mirror of
https://github.com/dingusdev/dingusppc.git
synced 2024-11-18 22:05:51 +00:00
1049 lines
32 KiB
C++
1049 lines
32 KiB
C++
/*
|
|
DingusPPC - The Experimental PowerPC Macintosh emulator
|
|
Copyright (C) 2018-24 divingkatae and maximum
|
|
(theweirdo) spatium
|
|
|
|
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// The floating point opcodes for the processor - ppcfpopcodes.cpp
|
|
|
|
#include "ppcemu.h"
|
|
#include "ppcmacros.h"
|
|
#include "ppcmmu.h"
|
|
#include <stdlib.h>
|
|
#include <cfenv>
|
|
#include <cinttypes>
|
|
#include <cmath>
|
|
#include <cfloat>
|
|
|
|
// Storage and register retrieval functions for the floating point functions.
|
|
|
|
double fp_return_double(uint32_t reg) {
|
|
return ppc_state.fpr[reg].dbl64_r;
|
|
}
|
|
|
|
uint64_t fp_return_uint64(uint32_t reg) {
|
|
return ppc_state.fpr[reg].int64_r;
|
|
}
|
|
|
|
inline void ppc_update_cr1() {
|
|
// copy FPSCR[FX|FEX|VX|OX] to CR1
|
|
ppc_state.cr = (ppc_state.cr & ~CR_select::CR1_field) |
|
|
((ppc_state.fpscr >> 4) & CR_select::CR1_field);
|
|
}
|
|
|
|
int32_t round_to_nearest(double f) {
|
|
return static_cast<int32_t>(static_cast<int64_t> (std::floor(f + 0.5)));
|
|
}
|
|
|
|
void set_host_rounding_mode(uint8_t mode) {
|
|
switch(mode & FPSCR::RN_MASK) {
|
|
case 0:
|
|
std::fesetround(FE_TONEAREST);
|
|
break;
|
|
case 1:
|
|
std::fesetround(FE_TOWARDZERO);
|
|
break;
|
|
case 2:
|
|
std::fesetround(FE_UPWARD);
|
|
break;
|
|
case 3:
|
|
std::fesetround(FE_DOWNWARD);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void update_fpscr(uint32_t new_fpscr) {
|
|
if ((new_fpscr & FPSCR::RN_MASK) != (ppc_state.fpscr & FPSCR::RN_MASK))
|
|
set_host_rounding_mode(new_fpscr & FPSCR::RN_MASK);
|
|
|
|
ppc_state.fpscr = new_fpscr;
|
|
}
|
|
|
|
int32_t round_to_zero(double f) {
|
|
return static_cast<int32_t>(std::trunc(f));
|
|
}
|
|
|
|
int32_t round_to_pos_inf(double f) {
|
|
return static_cast<int32_t>(std::ceil(f));
|
|
}
|
|
|
|
int32_t round_to_neg_inf(double f) {
|
|
return static_cast<int32_t>(std::floor(f));
|
|
}
|
|
|
|
void update_fex() {
|
|
int fex_result = !!((ppc_state.fpscr & (ppc_state.fpscr << 22)) & 0x3E000000);
|
|
ppc_state.fpscr = (ppc_state.fpscr & ~0x40000000) | (fex_result << 30);
|
|
}
|
|
|
|
template <const FPOP fpop>
|
|
void ppc_confirm_inf_nan(int chosen_reg_1, int chosen_reg_2, bool rec = false) {
|
|
double input_a = ppc_state.fpr[chosen_reg_1].dbl64_r;
|
|
double input_b = ppc_state.fpr[chosen_reg_2].dbl64_r;
|
|
|
|
ppc_state.fpscr &= 0x7fbfffff;
|
|
|
|
switch (fpop) {
|
|
case FPOP::DIV:
|
|
if (std::isinf(input_a) && std::isinf(input_b)) {
|
|
ppc_state.fpscr |= (FPSCR::FX | FPSCR::VXIDI);
|
|
} else if ((input_a == FP_ZERO) && (input_b == FP_ZERO)) {
|
|
ppc_state.fpscr |= (FPSCR::FX | FPSCR::VXZDZ);
|
|
}
|
|
update_fex();
|
|
break;
|
|
case FPOP::SUB:
|
|
if (std::isinf(input_a) && std::isinf(input_b)) {
|
|
ppc_state.fpscr |= (FPSCR::FX | FPSCR::VXISI);
|
|
}
|
|
if (std::isnan(input_a) && std::isnan(input_b)) {
|
|
ppc_state.fpscr |= (FPSCR::FX | FPSCR::VXISI);
|
|
}
|
|
update_fex();
|
|
break;
|
|
case FPOP::ADD:
|
|
if (std::isnan(input_a) && std::isnan(input_b)) {
|
|
ppc_state.fpscr |= (FPSCR::FX | FPSCR::VXISI);
|
|
}
|
|
update_fex();
|
|
break;
|
|
case FPOP::SQRT:
|
|
if (std::isnan(input_b) || (input_b == -1.0)) {
|
|
ppc_state.fpscr |= (FPSCR::FX | FPSCR::VXSQRT);
|
|
}
|
|
update_fex();
|
|
break;
|
|
case FPOP::MUL:
|
|
if (std::isnan(input_a) && std::isnan(input_b)) {
|
|
ppc_state.fpscr |= (FPSCR::FX);
|
|
}
|
|
|
|
update_fex();
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void fpresult_update(double set_result) {
|
|
if (std::isnan(set_result)) {
|
|
ppc_state.fpscr |= FPCC_FUNAN | FPRCD;
|
|
} else {
|
|
