dingusppc/cpu/ppc/ppcmmu.cpp

2075 lines
71 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-23 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/** @file PowerPC Memory Management Unit emulation. */
#include <devices/memctrl/memctrlbase.h>
#include <devices/common/mmiodevice.h>
#include <memaccess.h>
#include "ppcemu.h"
#include "ppcmmu.h"
#include <array>
#include <cinttypes>
#include <loguru.hpp>
#include <stdexcept>
//#define MMU_PROFILING // uncomment this to enable MMU profiling
//#define TLB_PROFILING // uncomment this to enable SoftTLB profiling
/* pointer to exception handler to be called when a MMU exception is occurred. */
void (*mmu_exception_handler)(Except_Type exception_type, uint32_t srr1_bits);
/* pointers to BAT update functions. */
std::function<void(uint32_t bat_reg)> ibat_update;
std::function<void(uint32_t bat_reg)> dbat_update;
/** PowerPC-style MMU BAT arrays (NULL initialization isn't prescribed). */
PPC_BAT_entry ibat_array[4] = {{0}};
PPC_BAT_entry dbat_array[4] = {{0}};
#ifdef MMU_PROFILING
/* global variables for lightweight MMU profiling */
uint64_t dmem_reads_total = 0; // counts reads from data memory
uint64_t iomem_reads_total = 0; // counts I/O memory reads
uint64_t dmem_writes_total = 0; // counts writes to data memory
uint64_t iomem_writes_total = 0; // counts I/O memory writes
uint64_t exec_reads_total = 0; // counts reads from executable memory
uint64_t bat_transl_total = 0; // counts BAT translations
uint64_t ptab_transl_total = 0; // counts page table translations
uint64_t unaligned_reads = 0; // counts unaligned reads
uint64_t unaligned_writes = 0; // counts unaligned writes
uint64_t unaligned_crossp_r = 0; // counts unaligned crosspage reads
uint64_t unaligned_crossp_w = 0; // counts unaligned crosspage writes
#endif // MMU_PROFILING
#ifdef TLB_PROFILING
/* global variables for lightweight SoftTLB profiling */
uint64_t num_primary_itlb_hits = 0; // number of hits in the primary ITLB
uint64_t num_secondary_itlb_hits = 0; // number of hits in the secondary ITLB
uint64_t num_itlb_refills = 0; // number of ITLB refills
uint64_t num_primary_dtlb_hits = 0; // number of hits in the primary DTLB
uint64_t num_secondary_dtlb_hits = 0; // number of hits in the secondary DTLB
uint64_t num_dtlb_refills = 0; // number of DTLB refills
uint64_t num_entry_replacements = 0; // number of entry replacements
#endif // TLB_PROFILING
/** remember recently used physical memory regions for quicker translation. */
AddressMapEntry last_read_area;
AddressMapEntry last_write_area;
AddressMapEntry last_exec_area;
AddressMapEntry last_ptab_area;
AddressMapEntry last_dma_area;
/** 601-style block address translation. */
static BATResult mpc601_block_address_translation(uint32_t la)
{
uint32_t pa; // translated physical address
uint8_t prot; // protection bits for the translated address
unsigned key;
bool bat_hit = false;
unsigned msr_pr = !!(ppc_state.msr & MSR::PR);
// I/O controller interface takes precedence over BAT in 601
// Report BAT miss if T bit is set in the corresponding SR
if (ppc_state.sr[(la >> 28) & 0x0F] & 0x80000000) {
return BATResult{false, 0, 0};
}
for (int bat_index = 0; bat_index < 4; bat_index++) {
PPC_BAT_entry* bat_entry = &ibat_array[bat_index];
if (bat_entry->valid && ((la & bat_entry->hi_mask) == bat_entry->bepi)) {
bat_hit = true;
key = (((bat_entry->access & 1) & msr_pr) |
(((bat_entry->access >> 1) & 1) & (msr_pr ^ 1)));
// remapping BAT access from 601-style to PowerPC-style
static uint8_t access_conv[8] = {2, 2, 2, 1, 0, 1, 2, 1};
prot = access_conv[(key << 2) | bat_entry->prot];
#ifdef MMU_PROFILING
bat_transl_total++;
#endif
// logical to physical translation
pa = bat_entry->phys_hi | (la & ~bat_entry->hi_mask);
return BATResult{bat_hit, prot, pa};
}
}
return BATResult{bat_hit, 0, 0};
}
/** PowerPC-style block address translation. */
template <const BATType type>
static BATResult ppc_block_address_translation(uint32_t la)
{
uint32_t pa = 0; // translated physical address
uint8_t prot = 0; // protection bits for the translated address
PPC_BAT_entry *bat_array;
bool bat_hit = false;
unsigned msr_pr = !!(ppc_state.msr & MSR::PR);
bat_array = (type == BATType::IBAT) ? ibat_array : dbat_array;
// Format: %XY
// X - supervisor access bit, Y - problem/user access bit
// Those bits are mutually exclusive
unsigned access_bits = ((msr_pr ^ 1) << 1) | msr_pr;
for (int bat_index = 0; bat_index < 4; bat_index++) {
PPC_BAT_entry* bat_entry = &bat_array[bat_index];
if ((bat_entry->access & access_bits) && ((la & bat_entry->hi_mask) == bat_entry->bepi)) {
bat_hit = true;
#ifdef MMU_PROFILING
bat_transl_total++;
#endif
// logical to physical translation
pa = bat_entry->phys_hi | (la & ~bat_entry->hi_mask);
