, ppc_result_d);
|
|
|
|
ppc_state.spr[SPR::XER] = (ppc_state.spr[SPR::XER] & ~0x7F) | bytes_copied;
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_d);
|
|
}
|
|
|
|
template void dppc_interpreter::power_lscbx<RC0>();
|
|
template void dppc_interpreter::power_lscbx<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_maskg() {
|
|
ppc_grab_regssab(ppc_cur_instruction);
|
|
uint32_t mask_start = ppc_result_d & 31;
|
|
uint32_t mask_end = ppc_result_b & 31;
|
|
uint32_t insert_mask = 0;
|
|
|
|
if (mask_start < (mask_end + 1)) {
|
|
insert_mask = power_rot_mask(mask_start, mask_end);
|
|
}
|
|
else if (mask_start == (mask_end + 1)) {
|
|
insert_mask = 0xFFFFFFFF;
|
|
}
|
|
else {
|
|
insert_mask = ~(power_rot_mask(mask_end + 1, mask_start - 1));
|
|
}
|
|
|
|
ppc_result_a = insert_mask;
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_d);
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
}
|
|
|
|
template void dppc_interpreter::power_maskg<RC0>();
|
|
template void dppc_interpreter::power_maskg<true>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_maskir() {
|
|
ppc_grab_regssab(ppc_cur_instruction);
|
|
ppc_result_a = (ppc_result_a & ~ppc_result_b) | (ppc_result_d & ppc_result_b);
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_a);
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
}
|
|
|
|
template void dppc_interpreter::power_maskir<RC0>();
|
|
template void dppc_interpreter::power_maskir<true>();
|
|
|
|
template <bool rec, bool ov>
|
|
void dppc_interpreter::power_mul() {
|
|
ppc_grab_regsdab(ppc_cur_instruction);
|
|
uint64_t product;
|
|
|
|
product = ((uint64_t)ppc_result_a) * ((uint64_t)ppc_result_b);
|
|
uint32_t ppc_result_d = ((uint32_t)(product >> 32));
|
|
ppc_state.spr[SPR::MQ] = ((uint32_t)(product));
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_d);
|
|
if (ov)
|
|
power_setsoov(ppc_result_a, ppc_result_b, ppc_result_d);
|
|
|
|
ppc_store_iresult_reg(reg_d, ppc_result_d);
|
|
}
|
|
|
|
template void dppc_interpreter::power_mul<RC0, OV0>();
|
|
template void dppc_interpreter::power_mul<RC0, OV1>();
|
|
template void dppc_interpreter::power_mul<RC1, OV0>();
|
|
template void dppc_interpreter::power_mul<RC1, OV1>();
|
|
|
|
template <bool rec, bool ov>
|
|
void dppc_interpreter::power_nabs() {
|
|
ppc_grab_regsda(ppc_cur_instruction);
|
|
uint32_t ppc_result_d = ppc_result_a & 0x80000000 ? ppc_result_a : -ppc_result_a;
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_d);
|
|
if (ov)
|
|
ppc_state.spr[SPR::XER] &= 0xBFFFFFFFUL;
|
|
|
|
ppc_store_iresult_reg(reg_d, ppc_result_d);
|
|
}
|
|
|
|
template void dppc_interpreter::power_nabs<RC0, OV0>();
|
|
template void dppc_interpreter::power_nabs<RC0, OV1>();
|
|
template void dppc_interpreter::power_nabs<RC1, OV0>();
|
|
template void dppc_interpreter::power_nabs<RC1, OV1>();
|
|
|
|
void dppc_interpreter::power_rlmi() {
|
|
ppc_grab_regssab(ppc_cur_instruction);
|
|
unsigned rot_mb = (ppc_cur_instruction >> 6) & 31;
|
|
unsigned rot_me = (ppc_cur_instruction >> 1) & 31;
|
|
unsigned rot_sh = ppc_result_b & 31;
|
|
|
|
uint32_t r = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
|
|
uint32_t mask = power_rot_mask(rot_mb, rot_me);
|
|
|
|
ppc_result_a = ((r & mask) | (ppc_result_a & ~mask));
|
|
|
|
if ((ppc_cur_instruction & 0x01) == 1)
|
|
ppc_changecrf0(ppc_result_a);
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
}
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_rrib() {
|
|
ppc_grab_regssab(ppc_cur_instruction);
|
|
|
|
if (ppc_result_d & 0x80000000) {
|
|
ppc_result_a |= ((ppc_result_d & 0x80000000) >> ppc_result_b);
|
|
} else {
|
|
ppc_result_a &= ~((ppc_result_d & 0x80000000) >> ppc_result_b);
|
|
}
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_a);
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
}
|
|
|
|
template void dppc_interpreter::power_rrib<RC0>();
|
|
template void dppc_interpreter::power_rrib<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_sle() {
|
|
ppc_grab_regssab(ppc_cur_instruction);
|
|
unsigned rot_sh = ppc_result_b & 31;
|
|
|
|
ppc_result_a = ppc_result_d << rot_sh;
|
|
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_a);