if (set_result > 0.0) {
|
|
ppc_state.fpscr |= FPCC_POS;
|
|
} else if (set_result < 0.0) {
|
|
ppc_state.fpscr |= FPCC_NEG;
|
|
} else {
|
|
ppc_state.fpscr |= FPCC_ZERO;
|
|
}
|
|
|
|
if (std::isinf(set_result))
|
|
ppc_state.fpscr |= FPCC_FUNAN;
|
|
}
|
|
}
|
|
|
|
// Floating Point Arithmetic
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fadd() {
|
|
ppc_grab_regsfpdab(ppc_cur_instruction);
|
|
|
|
if (std::isnan(val_reg_a) || std::isnan(val_reg_b)) {
|
|
ppc_state.fpscr |= FPCC_FUNAN;
|
|
ppc_confirm_inf_nan<ADD>(reg_a, reg_b, rec);
|
|
}
|
|
|
|
double ppc_dblresult64_d = val_reg_a + val_reg_b;
|
|
ppc_store_dfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
fpresult_update(ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fadd<RC0>();
|
|
template void dppc_interpreter::ppc_fadd<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fsub() {
|
|
ppc_grab_regsfpdab(ppc_cur_instruction);
|
|
|
|
if (std::isnan(val_reg_a) || std::isnan(val_reg_b)) {
|
|
ppc_state.fpscr |= FPCC_FUNAN;
|
|
ppc_confirm_inf_nan<SUB>(reg_a, reg_b, rec);
|
|
}
|
|
|
|
double ppc_dblresult64_d = val_reg_a - val_reg_b;
|
|
ppc_store_dfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
fpresult_update(ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fsub<RC0>();
|
|
template void dppc_interpreter::ppc_fsub<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fdiv() {
|
|
ppc_grab_regsfpdab(ppc_cur_instruction);
|
|
|
|
if (std::isnan(val_reg_a) || std::isnan(val_reg_b)) {
|
|
ppc_confirm_inf_nan<DIV>(reg_a, reg_b, rec);
|
|
}
|
|
|
|
double ppc_dblresult64_d = val_reg_a / val_reg_b;
|
|
ppc_store_dfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
fpresult_update(ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fdiv<RC0>();
|
|
template void dppc_interpreter::ppc_fdiv<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fmul() {
|
|
ppc_grab_regsfpdac(ppc_cur_instruction);
|
|
|
|
if (std::isnan(val_reg_a) || std::isnan(val_reg_c)) {
|
|
ppc_confirm_inf_nan<MUL>(reg_a, reg_c, rec);
|
|
}
|
|
|
|
double ppc_dblresult64_d = val_reg_a * val_reg_c;
|
|
ppc_store_dfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
fpresult_update(ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fmul<RC0>();
|
|
template void dppc_interpreter::ppc_fmul<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fmadd() {
|
|
ppc_grab_regsfpdabc(ppc_cur_instruction);
|
|
|
|
if (std::isnan(val_reg_a) || std::isnan(val_reg_c)) {
|
|
ppc_confirm_inf_nan<MUL>(reg_a, reg_c, rec);
|
|
}
|
|
if (std::isnan(val_reg_b)) {
|
|
ppc_confirm_inf_nan<ADD>(reg_a, reg_b, rec);
|
|
}
|
|
|
|
double ppc_dblresult64_d = std::fma(val_reg_a, val_reg_c, val_reg_b);
|
|
ppc_store_dfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
fpresult_update(ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fmadd<RC0>();
|
|
template void dppc_interpreter::ppc_fmadd<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fmsub() {
|
|
ppc_grab_regsfpdabc(ppc_cur_instruction);
|
|
|
|
if (std::isnan(val_reg_a) || std::isnan(val_reg_c)) {
|
|
ppc_confirm_inf_nan<MUL>(reg_a, reg_c, rec);
|
|
}
|
|
if (std::isnan(val_reg_b)) {
|
|
ppc_confirm_inf_nan<SUB>(reg_a, reg_b, rec);
|
|
}
|
|
|
|
double ppc_dblresult64_d = std::fma(val_reg_a, val_reg_c, -val_reg_b);
|
|
ppc_store_dfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
fpresult_update(ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fmsub<RC0>();
|
|
template void dppc_interpreter::ppc_fmsub<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fnmadd() {
|
|
ppc_grab_regsfpdabc(ppc_cur_instruction);
|
|
|
|
if (std::isnan(val_reg_a) || std::isnan(val_reg_c)) {
|
|
ppc_confirm_inf_nan<MUL>(reg_a, reg_c, rec);
|
|
}
|
|
if (std::isnan(val_reg_b)) {
|
|