prot = bat_entry->prot;
break;
}
}
return BATResult{bat_hit, prot, pa};
}
static inline uint8_t* calc_pteg_addr(uint32_t hash)
{
uint32_t sdr1_val, pteg_addr;
sdr1_val = ppc_state.spr[SPR::SDR1];
pteg_addr = sdr1_val & 0xFE000000;
pteg_addr |= (sdr1_val & 0x01FF0000) | (((sdr1_val & 0x1FF) << 16) & ((hash & 0x7FC00) << 6));
pteg_addr |= (hash & 0x3FF) << 6;
if (pteg_addr >= last_ptab_area.start && pteg_addr <= last_ptab_area.end) {
return last_ptab_area.mem_ptr + (pteg_addr - last_ptab_area.start);
} else {
AddressMapEntry* entry = mem_ctrl_instance->find_range(pteg_addr);
if (entry && entry->type & (RT_ROM | RT_RAM)) {
last_ptab_area.start = entry->start;
last_ptab_area.end = entry->end;
last_ptab_area.mem_ptr = entry->mem_ptr;
return last_ptab_area.mem_ptr + (pteg_addr - last_ptab_area.start);
} else {
ABORT_F("SOS: no page table region was found at %08X!\n", pteg_addr);
}
}
}
static bool search_pteg(uint8_t* pteg_addr, uint8_t** ret_pte_addr, uint32_t vsid,
uint16_t page_index, uint8_t pteg_num)
{
/* construct PTE matching word */
uint32_t pte_check = 0x80000000 | (vsid << 7) | (pteg_num << 6) | (page_index >> 10);
#ifdef MMU_INTEGRITY_CHECKS
/* PTEG integrity check that ensures that all matching PTEs have
identical RPN, WIMG and PP bits (PPC PEM 32-bit 7.6.2, rule 5). */
uint32_t pte_word2_check;
bool match_found = false;
for (int i = 0; i < 8; i++, pteg_addr += 8) {
if (pte_check == READ_DWORD_BE_A(pteg_addr)) {
if (match_found) {
if ((READ_DWORD_BE_A(pteg_addr) & 0xFFFFF07B) != pte_word2_check) {
ABORT_F("Multiple PTEs with different RPN/WIMG/PP found!\n");
}
} else {
/* isolate RPN, WIMG and PP fields */
pte_word2_check = READ_DWORD_BE_A(pteg_addr) & 0xFFFFF07B;
*ret_pte_addr = pteg_addr;
}
}
}
#else
for (int i = 0; i < 8; i++, pteg_addr += 8) {
if (pte_check == READ_DWORD_BE_A(pteg_addr)) {
*ret_pte_addr = pteg_addr;
return true;
}
}
#endif
return false;
}
static PATResult page_address_translation(uint32_t la, bool is_instr_fetch,
unsigned msr_pr, int is_write)
{
uint32_t sr_val, page_index, pteg_hash1, vsid, pte_word2;
unsigned key, pp;
uint8_t* pte_addr;
sr_val = ppc_state.sr[(la >> 28) & 0x0F];
if (sr_val & 0x80000000) {
// check for 601-specific memory-forced I/O segments
if (((sr_val >> 20) & 0x1FF) == 0x7F) {
return PATResult{
(la & 0x0FFFFFFF) | (sr_val << 28),
0, // prot = read/write
1 // no C bit updates
};
} else {
ABORT_F("Direct-store segments not supported, LA=0x%X\n", la);
}
}
/* instruction fetch from a no-execute segment will cause ISI exception */
if ((sr_val & 0x10000000) && is_instr_fetch) {
mmu_exception_handler(Except_Type::EXC_ISI, 0x10000000);
}
page_index = (la >> 12) & 0xFFFF;
pteg_hash1 = (sr_val & 0x7FFFF) ^ page_index;
vsid = sr_val & 0x0FFFFFF;
if (!search_pteg(calc_pteg_addr(pteg_hash1), &pte_addr, vsid, page_index, 0)) {
if (!search_pteg(calc_pteg_addr(~pteg_hash1), &pte_addr, vsid, page_index, 1)) {
if (is_instr_fetch) {
mmu_exception_handler(Except_Type::EXC_ISI, 0x40000000);
} else {
ppc_state.spr[SPR::DSISR] = 0x40000000 | (is_write << 25);
ppc_state.spr[SPR::DAR] = la;
mmu_exception_handler(Except_Type::EXC_DSI, 0);
}
}
}
pte_word2 = READ_DWORD_BE_A(pte_addr + 4);
key = (((sr_val >> 29) & 1) & msr_pr) | (((sr_val >> 30) & 1) & (msr_pr ^ 1));
/* check page access */
pp = pte_word2 & 3;
// the following scenarios cause DSI/ISI exception:
// any access with key = 1 and PP = %00
// write access with key = 1 and PP = %01
// write access with PP = %11
if ((key && (!pp || (pp == 1 && is_write))) || (pp == 3 && is_write)) {
if (is_instr_fetch) {
mmu_exception_handler(Except_Type::EXC_ISI, 0x08000000);
} else {
ppc_state.spr[SPR::DSISR] = 0x08000000 | (is_write << 25);
ppc_state.spr[SPR::DAR] = la;
mmu_exception_handler(Except_Type::EXC_DSI, 0);
}
}
/* update R and C bits */
/* For simplicity, R is set on each access, C is set only for writes */
pte_addr[6] |= 0x01;
if (is_write) {
pte_addr[7] |= 0x80;
}
/* return physical address, access protection and C status */
return PATResult{
((pte_word2 & 0xFFFFF000) | (la & 0x00000FFF)),
static_cast<uint8_t>((key << 2) | pp),
static_cast<uint8_t>(pte_word2 & 0x80)
};
}
MapDmaResult mmu_map_dma_mem(uint32_t addr, uint32_t size, bool allow_mmio) {
MMIODevice *devobj = nullptr;
uint8_t *host_va = nullptr;
uint32_t dev_base = 0;
bool is_writable;
AddressMapEntry *cur_dma_rgn;
if (addr >= last_dma_area.start && (addr + size) <= last_dma_area.end) {
cur_dma_rgn = &last_dma_area;
} else {
cur_dma_rgn = mem_ctrl_instance->find_range(addr);
if (!cur_dma_rgn || (addr + size) > cur_dma_rgn->end)
ABORT_F("SOS: DMA access to unmapped physical memory %08X!\n", addr);
last_dma_area = *cur_dma_rgn;
}
if ((cur_dma_rgn->type & RT_MMIO) && !allow_mmio)