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
}
|
|
|
|
template void dppc_interpreter::power_sle<RC0>();
|
|
template void dppc_interpreter::power_sle<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_sleq() {
|
|
ppc_grab_regssab(ppc_cur_instruction);
|
|
unsigned rot_sh = ppc_result_b & 31;
|
|
uint32_t r = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
|
|
uint32_t mask = power_rot_mask(0, 31 - rot_sh);
|
|
|
|
ppc_result_a = ((r & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
|
|
ppc_state.spr[SPR::MQ] = r;
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_a);
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
}
|
|
|
|
template void dppc_interpreter::power_sleq<RC0>();
|
|
template void dppc_interpreter::power_sleq<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_sliq() {
|
|
ppc_grab_regssa(ppc_cur_instruction);
|
|
unsigned rot_sh = (ppc_cur_instruction >> 11) & 31;
|
|
|
|
ppc_result_a = ppc_result_d << rot_sh;
|
|
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_a);
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
}
|
|
|
|
template void dppc_interpreter::power_sliq<RC0>();
|
|
template void dppc_interpreter::power_sliq<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_slliq() {
|
|
ppc_grab_regssa(ppc_cur_instruction);
|
|
unsigned rot_sh = (ppc_cur_instruction >> 11) & 31;
|
|
uint32_t r = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
|
|
uint32_t mask = power_rot_mask(0, 31 - rot_sh);
|
|
|
|
ppc_result_a = ((r & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
|
|
ppc_state.spr[SPR::MQ] = r;
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_a);
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
}
|
|
|
|
template void dppc_interpreter::power_slliq<RC0>();
|
|
template void dppc_interpreter::power_slliq<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_sllq() {
|
|
ppc_grab_regssab(ppc_cur_instruction);
|
|
unsigned rot_sh = ppc_result_b & 31;
|
|
uint32_t r = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
|
|
uint32_t mask = power_rot_mask(0, 31 - rot_sh);
|
|
|
|
if (ppc_result_b >= 0x20) {
|
|
ppc_result_a = (ppc_state.spr[SPR::MQ] & mask);
|
|
}
|
|
else {
|
|
ppc_result_a = ((r & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
|
|
}
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_a);
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
}
|
|
|
|
template void dppc_interpreter::power_sllq<RC0>();
|
|
template void dppc_interpreter::power_sllq<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_slq() {
|
|
ppc_grab_regssab(ppc_cur_instruction);
|
|
unsigned rot_sh = ppc_result_b & 31;
|
|
|
|
if (ppc_result_b >= 0x20) {
|
|
ppc_result_a = ppc_result_d << rot_sh;
|
|
} else {
|
|
ppc_result_a = 0;
|
|
}
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_a);
|
|
|
|
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
|
|
}
|
|
|
|
template void dppc_interpreter::power_slq<RC0>();
|
|
template void dppc_interpreter::power_slq<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_sraiq() {
|
|
ppc_grab_regssa(ppc_cur_instruction);
|
|
unsigned rot_sh = (ppc_cur_instruction >> 11) & 0x1F;
|
|
uint32_t mask = (1 << rot_sh) - 1;
|
|
ppc_result_a = (int32_t)ppc_result_d >> rot_sh;
|
|
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
|
|
|
|
if ((ppc_result_d & 0x80000000UL) && (ppc_result_d & mask)) {
|
|
ppc_state.spr[SPR::XER] |= 0x20000000UL;
|
|
} else {
|
|
ppc_state.spr[SPR::XER] &= 0xDFFFFFFFUL;
|
|
}
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_a);
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
}
|
|
|
|
template void dppc_interpreter::power_sraiq<RC0>();
|
|
template void dppc_interpreter::power_sraiq<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_sraq() {
|
|
ppc_grab_regssab(ppc_cur_instruction);
|
|
unsigned rot_sh = ppc_result_b & 0x1F;
|
|
uint32_t mask = (1 << rot_sh) - 1;
|
|
ppc_result_a = (int32_t)ppc_result_d >> rot_sh;
|
|
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
|
|
|
|
if ((ppc_result_d & 0x80000000UL) && (ppc_result_d & mask)) {
|
|
ppc_state.spr[SPR::XER] |= 0x20000000UL;
|
|
} else {
|
|