ppc_confirm_inf_nan<ADD>(reg_a, reg_b, rec);
|
|
}
|
|
|
|
double ppc_dblresult64_d = -std::fma(val_reg_a, val_reg_c, val_reg_b);
|
|
ppc_store_dfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
fpresult_update(ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fnmadd<RC0>();
|
|
template void dppc_interpreter::ppc_fnmadd<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fnmsub() {
|
|
ppc_grab_regsfpdabc(ppc_cur_instruction);
|
|
|
|
if (std::isnan(val_reg_a) || std::isnan(val_reg_c)) {
|
|
ppc_confirm_inf_nan<MUL>(reg_a, reg_c, rec);
|
|
}
|
|
if (std::isnan(val_reg_b)) {
|
|
ppc_confirm_inf_nan<SUB>(reg_a, reg_b, rec);
|
|
}
|
|
|
|
double ppc_dblresult64_d = std::fma(-val_reg_a, val_reg_c, val_reg_b);
|
|
ppc_store_dfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
fpresult_update(ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fnmsub<RC0>();
|
|
template void dppc_interpreter::ppc_fnmsub<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fadds() {
|
|
ppc_grab_regsfpdab(ppc_cur_instruction);
|
|
|
|
if (std::isnan(val_reg_a) || std::isnan(val_reg_b)) {
|
|
ppc_confirm_inf_nan<ADD>(reg_a, reg_b, rec);
|
|
}
|
|
|
|
float ppc_fltresult32_d = val_reg_a + val_reg_b;
|
|
double ppc_dblresult64_d = (double)ppc_fltresult32_d;
|
|
ppc_store_sfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
|
|
fpresult_update(ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fadds<RC0>();
|
|
template void dppc_interpreter::ppc_fadds<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fsubs() {
|
|
ppc_grab_regsfpdab(ppc_cur_instruction);
|
|
|
|
if (std::isnan(val_reg_a) || std::isnan(val_reg_b)) {
|
|
ppc_confirm_inf_nan<SUB>(reg_a, reg_b, rec);
|
|
}
|
|
|
|
double ppc_dblresult64_d = (float)(val_reg_a - val_reg_b);
|
|
ppc_store_sfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
fpresult_update(ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fsubs<RC0>();
|
|
template void dppc_interpreter::ppc_fsubs<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fdivs() {
|
|
ppc_grab_regsfpdab(ppc_cur_instruction);
|
|
|
|
if (std::isnan(val_reg_a) || std::isnan(val_reg_b)) {
|
|
ppc_confirm_inf_nan<DIV>(reg_a, reg_b, rec);
|
|
}
|
|
|
|
double ppc_dblresult64_d = (float)(val_reg_a / val_reg_b);
|
|
ppc_store_sfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
fpresult_update(ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fdivs<RC0>();
|
|
template void dppc_interpreter::ppc_fdivs<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fmuls() {
|
|
ppc_grab_regsfpdac(ppc_cur_instruction);
|
|
|
|
if (std::isnan(val_reg_a) || std::isnan(val_reg_c)) {
|
|
ppc_confirm_inf_nan<MUL>(reg_a, reg_c, rec);
|
|
}
|
|
|
|
double ppc_dblresult64_d = (float)(val_reg_a * val_reg_c);
|
|
ppc_store_sfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
fpresult_update(ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fmuls<RC0>();
|
|
template void dppc_interpreter::ppc_fmuls<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fmadds() {
|
|
ppc_grab_regsfpdabc(ppc_cur_instruction);
|
|
|
|
if (std::isnan(val_reg_a) || std::isnan(val_reg_c)) {
|
|
ppc_confirm_inf_nan<MUL>(reg_a, reg_c, rec);
|
|
}
|
|
if (std::isnan(val_reg_b)) {
|
|
ppc_confirm_inf_nan<ADD>(reg_a, reg_b, rec);
|
|
}
|
|
|
|
double ppc_dblresult64_d = (float)std::fma(val_reg_a, val_reg_c, val_reg_b);
|
|
ppc_store_sfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
fpresult_update(ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fmadds<RC0>();
|
|
template void dppc_interpreter::ppc_fmadds<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fmsubs() {
|
|
ppc_grab_regsfpdabc(ppc_cur_instruction);
|
|
|
|
if (std::isnan(val_reg_a) || std::isnan(val_reg_c)) {
|
|
ppc_confirm_inf_nan<MUL>(reg_a, reg_c, rec);