ABORT_F("SOS: DMA access to a MMIO region is not allowed");
if (cur_dma_rgn->type & (RT_ROM | RT_RAM)) {
host_va = cur_dma_rgn->mem_ptr + (addr - cur_dma_rgn->start);
is_writable = last_dma_area.type & RT_RAM;
} else { // RT_MMIO
devobj = cur_dma_rgn->devobj;
dev_base = cur_dma_rgn->start;
is_writable = true; // all MMIO devices must provide a write method
}
return MapDmaResult{cur_dma_rgn->type, is_writable, host_va, devobj, dev_base};
}
// primary ITLB for all MMU modes
static std::array<TLBEntry, TLB_SIZE> itlb1_mode1;
static std::array<TLBEntry, TLB_SIZE> itlb1_mode2;
static std::array<TLBEntry, TLB_SIZE> itlb1_mode3;
// secondary ITLB for all MMU modes
static std::array<TLBEntry, TLB_SIZE*TLB2_WAYS> itlb2_mode1;
static std::array<TLBEntry, TLB_SIZE*TLB2_WAYS> itlb2_mode2;
static std::array<TLBEntry, TLB_SIZE*TLB2_WAYS> itlb2_mode3;
// primary DTLB for all MMU modes
static std::array<TLBEntry, TLB_SIZE> dtlb1_mode1;
static std::array<TLBEntry, TLB_SIZE> dtlb1_mode2;
static std::array<TLBEntry, TLB_SIZE> dtlb1_mode3;
// secondary DTLB for all MMU modes
static std::array<TLBEntry, TLB_SIZE*TLB2_WAYS> dtlb2_mode1;
static std::array<TLBEntry, TLB_SIZE*TLB2_WAYS> dtlb2_mode2;
static std::array<TLBEntry, TLB_SIZE*TLB2_WAYS> dtlb2_mode3;
TLBEntry *pCurITLB1; // current primary ITLB
TLBEntry *pCurITLB2; // current secondary ITLB
TLBEntry *pCurDTLB1; // current primary DTLB
TLBEntry *pCurDTLB2; // current secondary DTLB
uint32_t tlb_size_mask = TLB_SIZE - 1;
// fake TLB entry for handling of unmapped memory accesses
uint64_t UnmappedVal = -1ULL;
TLBEntry UnmappedMem = {TLB_INVALID_TAG, TLBFlags::PAGE_NOPHYS, 0, 0};
// Dummy page for catching writes to physical read-only pages
static std::array<uint64_t, 4096 / sizeof(uint64_t)> dummy_page;
uint8_t CurITLBMode = {0xFF}; // current ITLB mode
uint8_t CurDTLBMode = {0xFF}; // current DTLB mode
void mmu_change_mode()
{
uint8_t mmu_mode;
// switch ITLB tables first
mmu_mode = ((ppc_state.msr >> 4) & 0x2) | ((ppc_state.msr >> 14) & 1);
if (CurITLBMode != mmu_mode) {
switch(mmu_mode) {
case 0: // real address mode
pCurITLB1 = &itlb1_mode1[0];
pCurITLB2 = &itlb2_mode1[0];
break;
case 2: // supervisor mode with instruction translation enabled
pCurITLB1 = &itlb1_mode2[0];
pCurITLB2 = &itlb2_mode2[0];
break;
case 1:
// user mode can't disable translations
LOG_F(ERROR, "instruction mmu mode 1 is invalid!");
mmu_mode = 3;
case 3: // user mode with instruction translation enabled
pCurITLB1 = &itlb1_mode3[0];
pCurITLB2 = &itlb2_mode3[0];
break;
}
CurITLBMode = mmu_mode;
}
// then switch DTLB tables
mmu_mode = ((ppc_state.msr >> 3) & 0x2) | ((ppc_state.msr >> 14) & 1);
if (CurDTLBMode != mmu_mode) {
switch(mmu_mode) {
case 0: // real address mode
pCurDTLB1 = &dtlb1_mode1[0];
pCurDTLB2 = &dtlb2_mode1[0];
break;
case 2: // supervisor mode with data translation enabled
pCurDTLB1 = &dtlb1_mode2[0];
pCurDTLB2 = &dtlb2_mode2[0];
break;
case 1:
// user mode can't disable translations
LOG_F(ERROR, "data mmu mode 1 is invalid!");
mmu_mode = 3;
case 3: // user mode with data translation enabled
pCurDTLB1 = &dtlb1_mode3[0];
pCurDTLB2 = &dtlb2_mode3[0];
break;
}
CurDTLBMode = mmu_mode;
}
}
template <const TLBType tlb_type>
static TLBEntry* tlb2_target_entry(uint32_t gp_va)
{
TLBEntry *tlb_entry;
if (tlb_type == TLBType::ITLB) {
tlb_entry = &pCurITLB2[((gp_va >> PAGE_SIZE_BITS) & tlb_size_mask) * TLB2_WAYS];
} else {
tlb_entry = &pCurDTLB2[((gp_va >> PAGE_SIZE_BITS) & tlb_size_mask) * TLB2_WAYS];
}
// select the target from invalid blocks first
if (tlb_entry[0].tag == TLB_INVALID_TAG) {
// update LRU bits
tlb_entry[0].lru_bits = 0x3;
tlb_entry[1].lru_bits = 0x2;
tlb_entry[2].lru_bits &= 0x1;
tlb_entry[3].lru_bits &= 0x1;
return tlb_entry;
} else if (tlb_entry[1].tag == TLB_INVALID_TAG) {
// update LRU bits
tlb_entry[0].lru_bits = 0x2;
tlb_entry[1].lru_bits = 0x3;
tlb_entry[2].lru_bits &= 0x1;
tlb_entry[3].lru_bits &= 0x1;
return &tlb_entry[1];
} else if (tlb_entry[2].tag == TLB_INVALID_TAG) {
// update LRU bits
tlb_entry[0].lru_bits &= 0x1;
tlb_entry[1].lru_bits &= 0x1;
tlb_entry[2].lru_bits = 0x3;
tlb_entry[3].lru_bits = 0x2;
return &tlb_entry[2];
} else if (tlb_entry[3].tag == TLB_INVALID_TAG) {
// update LRU bits
tlb_entry[0].lru_bits &= 0x1;
tlb_entry[1].lru_bits &= 0x1;
tlb_entry[2].lru_bits = 0x2;
tlb_entry[3].lru_bits = 0x3;
return &tlb_entry[3];
} else { // no free entries, replace an existing one according with the hLRU policy
#ifdef TLB_PROFILING
num_entry_replacements++;
#endif
if (tlb_entry[0].lru_bits == 0) {
// update LRU bits
tlb_entry[0].lru_bits = 0x3;
tlb_entry[1].lru_bits = 0x2;
tlb_entry[2].lru_bits &= 0x1;
tlb_entry[3].lru_bits &= 0x1;
return tlb_entry;
} else if (tlb_entry[1].lru_bits == 0) {
// update LRU bits