ppc_state.spr[SPR::XER] &= 0xDFFFFFFFUL;
|
|
}
|
|
|
|
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_a);
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
}
|
|
|
|
template void dppc_interpreter::power_sraq<RC0>();
|
|
template void dppc_interpreter::power_sraq<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_sre() {
|
|
ppc_grab_regssab(ppc_cur_instruction);
|
|
|
|
unsigned rot_sh = ppc_result_b & 31;
|
|
|
|
ppc_result_a = ppc_result_d >> rot_sh;
|
|
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_a);
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
}
|
|
|
|
template void dppc_interpreter::power_sre<RC0>();
|
|
template void dppc_interpreter::power_sre<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_srea() {
|
|
ppc_grab_regssab(ppc_cur_instruction);
|
|
unsigned rot_sh = ppc_result_b & 0x1F;
|
|
ppc_result_a = (int32_t)ppc_result_d >> rot_sh;
|
|
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
|
|
|
|
if ((ppc_result_d & 0x80000000UL) && (ppc_result_d & rot_sh)) {
|
|
ppc_state.spr[SPR::XER] |= 0x20000000UL;
|
|
} else {
|
|
ppc_state.spr[SPR::XER] &= 0xDFFFFFFFUL;
|
|
}
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_a);
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
}
|
|
|
|
template void dppc_interpreter::power_srea<RC0>();
|
|
template void dppc_interpreter::power_srea<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_sreq() {
|
|
ppc_grab_regssab(ppc_cur_instruction);
|
|
unsigned rot_sh = ppc_result_b & 31;
|
|
unsigned mask = power_rot_mask(rot_sh, 31);
|
|
|
|
ppc_result_a = ((rot_sh & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
|
|
ppc_state.spr[SPR::MQ] = rot_sh;
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_a);
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
}
|
|
|
|
template void dppc_interpreter::power_sreq<RC0>();
|
|
template void dppc_interpreter::power_sreq<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_sriq() {
|
|
ppc_grab_regssa(ppc_cur_instruction);
|
|
unsigned rot_sh = (ppc_cur_instruction >> 11) & 31;
|
|
ppc_result_a = ppc_result_d >> rot_sh;
|
|
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_a);
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
}
|
|
|
|
template void dppc_interpreter::power_sriq<RC0>();
|
|
template void dppc_interpreter::power_sriq<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_srliq() {
|
|
ppc_grab_regssa(ppc_cur_instruction);
|
|
unsigned rot_sh = (ppc_cur_instruction >> 11) & 31;
|
|
|
|
uint32_t r = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
|
|
unsigned mask = power_rot_mask(rot_sh, 31);
|
|
|
|
ppc_result_a = ((r & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
|
|
ppc_state.spr[SPR::MQ] = r;
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_a);
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
}
|
|
|
|
template void dppc_interpreter::power_srliq<RC0>();
|
|
template void dppc_interpreter::power_srliq<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_srlq() {
|
|
ppc_grab_regssab(ppc_cur_instruction);
|
|
unsigned rot_sh = ppc_result_b & 31;
|
|
uint32_t r = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
|
|
unsigned mask = power_rot_mask(rot_sh, 31);
|
|
|
|
if (ppc_result_b >= 0x20) {
|
|
ppc_result_a = (ppc_state.spr[SPR::MQ] & mask);
|
|
}
|
|
else {
|
|
ppc_result_a = ((r & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
|
|
}
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_a);
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
}
|
|
|
|
template void dppc_interpreter::power_srlq<RC0>();
|
|
template void dppc_interpreter::power_srlq<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::power_srq() {
|
|
ppc_grab_regssab(ppc_cur_instruction);
|
|
unsigned rot_sh = ppc_result_b & 31;
|
|
|
|
if (ppc_result_b >= 0x20) {
|
|
ppc_result_a = 0;
|
|
} else {
|
|
ppc_result_a = ppc_result_d >> rot_sh;
|
|
}
|
|
|
|
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
|
|
|
|
if (rec)
|
|
ppc_changecrf0(ppc_result_a);
|
|
|
|
ppc_store_iresult_reg(reg_a, ppc_result_a);
|
|
}
|
|
|
|
template void dppc_interpreter::power_srq<RC0>();
|
|
template void dppc_interpreter::power_srq<RC1>(); |