|
|
}
|
|
if (std::isnan(val_reg_b)) {
|
|
ppc_confirm_inf_nan<SUB>(reg_a, reg_b, rec);
|
|
}
|
|
|
|
double ppc_dblresult64_d = (float)std::fma(val_reg_a, val_reg_c, -val_reg_b);
|
|
ppc_store_sfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
fpresult_update(ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fmsubs<RC0>();
|
|
template void dppc_interpreter::ppc_fmsubs<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fnmadds() {
|
|
ppc_grab_regsfpdabc(ppc_cur_instruction);
|
|
|
|
if (std::isnan(val_reg_a) || std::isnan(val_reg_c)) {
|
|
ppc_confirm_inf_nan<MUL>(reg_a, reg_c, rec);
|
|
}
|
|
if (std::isnan(val_reg_b)) {
|
|
ppc_confirm_inf_nan<ADD>(reg_a, reg_b, rec);
|
|
}
|
|
|
|
double ppc_dblresult64_d = -(float)std::fma(val_reg_a, val_reg_c, val_reg_b);
|
|
ppc_store_sfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
fpresult_update(ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fnmadds<RC0>();
|
|
template void dppc_interpreter::ppc_fnmadds<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fnmsubs() {
|
|
ppc_grab_regsfpdabc(ppc_cur_instruction);
|
|
|
|
if (std::isnan(val_reg_a) || std::isnan(val_reg_c)) {
|
|
ppc_confirm_inf_nan<MUL>(reg_a, reg_c, rec);
|
|
}
|
|
if (std::isnan(val_reg_b)) {
|
|
ppc_confirm_inf_nan<SUB>(reg_a, reg_b, rec);
|
|
}
|
|
|
|
double ppc_dblresult64_d = (float)std::fma(-val_reg_a, val_reg_c, val_reg_b);
|
|
ppc_store_sfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
fpresult_update(ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fnmsubs<RC0>();
|
|
template void dppc_interpreter::ppc_fnmsubs<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fabs() {
|
|
ppc_grab_regsfpdb(ppc_cur_instruction);
|
|
|
|
double ppc_dblresult64_d = abs(GET_FPR(reg_b));
|
|
|
|
ppc_store_dfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fabs<RC0>();
|
|
template void dppc_interpreter::ppc_fabs<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fnabs() {
|
|
ppc_grab_regsfpdb(ppc_cur_instruction);
|
|
|
|
double ppc_dblresult64_d = abs(GET_FPR(reg_b));
|
|
ppc_dblresult64_d = -ppc_dblresult64_d;
|
|
|
|
ppc_store_dfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fnabs<RC0>();
|
|
template void dppc_interpreter::ppc_fnabs<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fneg() {
|
|
ppc_grab_regsfpdb(ppc_cur_instruction);
|
|
|
|
double ppc_dblresult64_d = -(GET_FPR(reg_b));
|
|
|
|
ppc_store_dfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fneg<RC0>();
|
|
template void dppc_interpreter::ppc_fneg<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fsel() {
|
|
ppc_grab_regsfpdabc(ppc_cur_instruction);
|
|
|
|
double ppc_dblresult64_d = (val_reg_a >= -0.0) ? val_reg_c : val_reg_b;
|
|
|
|
ppc_store_dfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fsel<RC0>();
|
|
template void dppc_interpreter::ppc_fsel<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fsqrt() {
|
|
ppc_grab_regsfpdb(ppc_cur_instruction);
|
|
double testd2 = (double)(GET_FPR(reg_b));
|
|
double ppc_dblresult64_d = std::sqrt(testd2);
|
|
ppc_store_dfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
ppc_confirm_inf_nan<SQRT>(0, reg_b, rec);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fsqrt<RC0>();
|
|
template void dppc_interpreter::ppc_fsqrt<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fsqrts() {
|
|
ppc_grab_regsfpdb(ppc_cur_instruction);
|
|
double testd2 = (double)(GET_FPR(reg_b));
|
|
double ppc_dblresult64_d = (float)std::sqrt(testd2);
|
|
ppc_store_sfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
ppc_confirm_inf_nan<SQRT>(0, reg_b, rec);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fsqrts<RC0>();
|
|
template void dppc_interpreter::ppc_fsqrts<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_frsqrte() {