tlb_entry[0].lru_bits = 0x2;
tlb_entry[1].lru_bits = 0x3;
tlb_entry[2].lru_bits &= 0x1;
tlb_entry[3].lru_bits &= 0x1;
return &tlb_entry[1];
} else if (tlb_entry[2].lru_bits == 0) {
// update LRU bits
tlb_entry[0].lru_bits &= 0x1;
tlb_entry[1].lru_bits &= 0x1;
tlb_entry[2].lru_bits = 0x3;
tlb_entry[3].lru_bits = 0x2;
return &tlb_entry[2];
} else {
// update LRU bits
tlb_entry[0].lru_bits &= 0x1;
tlb_entry[1].lru_bits &= 0x1;
tlb_entry[2].lru_bits = 0x2;
tlb_entry[3].lru_bits = 0x3;
return &tlb_entry[3];
}
}
}
static TLBEntry* itlb2_refill(uint32_t guest_va)
{
BATResult bat_res;
uint32_t phys_addr;
TLBEntry *tlb_entry;
uint16_t flags = 0;
/* instruction address translation if enabled */
if (ppc_state.msr & MSR::IR) {
// attempt block address translation first
if (is_601) {
bat_res = mpc601_block_address_translation(guest_va);
} else {
bat_res = ppc_block_address_translation<BATType::IBAT>(guest_va);
}
if (bat_res.hit) {
// check block protection
// only PP = 0 (no access) causes ISI exception
if (!bat_res.prot) {
mmu_exception_handler(Except_Type::EXC_ISI, 0x08000000);
}
phys_addr = bat_res.phys;
flags |= TLBFlags::TLBE_FROM_BAT; // tell the world we come from
} else {
// page address translation
PATResult pat_res = page_address_translation(guest_va, true, !!(ppc_state.msr & MSR::PR), 0);
phys_addr = pat_res.phys;
flags = TLBFlags::TLBE_FROM_PAT; // tell the world we come from
}
} else { // instruction translation disabled
phys_addr = guest_va;
}
// look up host virtual address
AddressMapEntry* rgn_desc = mem_ctrl_instance->find_range(phys_addr);
if (rgn_desc) {
if (rgn_desc->type & RT_MMIO) {
ABORT_F("Instruction fetch from MMIO region at 0x%08X!\n", phys_addr);
}
// refill the secondary TLB
const uint32_t tag = guest_va & ~0xFFFUL;
tlb_entry = tlb2_target_entry<TLBType::ITLB>(tag);
tlb_entry->tag = tag;
tlb_entry->flags = flags | TLBFlags::PAGE_MEM;
tlb_entry->host_va_offs_r = (int64_t)rgn_desc->mem_ptr - guest_va +
(phys_addr - rgn_desc->start);
tlb_entry->phys_tag = phys_addr & ~0xFFFUL;
} else {
ABORT_F("Instruction fetch from unmapped memory at 0x%08X!\n", phys_addr);
}
return tlb_entry;
}
static TLBEntry* dtlb2_refill(uint32_t guest_va, int is_write, bool is_dbg = false)
{
BATResult bat_res;
uint32_t phys_addr;
uint16_t flags = 0;
TLBEntry *tlb_entry;
const uint32_t tag = guest_va & ~0xFFFUL;
/* data address translation if enabled */
if (ppc_state.msr & MSR::DR) {
// attempt block address translation first
if (is_601) {
bat_res = mpc601_block_address_translation(guest_va);
} else {
bat_res = ppc_block_address_translation<BATType::DBAT>(guest_va);
}
if (bat_res.hit) {
// check block protection
if (!bat_res.prot || ((bat_res.prot & 1) && is_write)) {
if (!is_dbg)
LOG_F(9, "BAT DSI exception in TLB2 refill!");
if (!is_dbg)
LOG_F(9, "Attempt to write to read-only region, LA=0x%08X, PC=0x%08X!", guest_va, ppc_state.pc);
ppc_state.spr[SPR::DSISR] = 0x08000000 | (is_write << 25);
ppc_state.spr[SPR::DAR] = guest_va;
mmu_exception_handler(Except_Type::EXC_DSI, 0);
}
phys_addr = bat_res.phys;
flags = TLBFlags::PTE_SET_C; // prevent PTE.C updates for BAT
flags |= TLBFlags::TLBE_FROM_BAT; // tell the world we come from
if (bat_res.prot == 2) {
flags |= TLBFlags::PAGE_WRITABLE;
}
} else {
// page address translation
PATResult pat_res = page_address_translation(guest_va, false, !!(ppc_state.msr & MSR::PR), is_write);
phys_addr = pat_res.phys;
flags = TLBFlags::TLBE_FROM_PAT; // tell the world we come from
if (pat_res.prot <= 2 || pat_res.prot == 6) {
flags |= TLBFlags::PAGE_WRITABLE;
}
if (is_write || pat_res.pte_c_status) {
// C-bit of the PTE is already set so the TLB logic
// doesn't need to update it anymore
flags |= TLBFlags::PTE_SET_C;
}
}
} else { // data translation disabled
phys_addr = guest_va;
flags = TLBFlags::PTE_SET_C; // no PTE.C updates in real addressing mode
flags |= TLBFlags::PAGE_WRITABLE; // assume physical pages are writable
}
// look up host virtual address
AddressMapEntry* rgn_desc = mem_ctrl_instance->find_range(phys_addr);
if (rgn_desc) {
// refill the secondary TLB
tlb_entry = tlb2_target_entry<TLBType::DTLB>(tag);
tlb_entry->tag = tag;
if (rgn_desc->type & RT_MMIO) { // MMIO region
tlb_entry->flags = flags | TLBFlags::PAGE_IO;
tlb_entry->rgn_desc = rgn_desc;
tlb_entry->dev_base_va = guest_va - (phys_addr - rgn_desc->start);
} else { // memory region backed by host memory
tlb_entry->flags = flags | TLBFlags::PAGE_MEM;
tlb_entry->host_va_offs_r = (int64_t)rgn_desc->mem_ptr - guest_va +
(phys_addr - rgn_desc->start);
if (rgn_desc->type == RT_ROM) {
// redirect writes to the dummy page for ROM regions
tlb_entry->host_va_offs_w = (int64_t)&dummy_page - tag;
} else {
tlb_entry->host_va_offs_w = tlb_entry->host_va_offs_r;
}
}