|
|
ppc_grab_regsfpdb(ppc_cur_instruction);
|
|
double testd2 = (double)(GET_FPR(reg_b));
|
|
|
|
double ppc_dblresult64_d = 1.0 / sqrt(testd2);
|
|
ppc_confirm_inf_nan<SQRT>(0, reg_b, rec);
|
|
|
|
ppc_store_dfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_frsqrte<RC0>();
|
|
template void dppc_interpreter::ppc_frsqrte<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_frsp() {
|
|
ppc_grab_regsfpdb(ppc_cur_instruction);
|
|
double ppc_dblresult64_d = (float)(GET_FPR(reg_b));
|
|
ppc_store_dfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_frsp<RC0>();
|
|
template void dppc_interpreter::ppc_frsp<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fres() {
|
|
ppc_grab_regsfpdb(ppc_cur_instruction);
|
|
double start_num = GET_FPR(reg_b);
|
|
double ppc_dblresult64_d = (float)(1.0 / start_num);
|
|
ppc_store_dfpresult_flt(reg_d, ppc_dblresult64_d);
|
|
|
|
if (start_num == 0.0) {
|
|
ppc_state.fpscr |= FPSCR::ZX;
|
|
}
|
|
else if (std::isnan(start_num)) {
|
|
ppc_state.fpscr |= FPSCR::VXSNAN;
|
|
}
|
|
else if (std::isinf(start_num)){
|
|
ppc_state.fpscr &= 0xFFF9FFFF;
|
|
ppc_state.fpscr |= FPSCR::VXSNAN;
|
|
}
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fres<RC0>();
|
|
template void dppc_interpreter::ppc_fres<RC1>();
|
|
|
|
static void round_to_int(const uint8_t mode, bool rec) {
|
|
ppc_grab_regsfpdb(ppc_cur_instruction);
|
|
double val_reg_b = GET_FPR(reg_b);
|
|
|
|
if (std::isnan(val_reg_b)) {
|
|
ppc_state.fpscr &= ~(FPSCR::FR | FPSCR::FI);
|
|
ppc_state.fpscr |= (FPSCR::VXCVI | FPSCR::VX);
|
|
|
|
if (!(ppc_state.fpr[reg_b].int64_r & 0x0008000000000000)) // issnan
|
|
ppc_state.fpscr |= FPSCR::VXSNAN;
|
|
|
|
if (ppc_state.fpscr & FPSCR::VE) {
|
|
ppc_state.fpscr |= FPSCR::FEX; // VX=1 and VE=1 cause FEX to be set
|
|
ppc_floating_point_exception();
|
|
} else {
|
|
ppc_state.fpr[reg_d].int64_r = 0xFFF8000080000000ULL;
|
|
}
|
|
} else if (val_reg_b > static_cast<double>(0x7fffffff) ||
|
|
val_reg_b < -static_cast<double>(0x80000000)) {
|
|
ppc_state.fpscr &= ~(FPSCR::FR | FPSCR::FI);
|
|
ppc_state.fpscr |= (FPSCR::VXCVI | FPSCR::VX);
|
|
|
|
if (ppc_state.fpscr & FPSCR::VE) {
|
|
ppc_state.fpscr |= FPSCR::FEX; // VX=1 and VE=1 cause FEX to be set
|
|
ppc_floating_point_exception();
|
|
} else {
|
|
if (val_reg_b >= 0.0f)
|
|
ppc_state.fpr[reg_d].int64_r = 0xFFF800007FFFFFFFULL;
|
|
else
|
|
ppc_state.fpr[reg_d].int64_r = 0xFFF8000080000000ULL;
|
|
}
|
|
} else {
|
|
uint64_t ppc_result64_d;
|
|
switch (mode & 0x3) {
|
|
case 0:
|
|
ppc_result64_d = uint32_t(round_to_nearest(val_reg_b));
|
|
break;
|
|
case 1:
|
|
ppc_result64_d = uint32_t(round_to_zero(val_reg_b));
|
|
break;
|
|
case 2:
|
|
ppc_result64_d = uint32_t(round_to_pos_inf(val_reg_b));
|
|
break;
|
|
case 3:
|
|
ppc_result64_d = uint32_t(round_to_neg_inf(val_reg_b));
|
|
break;
|
|
}
|
|
|
|
ppc_result64_d |= 0xFFF8000000000000ULL;
|
|
|
|
ppc_store_dfpresult_int(reg_d, ppc_result64_d);
|
|
}
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fctiw() {
|
|
round_to_int(ppc_state.fpscr & 0x3, rec);
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fctiw<RC0>();
|
|
template void dppc_interpreter::ppc_fctiw<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fctiwz() {
|
|
round_to_int(1, rec);
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fctiwz<RC0>();
|
|
template void dppc_interpreter::ppc_fctiwz<RC1>();
|
|
|
|
// Floating Point Store and Load
|
|
|
|
void dppc_interpreter::ppc_lfs() {
|
|
ppc_grab_regsfpdia(ppc_cur_instruction);
|
|
ppc_effective_address = int32_t(int16_t(ppc_cur_instruction));
|
|
ppc_effective_address += (reg_a) ? val_reg_a : 0;
|
|
uint32_t result = mmu_read_vmem<uint32_t>(ppc_effective_address);
|
|
ppc_state.fpr[reg_d].dbl64_r = *(float*)(&result);
|
|
}
|
|
|
|
void dppc_interpreter::ppc_lfsu() {
|
|
ppc_grab_regsfpdia(ppc_cur_instruction);
|
|
if (reg_a) {
|
|
ppc_effective_address = int32_t(int16_t(ppc_cur_instruction));
|
|
ppc_effective_address += (reg_a) ? val_reg_a : 0;
|
|
uint32_t result = mmu_read_vmem<uint32_t>(ppc_effective_address);
|
|
ppc_state.fpr[reg_d].dbl64_r = *(float*)(&result);
|
|
ppc_state.gpr[reg_a] = ppc_effective_address;
|
|
} else {
|
|
ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP);
|
|
}
|
|
}
|
|
|
|
void dppc_interpreter::ppc_lfsx() {
|
|
ppc_grab_regsfpdiab(ppc_cur_instruction);
|
|
ppc_effective_address = val_reg_b + (reg_a ? val_reg_a : 0);
|
|
uint32_t result = mmu_read_vmem<uint32_t>(ppc_effective_address);
|
|
ppc_state.fpr[reg_d].dbl64_r = *(float*)(&result);
|
|
}
|
|
|
|
void dppc_interpreter::ppc_lfsux() {
|
|
ppc_grab_regsfpdiab(ppc_cur_instruction);
|
|
if (reg_a) {
|
|
ppc_effective_address = val_reg_a + val_reg_b;
|
|
uint32_t result = mmu_read_vmem<uint32_t>(ppc_effective_address);
|
|
ppc_state.fpr[reg_d].dbl64_r = *(float*)(&result);
|
|
ppc_state.gpr[reg_a] = ppc_effective_address;
|
|
} else {
|
|
ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP);
|
|
}
|
|
}
|
|
|
|
void dppc_interpreter::ppc_lfd() {
|
|
ppc_grab_regsfpdia(ppc_cur_instruction);
|
|
ppc_effective_address = int32_t(int16_t(ppc_cur_instruction));
|
|
ppc_effective_address += (reg_a) ? val_reg_a : 0;
|
|
uint64_t ppc_result64_d = mmu_read_vmem<uint64_t>(ppc_effective_address);
|
|
ppc_store_dfpresult_int(reg_d, ppc_result64_d);
|
|
}
|
|
|
|
void dppc_interpreter::ppc_lfdu() {
|
|
ppc_grab_regsfpdia(ppc_cur_instruction);
|
|
if (reg_a != 0) {
|
|
ppc_effective_address = int32_t(int16_t(ppc_cur_instruction));
|
|
ppc_effective_address += val_reg_a;
|
|
uint64_t ppc_result64_d = mmu_read_vmem<uint64_t>(ppc_effective_address);
|
|
ppc_store_dfpresult_int(reg_d, ppc_result64_d);
|
|
ppc_state.gpr[reg_a] = ppc_effective_address;
|
|
} else {
|
|
ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP);
|
|
}
|
|
}
|
|
|
|
void dppc_interpreter::ppc_lfdx() {
|
|
ppc_grab_regsfpdiab(ppc_cur_instruction);
|
|
ppc_effective_address = val_reg_b + (reg_a ? val_reg_a : 0);
|
|
uint64_t ppc_result64_d = mmu_read_vmem<uint64_t>(ppc_effective_address);
|
|
ppc_store_dfpresult_int(reg_d, ppc_result64_d);
|
|
}
|
|
|
|
void dppc_interpreter::ppc_lfdux() {
|
|
ppc_grab_regsfpdiab(ppc_cur_instruction);
|
|
if (reg_a) {
|
|
ppc_effective_address = val_reg_a + val_reg_b;
|
|
uint64_t ppc_result64_d = mmu_read_vmem<uint64_t>(ppc_effective_address);
|
|
ppc_store_dfpresult_int(reg_d, ppc_result64_d);
|
|
ppc_state.gpr[reg_a] = ppc_effective_address;
|
|
} else {
|
|
ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP);
|
|
}
|
|
}
|
|
|
|
void dppc_interpreter::ppc_stfs() {
|
|
ppc_grab_regsfpsia(ppc_cur_instruction);
|
|
ppc_effective_address = int32_t(int16_t(ppc_cur_instruction));
|
|
ppc_effective_address += (reg_a) ? val_reg_a : 0;
|
|
float result = ppc_state.fpr[reg_s].dbl64_r;
|
|
mmu_write_vmem<uint32_t>(ppc_effective_address, *(uint32_t*)(&result));
|
|
}
|
|
|
|
void dppc_interpreter::ppc_stfsu() {
|
|
ppc_grab_regsfpsia(ppc_cur_instruction);
|
|
if (reg_a != 0) {
|
|
ppc_effective_address = int32_t(int16_t(ppc_cur_instruction));
|
|
ppc_effective_address += val_reg_a;
|
|
float result = ppc_state.fpr[reg_s].dbl64_r;
|
|
mmu_write_vmem<uint32_t>(ppc_effective_address, *(uint32_t*)(&result));
|
|
ppc_state.gpr[reg_a] = ppc_effective_address;
|
|
} else {
|
|
ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP);
|
|
}
|
|
}
|
|
|
|
void dppc_interpreter::ppc_stfsx() {
|
|
ppc_grab_regsfpsiab(ppc_cur_instruction);
|
|
ppc_effective_address = val_reg_b + (reg_a ? val_reg_a : 0);