tlb_entry->phys_tag = phys_addr & ~0xFFFUL;
return tlb_entry;
} else {
if (!is_dbg) {
static uint32_t last_phys_addr = -1;
static uint32_t first_phys_addr = -1;
if (phys_addr != last_phys_addr + 4) {
if (last_phys_addr != -1 && last_phys_addr != first_phys_addr) {
LOG_F(WARNING, " ... phys_addr=0x%08X", last_phys_addr);
}
first_phys_addr = phys_addr;
LOG_F(WARNING, "Access to unmapped physical memory, phys_addr=0x%08X", first_phys_addr);
}
last_phys_addr = phys_addr;
}
return &UnmappedMem;
}
}
template <const TLBType tlb_type>
static inline TLBEntry* lookup_secondary_tlb(uint32_t guest_va, uint32_t tag) {
TLBEntry *tlb_entry;
if (tlb_type == TLBType::ITLB) {
tlb_entry = &pCurITLB2[((guest_va >> PAGE_SIZE_BITS) & tlb_size_mask) * TLB2_WAYS];
} else {
tlb_entry = &pCurDTLB2[((guest_va >> PAGE_SIZE_BITS) & tlb_size_mask) * TLB2_WAYS];
}
if (tlb_entry->tag == tag) {
// update LRU bits
tlb_entry[0].lru_bits = 0x3;
tlb_entry[1].lru_bits = 0x2;
tlb_entry[2].lru_bits &= 0x1;
tlb_entry[3].lru_bits &= 0x1;
} else if (tlb_entry[1].tag == tag) {
// update LRU bits
tlb_entry[0].lru_bits = 0x2;
tlb_entry[1].lru_bits = 0x3;
tlb_entry[2].lru_bits &= 0x1;
tlb_entry[3].lru_bits &= 0x1;
tlb_entry = &tlb_entry[1];
} else if (tlb_entry[2].tag == tag) {
// update LRU bits
tlb_entry[0].lru_bits &= 0x1;
tlb_entry[1].lru_bits &= 0x1;
tlb_entry[2].lru_bits = 0x3;
tlb_entry[3].lru_bits = 0x2;
tlb_entry = &tlb_entry[2];
} else if (tlb_entry[3].tag == tag) {
// update LRU bits
tlb_entry[0].lru_bits &= 0x1;
tlb_entry[1].lru_bits &= 0x1;
tlb_entry[2].lru_bits = 0x2;
tlb_entry[3].lru_bits = 0x3;
tlb_entry = &tlb_entry[3];
} else {
return nullptr;
}
return tlb_entry;
}
uint8_t *mmu_translate_imem(uint32_t vaddr, uint32_t *paddr)
{
TLBEntry *tlb1_entry, *tlb2_entry;
uint8_t *host_va;
#ifdef MMU_PROFILING
exec_reads_total++;
#endif
const uint32_t tag = vaddr & ~0xFFFUL;
// look up guest virtual address in the primary ITLB
tlb1_entry = &pCurITLB1[(vaddr >> PAGE_SIZE_BITS) & tlb_size_mask];
if (tlb1_entry->tag == tag) { // primary ITLB hit -> fast path
#ifdef TLB_PROFILING
num_primary_itlb_hits++;
#endif
host_va = (uint8_t *)(tlb1_entry->host_va_offs_r + vaddr);
} else {
// primary ITLB miss -> look up address in the secondary ITLB
tlb2_entry = lookup_secondary_tlb<TLBType::ITLB>(vaddr, tag);
if (tlb2_entry == nullptr) {
#ifdef TLB_PROFILING
num_itlb_refills++;
#endif
// secondary ITLB miss ->
// perform full address translation and refill the secondary ITLB
tlb2_entry = itlb2_refill(vaddr);
}
#ifdef TLB_PROFILING
else {
num_secondary_itlb_hits++;
}
#endif
// refill the primary ITLB
tlb1_entry->tag = tag;
tlb1_entry->flags = tlb2_entry->flags;
tlb1_entry->host_va_offs_r = tlb2_entry->host_va_offs_r;
tlb1_entry->phys_tag = tlb2_entry->phys_tag;
host_va = (uint8_t *)(tlb1_entry->host_va_offs_r + vaddr);
}
ppc_set_cur_instruction(host_va);
if (paddr)
*paddr = tlb1_entry->phys_tag | (vaddr & 0xFFFUL);
return host_va;
}
static void tlb_flush_primary_entry(std::array<TLBEntry, TLB_SIZE> &tlb1, uint32_t tag)
{
TLBEntry *tlb_entry = &tlb1[(tag >> PAGE_SIZE_BITS) & tlb_size_mask];
if (tlb_entry->tag == tag) {
tlb_entry->tag = TLB_INVALID_TAG;
//LOG_F(INFO, "Invalidated primary TLB entry at 0x%X", ea);
}
}
static void tlb_flush_secondary_entry(std::array<TLBEntry, TLB_SIZE*TLB2_WAYS> &tlb2, uint32_t tag)
{
TLBEntry *tlb_entry = &tlb2[((tag >> PAGE_SIZE_BITS) & tlb_size_mask) * TLB2_WAYS];
for (int i = 0; i < TLB2_WAYS; i++) {
if (tlb_entry[i].tag == tag) {
tlb_entry[i].tag = TLB_INVALID_TAG;
//LOG_F(INFO, "Invalidated secondary TLB entry at 0x%X", ea);
}
}
}
void tlb_flush_entry(uint32_t ea)
{
const uint32_t tag = ea & ~0xFFFUL;
tlb_flush_primary_entry(itlb1_mode1, tag);
tlb_flush_secondary_entry(itlb2_mode1, tag);
tlb_flush_primary_entry(itlb1_mode2, tag);
tlb_flush_secondary_entry(itlb2_mode2, tag);
tlb_flush_primary_entry(itlb1_mode3, tag);
tlb_flush_secondary_entry(itlb2_mode3, tag);
tlb_flush_primary_entry(dtlb1_mode1, tag);
tlb_flush_secondary_entry(dtlb2_mode1, tag);
tlb_flush_primary_entry(dtlb1_mode2, tag);
tlb_flush_secondary_entry(dtlb2_mode2, tag);
tlb_flush_primary_entry(dtlb1_mode3, tag);
tlb_flush_secondary_entry(dtlb2_mode3, tag);
}
template <std::size_t N>
static void tlb_flush_entries(std::array<TLBEntry, N> &tlb, TLBFlags type) {
for (auto &tlb_el : tlb) {
if (tlb_el.tag != TLB_INVALID_TAG && tlb_el.flags & type) {
tlb_el.tag = TLB_INVALID_TAG;
}
}
}
template <const TLBType tlb_type>
void tlb_flush_entries(TLBFlags type)
{
TLBEntry *m1_tlb, *m2_tlb, *m3_tlb;
int i;
if (tlb_type == TLBType::ITLB) {
tlb_flush_entries(itlb1_mode1, type);
tlb_flush_entries(itlb1_mode2, type);
tlb_flush_entries(itlb1_mode3, type);
tlb_flush_entries(itlb2_mode1, type);
tlb_flush_entries(itlb2_mode2, type);