|
|
float result = ppc_state.fpr[reg_s].dbl64_r;
|
|
mmu_write_vmem<uint32_t>(ppc_effective_address, *(uint32_t*)(&result));
|
|
}
|
|
|
|
void dppc_interpreter::ppc_stfsux() {
|
|
ppc_grab_regsfpsiab(ppc_cur_instruction);
|
|
if (reg_a) {
|
|
ppc_effective_address = val_reg_a + val_reg_b;
|
|
float result = ppc_state.fpr[reg_s].dbl64_r;
|
|
mmu_write_vmem<uint32_t>(ppc_effective_address, *(uint32_t*)(&result));
|
|
ppc_state.gpr[reg_a] = ppc_effective_address;
|
|
} else {
|
|
ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP);
|
|
}
|
|
}
|
|
|
|
void dppc_interpreter::ppc_stfd() {
|
|
ppc_grab_regsfpsia(ppc_cur_instruction);
|
|
ppc_effective_address = int32_t(int16_t(ppc_cur_instruction));
|
|
ppc_effective_address += reg_a ? val_reg_a : 0;
|
|
mmu_write_vmem<uint64_t>(ppc_effective_address, ppc_state.fpr[reg_s].int64_r);
|
|
}
|
|
|
|
void dppc_interpreter::ppc_stfdu() {
|
|
ppc_grab_regsfpsia(ppc_cur_instruction);
|
|
if (reg_a != 0) {
|
|
ppc_effective_address = int32_t(int16_t(ppc_cur_instruction));
|
|
ppc_effective_address += val_reg_a;
|
|
mmu_write_vmem<uint64_t>(ppc_effective_address, ppc_state.fpr[reg_s].int64_r);
|
|
ppc_state.gpr[reg_a] = ppc_effective_address;
|
|
} else {
|
|
ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP);
|
|
}
|
|
}
|
|
|
|
void dppc_interpreter::ppc_stfdx() {
|
|
ppc_grab_regsfpsiab(ppc_cur_instruction);
|
|
ppc_effective_address = val_reg_b + (reg_a ? val_reg_a : 0);
|
|
mmu_write_vmem<uint64_t>(ppc_effective_address, ppc_state.fpr[reg_s].int64_r);
|
|
}
|
|
|
|
void dppc_interpreter::ppc_stfdux() {
|
|
ppc_grab_regsfpsiab(ppc_cur_instruction);
|
|
if (reg_a != 0) {
|
|
ppc_effective_address = val_reg_a + val_reg_b;
|
|
mmu_write_vmem<uint64_t>(ppc_effective_address, ppc_state.fpr[reg_s].int64_r);
|
|
ppc_state.gpr[reg_a] = ppc_effective_address;
|
|
} else {
|
|
ppc_exception_handler(Except_Type::EXC_PROGRAM, Exc_Cause::ILLEGAL_OP);
|
|
}
|
|
}
|
|
|
|
void dppc_interpreter::ppc_stfiwx() {
|
|
ppc_grab_regsfpsiab(ppc_cur_instruction);
|
|
ppc_effective_address = val_reg_b + (reg_a ? val_reg_a : 0);
|
|
mmu_write_vmem<uint32_t>(ppc_effective_address, uint32_t(ppc_state.fpr[reg_s].int64_r));
|
|
}
|
|
|
|
// Floating Point Register Transfer
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_fmr() {
|
|
ppc_grab_regsfpdb(ppc_cur_instruction);
|
|
ppc_state.fpr[reg_d].dbl64_r = ppc_state.fpr[reg_b].dbl64_r;
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_fmr<RC0>();
|
|
template void dppc_interpreter::ppc_fmr<RC1>();
|
|
|
|
template <bool for601, bool rec>
|
|
void dppc_interpreter::ppc_mffs() {
|
|
int reg_d = (ppc_cur_instruction >> 21) & 31;
|
|
|
|
ppc_state.fpr[reg_d].int64_r = uint64_t(ppc_state.fpscr) | (for601 ? 0xFFFFFFFF00000000ULL : 0xFFF8000000000000ULL);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_mffs<NOT601, RC0>();
|
|
template void dppc_interpreter::ppc_mffs<NOT601, RC1>();
|
|
template void dppc_interpreter::ppc_mffs<IS601, RC0>();
|
|
template void dppc_interpreter::ppc_mffs<IS601, RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_mtfsf() {
|
|
int reg_b = (ppc_cur_instruction >> 11) & 0x1F;
|
|
uint8_t fm = (ppc_cur_instruction >> 17) & 0xFF;
|
|
|
|
uint32_t cr_mask = 0;
|
|
|
|
if (fm == 0xFFU) // the fast case
|
|
cr_mask = 0xFFFFFFFFUL;
|
|
else { // the slow case
|
|
if (fm & 0x80) cr_mask |= 0xF0000000UL;
|
|
if (fm & 0x40) cr_mask |= 0x0F000000UL;
|
|
if (fm & 0x20) cr_mask |= 0x00F00000UL;
|
|
if (fm & 0x10) cr_mask |= 0x000F0000UL;
|
|
if (fm & 0x08) cr_mask |= 0x0000F000UL;
|
|
if (fm & 0x04) cr_mask |= 0x00000F00UL;
|
|
if (fm & 0x02) cr_mask |= 0x000000F0UL;
|
|
if (fm & 0x01) cr_mask |= 0x0000000FUL;
|
|
}
|
|
|
|
// ensure neither FEX nor VX will be changed
|
|
cr_mask &= ~(FPSCR::FEX | FPSCR::VX);
|
|
|
|
// copy FPR[reg_b] to FPSCR under control of cr_mask
|
|
ppc_state.fpscr = (ppc_state.fpscr & ~cr_mask) | (ppc_state.fpr[reg_b].int64_r & cr_mask);
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_mtfsf<RC0>();
|
|
template void dppc_interpreter::ppc_mtfsf<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_mtfsfi() {
|
|
int crf_d = (ppc_cur_instruction >> 21) & 0x1C;
|
|
uint32_t imm = (ppc_cur_instruction << 16) & 0xF0000000UL;
|
|
|
|
// prepare field mask and ensure that neither FEX nor VX will be changed
|
|
uint32_t mask = (0xF0000000UL >> crf_d) & ~(FPSCR::FEX | FPSCR::VX);
|
|
|
|
// copy imm to FPSCR[crf_d] under control of the field mask
|
|
ppc_state.fpscr = (ppc_state.fpscr & ~mask) | ((imm >> crf_d) & mask);
|
|
|
|
// TODO: update FEX and VX according to the "usual rule"
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_mtfsfi<RC0>();
|
|
template void dppc_interpreter::ppc_mtfsfi<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_mtfsb0() {
|
|
int crf_d = (ppc_cur_instruction >> 21) & 0x1F;
|
|
if (!crf_d || (crf_d > 2)) { // FEX and VX can't be explicitely cleared
|
|
ppc_state.fpscr &= ~(0x80000000UL >> crf_d);
|
|
}
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_mtfsb0<RC0>();
|
|
template void dppc_interpreter::ppc_mtfsb0<RC1>();
|
|
|
|
template <bool rec>
|
|
void dppc_interpreter::ppc_mtfsb1() {
|
|
int crf_d = (ppc_cur_instruction >> 21) & 0x1F;
|
|
if (!crf_d || (crf_d > 2)) { // FEX and VX can't be explicitely set
|
|
ppc_state.fpscr |= (0x80000000UL >> crf_d);
|
|
}
|
|
|
|
if (rec)
|
|
ppc_update_cr1();
|
|
}
|
|
|
|
template void dppc_interpreter::ppc_mtfsb1<RC0>();
|
|
template void dppc_interpreter::ppc_mtfsb1<RC1>();
|
|
|
|
void dppc_interpreter::ppc_mcrfs() {
|
|
int crf_d = (ppc_cur_instruction >> 21) & 0x1C;
|
|
int crf_s = (ppc_cur_instruction >> 16) & 0x1C;
|
|
ppc_state.cr = (
|
|
(ppc_state.cr & ~(0xF0000000UL >> crf_d)) |
|
|
(((ppc_state.fpscr << crf_s) & 0xF0000000UL) >> crf_d)
|
|
);
|
|
ppc_state.fpscr &= ~((0xF0000000UL >> crf_s) & (
|
|
// keep only the FPSCR bits that can be explicitly cleared
|
|
FPSCR::FX | FPSCR::OX |
|
|
FPSCR::UX | FPSCR::ZX | FPSCR::XX | FPSCR::VXSNAN |
|
|
FPSCR::VXISI | FPSCR::VXIDI | FPSCR::VXZDZ | FPSCR::VXIMZ |
|
|
FPSCR::VXVC |
|
|
FPSCR::VXSOFT | FPSCR::VXSQRT | FPSCR::VXCVI
|
|
));
|
|
}
|
|
|
|
// Floating Point Comparisons
|
|
|
|
void dppc_interpreter::ppc_fcmpo() {
|
|
ppc_grab_regsfpsab(ppc_cur_instruction);
|
|
|
|
uint32_t cmp_c = 0;
|
|
|
|
if (std::isnan(db_test_a) || std::isnan(db_test_b)) {
|
|
// TODO: test for SNAN operands
|
|
// for now, assume that at least one of the operands is QNAN
|
|
cmp_c |= CRx_bit::CR_SO;
|
|
}
|
|
else if (db_test_a < db_test_b) {
|
|
cmp_c |= CRx_bit::CR_LT;
|
|
}
|
|
else if (db_test_a > db_test_b) {
|
|
cmp_c |= CRx_bit::CR_GT;
|
|
}
|
|
else {
|
|
cmp_c |= CRx_bit::CR_EQ;
|
|
}
|
|
|
|
ppc_state.fpscr = (ppc_state.fpscr & ~FPSCR::FPCC_MASK) | (cmp_c >> 16); // update FPCC
|
|
ppc_state.cr = ((ppc_state.cr & ~(0xF0000000 >> crf_d)) | (cmp_c >> crf_d));
|
|
}
|
|
|
|
void dppc_interpreter::ppc_fcmpu() {
|
|
ppc_grab_regsfpsab(ppc_cur_instruction);
|
|
|
|
uint32_t cmp_c = 0;
|
|
|
|
if (std::isnan(db_test_a) || std::isnan(db_test_b)) {
|
|
// TODO: test for SNAN operands
|
|
cmp_c |= CRx_bit::CR_SO;
|
|
}
|
|
else if (db_test_a < db_test_b) {
|
|
cmp_c |= CRx_bit::CR_LT;
|
|
}
|
|
else if (db_test_a > db_test_b) {
|
|
cmp_c |= CRx_bit::CR_GT;
|
|
}
|
|
else {
|
|
cmp_c |= CRx_bit::CR_EQ;
|
|
}
|
|
|
|
ppc_state.fpscr = (ppc_state.fpscr & ~FPSCR::FPCC_MASK) | (cmp_c >> 16); // update FPCC
|
|
ppc_state.cr = ((ppc_state.cr & ~(0xF0000000UL >> crf_d)) | (cmp_c >> crf_d));
|
|
}
|