tlb_flush_entries(itlb2_mode3, type);
} else {
tlb_flush_entries(dtlb1_mode1, type);
tlb_flush_entries(dtlb1_mode2, type);
tlb_flush_entries(dtlb1_mode3, type);
tlb_flush_entries(dtlb2_mode1, type);
tlb_flush_entries(dtlb2_mode2, type);
tlb_flush_entries(dtlb2_mode3, type);
}
}
bool gTLBFlushIBatEntries = false;
bool gTLBFlushDBatEntries = false;
bool gTLBFlushIPatEntries = false;
bool gTLBFlushDPatEntries = false;
template <const TLBType tlb_type>
void tlb_flush_bat_entries()
{
if (tlb_type == TLBType::ITLB) {
if (!gTLBFlushIBatEntries)
return;
tlb_flush_entries<TLBType::ITLB>(TLBE_FROM_BAT);
gTLBFlushIBatEntries = false;
} else {
if (!gTLBFlushDBatEntries)
return;
tlb_flush_entries<TLBType::DTLB>(TLBE_FROM_BAT);
gTLBFlushDBatEntries = false;
}
}
template <const TLBType tlb_type>
void tlb_flush_pat_entries()
{
if (tlb_type == TLBType::ITLB) {
if (!gTLBFlushIPatEntries)
return;
tlb_flush_entries<TLBType::ITLB>(TLBE_FROM_PAT);
gTLBFlushIPatEntries = false;
} else {
if (!gTLBFlushDPatEntries)
return;
tlb_flush_entries<TLBType::DTLB>(TLBE_FROM_PAT);
gTLBFlushDPatEntries = false;
}
}
template <const TLBType tlb_type>
void tlb_flush_all_entries()
{
if (tlb_type == TLBType::ITLB) {
if (!gTLBFlushIBatEntries && !gTLBFlushIPatEntries)
return;
tlb_flush_entries<TLBType::ITLB>((TLBFlags)(TLBE_FROM_BAT | TLBE_FROM_PAT));
gTLBFlushIBatEntries = false;
gTLBFlushIPatEntries = false;
} else {
if (!gTLBFlushDBatEntries && !gTLBFlushDPatEntries)
return;
tlb_flush_entries<TLBType::DTLB>((TLBFlags)(TLBE_FROM_BAT | TLBE_FROM_PAT));
gTLBFlushDBatEntries = false;
gTLBFlushDPatEntries = false;
}
}
static void mpc601_bat_update(uint32_t bat_reg)
{
PPC_BAT_entry *ibat_entry, *dbat_entry;
uint32_t bsm, hi_mask;
int upper_reg_num;
upper_reg_num = bat_reg & 0xFFFFFFFE;
ibat_entry = &ibat_array[(bat_reg - 528) >> 1];
dbat_entry = &dbat_array[(bat_reg - 528) >> 1];
if (ppc_state.spr[bat_reg | 1] & 0x40) {
bsm = ppc_state.spr[upper_reg_num + 1] & 0x3F;
hi_mask = ~((bsm << 17) | 0x1FFFF);
ibat_entry->valid = true;
ibat_entry->access = (ppc_state.spr[upper_reg_num] >> 2) & 3;
ibat_entry->prot = ppc_state.spr[upper_reg_num] & 3;
ibat_entry->hi_mask = hi_mask;
ibat_entry->phys_hi = ppc_state.spr[upper_reg_num + 1] & hi_mask;
ibat_entry->bepi = ppc_state.spr[upper_reg_num] & hi_mask;
// copy IBAT entry to DBAT entry
*dbat_entry = *ibat_entry;
} else {
// disable the corresponding BAT paars
ibat_entry->valid = false;
dbat_entry->valid = false;
}
// MPC601 has unified BATs so we're going to flush both ITLB and DTLB
if (!gTLBFlushIBatEntries || !gTLBFlushIPatEntries || !gTLBFlushDBatEntries || !gTLBFlushDPatEntries) {
gTLBFlushIBatEntries = true;
gTLBFlushIPatEntries = true;
gTLBFlushDBatEntries = true;
gTLBFlushDPatEntries = true;
add_ctx_sync_action(&tlb_flush_all_entries<TLBType::ITLB>);
add_ctx_sync_action(&tlb_flush_all_entries<TLBType::DTLB>);
}
}
static void ppc_ibat_update(uint32_t bat_reg)
{
int upper_reg_num;
uint32_t bl, hi_mask;
PPC_BAT_entry* bat_entry;
upper_reg_num = bat_reg & 0xFFFFFFFE;
bat_entry = &ibat_array[(bat_reg - 528) >> 1];
bl = (ppc_state.spr[upper_reg_num] >> 2) & 0x7FF;
hi_mask = ~((bl << 17) | 0x1FFFF);
bat_entry->access = ppc_state.spr[upper_reg_num] & 3;
bat_entry->prot = ppc_state.spr[upper_reg_num + 1] & 3;
bat_entry->hi_mask = hi_mask;
bat_entry->phys_hi = ppc_state.spr[upper_reg_num + 1] & hi_mask;
bat_entry->bepi = ppc_state.spr[upper_reg_num] & hi_mask;
if (!gTLBFlushIBatEntries || !gTLBFlushIPatEntries) {
gTLBFlushIBatEntries = true;
gTLBFlushIPatEntries = true;
add_ctx_sync_action(&tlb_flush_all_entries<TLBType::ITLB>);
}
}
static void ppc_dbat_update(uint32_t bat_reg)
{
int upper_reg_num;
uint32_t bl, hi_mask;
PPC_BAT_entry* bat_entry;
upper_reg_num = bat_reg & 0xFFFFFFFE;
bat_entry = &dbat_array[(bat_reg - 536) >> 1];
bl = (ppc_state.spr[upper_reg_num] >> 2) & 0x7FF;
hi_mask = ~((bl << 17) | 0x1FFFF);
bat_entry->access = ppc_state.spr[upper_reg_num] & 3;
bat_entry->prot = ppc_state.spr[upper_reg_num + 1] & 3;
bat_entry->hi_mask = hi_mask;
bat_entry->phys_hi = ppc_state.spr[upper_reg_num + 1] & hi_mask;
bat_entry->bepi = ppc_state.spr[upper_reg_num] & hi_mask;
if (!gTLBFlushDBatEntries || !gTLBFlushDPatEntries) {
gTLBFlushDBatEntries = true;
gTLBFlushDPatEntries = true;
add_ctx_sync_action(&tlb_flush_all_entries<TLBType::DTLB>);
}
}
void mmu_pat_ctx_changed()
{
// Page address translation context changed so we need to flush
// all PAT entries from both ITLB and DTLB
if (!gTLBFlushIPatEntries || !gTLBFlushDPatEntries) {
gTLBFlushIPatEntries = true;
gTLBFlushDPatEntries = true;
add_ctx_sync_action(&tlb_flush_pat_entries<TLBType::ITLB>);
add_ctx_sync_action(&tlb_flush_pat_entries<TLBType::DTLB>);
}
}
// Forward declarations.
template <class T>
static T read_unaligned(uint32_t guest_va, uint8_t *host_va);
template <class T>
static void write_unaligned(uint32_t guest_va, uint8_t *host_va, T value);
template <class T>
inline T mmu_read_vmem(uint32_t guest_va)
{
TLBEntry *tlb1_entry, *tlb2_entry;
uint8_t *host_va;
const uint32_t tag = guest_va & ~0xFFFUL;
// look up guest virtual address in the primary TLB
tlb1_entry = &pCurDTLB1[(guest_va >> PAGE_SIZE_BITS) & tlb_size_mask];
if (tlb1_entry->tag == tag) { // primary TLB hit -> fast path
#ifdef TLB_PROFILING
num_primary_dtlb_hits++;
#endif
host_va = (uint8_t *)(tlb1_entry->host_va_offs_r + guest_va);
} else {
// primary TLB miss -> look up address in the secondary TLB
tlb2_entry = lookup_secondary_tlb<TLBType::DTLB>(guest_va, tag);
if (tlb2_entry == nullptr) {
#ifdef TLB_PROFILING
num_dtlb_refills++;
#endif
// secondary TLB miss ->
// perform full address translation and refill the secondary TLB
tlb2_entry = dtlb2_refill(guest_va, 0);
if (tlb2_entry->flags & PAGE_NOPHYS) {
return (T)UnmappedVal;
}
}
#ifdef TLB_PROFILING
else {
num_secondary_dtlb_hits++;
}
#endif
if (tlb2_entry->flags & TLBFlags::PAGE_MEM) { // is it a real memory region?
// refill the primary TLB
*tlb1_entry = *tlb2_entry;
host_va = (uint8_t *)(tlb1_entry->host_va_offs_r + guest_va);
} else { // otherwise, it's an access to a memory-mapped device
#ifdef MMU_PROFILING
iomem_reads_total++;
#endif
if (sizeof(T) == 8) {
if (guest_va & 3)
ppc_alignment_exception(guest_va);
return (
((T)tlb2_entry->rgn_desc->devobj->read(tlb2_entry->rgn_desc->start,
static_cast<uint32_t>(guest_va - tlb2_entry->dev_base_va),
4) << 32) |
tlb2_entry->rgn_desc->devobj->read(tlb2_entry->rgn_desc->start,
static_cast<uint32_t>(guest_va + 4 - tlb2_entry->dev_base_va),
4)
);
}
else {
return (
tlb2_entry->rgn_desc->devobj->read(tlb2_entry->rgn_desc->start,
static_cast<uint32_t>(guest_va - tlb2_entry->dev_base_va),
sizeof(T))
);
}
}
}
#ifdef MMU_PROFILING
dmem_reads_total++;
#endif
// handle unaligned memory accesses
if (sizeof(T) > 1 && (guest_va & (sizeof(T) - 1))) {
return read_unaligned<T>(guest_va, host_va);
}
// handle aligned memory accesses
switch(sizeof(T)) {
case 1:
return *host_va;
case 2:
return READ_WORD_BE_A(host_va);
case 4:
return READ_DWORD_BE_A(host_va);
case 8:
return READ_QWORD_BE_A(host_va);
}
}
// explicitely instantiate all required mmu_read_vmem variants
template uint8_t mmu_read_vmem<uint8_t>(uint32_t guest_va);
template uint16_t mmu_read_vmem<uint16_t>(uint32_t guest_va);
template uint32_t mmu_read_vmem<uint32_t>(uint32_t guest_va);
template uint64_t mmu_read_vmem<uint64_t>(uint32_t guest_va);
template <class T>
inline void mmu_write_vmem(uint32_t guest_va, T value)
{
TLBEntry *tlb1_entry, *tlb2_entry;
uint8_t *host_va;
const uint32_t tag = guest_va & ~0xFFFUL;
// look up guest virtual address in the primary TLB
tlb1_entry = &pCurDTLB1[(guest_va >> PAGE_SIZE_BITS) & tlb_size_mask];
if (tlb1_entry->tag == tag) { // primary TLB hit -> fast path
#ifdef TLB_PROFILING
num_primary_dtlb_hits++;
#endif
if (!(tlb1_entry->flags & TLBFlags::PAGE_WRITABLE)) {
ppc_state.spr[SPR::DSISR] = 0x08000000 | (1 << 25);
ppc_state.spr[SPR::DAR] = guest_va;
mmu_exception_handler(Except_Type::EXC_DSI, 0);
}
if (!(tlb1_entry->flags & TLBFlags::PTE_SET_C)) {
// perform full page address translation to update PTE.C bit
page_address_translation(guest_va, false, !!(ppc_state.msr & MSR::PR), true);
tlb1_entry->flags |= TLBFlags::PTE_SET_C;
// don't forget to update the secondary TLB as well
tlb2_entry = lookup_secondary_tlb<TLBType::DTLB>(guest_va, tag);
if (tlb2_entry != nullptr) {
tlb2_entry->flags |= TLBFlags::PTE_SET_C;
}
}
host_va = (uint8_t *)(tlb1_entry->host_va_offs_w + guest_va);
} else {
// primary TLB miss -> look up address in the secondary TLB
tlb2_entry = lookup_secondary_tlb<TLBType::DTLB>(guest_va, tag);
if (tlb2_entry == nullptr) {
#ifdef TLB_PROFILING
num_dtlb_refills++;
#endif
// secondary TLB miss ->
// perform full address translation and refill the secondary TLB
tlb2_entry = dtlb2_refill(guest_va, 1);
if (tlb2_entry->flags & PAGE_NOPHYS) {
return;
}
}
#ifdef TLB_PROFILING
else {
num_secondary_dtlb_hits++;
}
#endif
if (!(tlb2_entry->flags & TLBFlags::PAGE_WRITABLE)) {
ppc_state.spr[SPR::DSISR] = 0x08000000 | (1 << 25);
ppc_state.spr[SPR::DAR] = guest_va;
mmu_exception_handler(Except_Type::EXC_DSI, 0);
}
if (!(tlb2_entry->flags & TLBFlags::PTE_SET_C)) {
// perform full page address translation to update PTE.C bit
page_address_translation(guest_va, false, !!(ppc_state.msr & MSR::PR), true);
tlb2_entry->flags |= TLBFlags::PTE_SET_C;
}
if (tlb2_entry->flags & TLBFlags::PAGE_MEM) { // is it a real memory region?
// refill the primary TLB
*tlb1_entry = *tlb2_entry;
host_va = (uint8_t *)(tlb1_entry->host_va_offs_w + guest_va);
} else { // otherwise, it's an access to a memory-mapped device
#ifdef MMU_PROFILING
iomem_writes_total++;
#endif
if (sizeof(T) == 8) {
if (guest_va & 3)
ppc_alignment_exception(guest_va);
tlb2_entry->rgn_desc->devobj->write(tlb2_entry->rgn_desc->start,
static_cast<uint32_t>(guest_va - tlb2_entry->dev_base_va),
value >> 32, 4);
tlb2_entry->rgn_desc->devobj->write(tlb2_entry->rgn_desc->start,
static_cast<uint32_t>(guest_va + 4 - tlb2_entry->dev_base_va),
(uint32_t)value, 4);
} else {
tlb2_entry->rgn_desc->devobj->write(tlb2_entry->rgn_desc->start,
static_cast<uint32_t>(guest_va - tlb2_entry->dev_base_va),
value, sizeof(T));
}
return;
}
}
#ifdef MMU_PROFILING
dmem_writes_total++;
#endif
// handle unaligned memory accesses
if (sizeof(T) > 1 && (guest_va & (sizeof(T) - 1))) {
write_unaligned<T>(guest_va, host_va, value);
return;
}
// handle aligned memory accesses
switch(sizeof(T)) {
case 1:
*host_va = value;
break;
case 2:
WRITE_WORD_BE_A(host_va, value);
break;
case 4:
WRITE_DWORD_BE_A(host_va, value);
break;
case 8:
WRITE_QWORD_BE_A(host_va, value);
break;
}
}
// explicitely instantiate all required mmu_write_vmem variants
template void mmu_write_vmem<uint8_t>(uint32_t guest_va, uint8_t value);
template void mmu_write_vmem<uint16_t>(uint32_t guest_va, uint16_t value);
template void mmu_write_vmem<uint32_t>(uint32_t guest_va, uint32_t value);
template void mmu_write_vmem<uint64_t>(uint32_t guest_va, uint64_t value);
template <class T>
static T read_unaligned(uint32_t guest_va, uint8_t *host_va)
{
T result = 0;
// is it a misaligned cross-page read?
if (((guest_va & 0xFFF) + sizeof(T)) > 0x1000) {
#ifdef MMU_PROFILING
unaligned_crossp_r++;
#endif
// Break such a memory access into multiple, bytewise accesses.
// Because such accesses suffer a performance penalty, they will be
// presumably very rare so don't waste time optimizing the code below.
for (int i = 0; i < sizeof(T); guest_va++, i++) {
result = (result << 8) | mmu_read_vmem<uint8_t>(guest_va);
}
} else {
#ifdef MMU_PROFILING
unaligned_reads++;
#endif
switch(sizeof(T)) {
case 1:
return *host_va;
case 2:
return READ_WORD_BE_U(host_va);
case 4:
return READ_DWORD_BE_U(host_va);
case 8:
if (guest_va & 3) {
ppc_alignment_exception(guest_va);
}
return READ_QWORD_BE_U(host_va);
}
}
return result;
}
// explicitely instantiate all required read_unaligned variants
template uint16_t read_unaligned<uint16_t>(uint32_t guest_va, uint8_t *host_va);
template uint32_t read_unaligned<uint32_t>(uint32_t guest_va, uint8_t *host_va);
template uint64_t read_unaligned<uint64_t>(uint32_t guest_va, uint8_t *host_va);
template <class T>
static void write_unaligned(uint32_t guest_va, uint8_t *host_va, T value)
{
// is it a misaligned cross-page write?
if (((guest_va & 0xFFF) + sizeof(T)) > 0x1000) {
#ifdef MMU_PROFILING
unaligned_crossp_w++;
#endif
// Break such a memory access into multiple, bytewise accesses.
// Because such accesses suffer a performance penalty, they will be
// presumably very rare so don't waste time optimizing the code below.
uint32_t shift = (sizeof(T) - 1) * 8;
for (int i = 0; i < sizeof(T); shift -= 8, guest_va++, i++) {
mmu_write_vmem<uint8_t>(guest_va, (value >> shift) & 0xFF);
}
} else {
#ifdef MMU_PROFILING
unaligned_writes++;
#endif
switch(sizeof(T)) {
case 1:
*host_va = value;
break;
case 2:
WRITE_WORD_BE_U(host_va, value);
break;
case 4:
WRITE_DWORD_BE_U(host_va, value);
break;
case 8:
if (guest_va & 3) {
ppc_alignment_exception(guest_va);
}
WRITE_QWORD_BE_U(host_va, value);
break;
}
}
}
// explicitely instantiate all required write_unaligned variants
template void write_unaligned<uint16_t>(uint32_t guest_va, uint8_t *host_va, uint16_t value);
template void write_unaligned<uint32_t>(uint32_t guest_va, uint8_t *host_va, uint32_t value);
template void write_unaligned<uint64_t>(uint32_t guest_va, uint8_t *host_va, uint64_t value);
/* MMU profiling. */
#ifdef MMU_PROFILING
#include "utils/profiler.h"
#include <memory>
class MMUProfile : public BaseProfile {
public:
MMUProfile() : BaseProfile("PPC_MMU") {};
void populate_variables(std::vector<ProfileVar>& vars) {
vars.clear();
vars.push_back({.name = "Data Memory Reads Total",
.format = ProfileVarFmt::DEC,
.value = dmem_reads_total});
vars.push_back({.name = "I/O Memory Reads Total",
.format = ProfileVarFmt::DEC,
.value = iomem_reads_total});
vars.push_back({.name = "Data Memory Writes Total",
.format = ProfileVarFmt::DEC,
.value = dmem_writes_total});
vars.push_back({.name = "I/O Memory Writes Total",
.format = ProfileVarFmt::DEC,
.value = iomem_writes_total});
vars.push_back({.name = "Reads from Executable Memory",
.format = ProfileVarFmt::DEC,
.value = exec_reads_total});
vars.push_back({.name = "BAT Translations Total",
.format = ProfileVarFmt::DEC,
.value = bat_transl_total});
vars.push_back({.name = "Page Table Translations Total",
.format = ProfileVarFmt::DEC,
.value = ptab_transl_total});
vars.push_back({.name = "Unaligned Reads Total",
.format = ProfileVarFmt::DEC,
.value = unaligned_reads});
vars.push_back({.name = "Unaligned Writes Total",
.format = ProfileVarFmt::DEC,
.value = unaligned_writes});
vars.push_back({.name = "Unaligned Crosspage Reads Total",
.format = ProfileVarFmt::DEC,
.value = unaligned_crossp_r});
vars.push_back({.name = "Unaligned Crosspage Writes Total",
.format = ProfileVarFmt::DEC,
.value = unaligned_crossp_w});
};
void reset() {
dmem_reads_total = 0;
iomem_reads_total = 0;
dmem_writes_total = 0;
iomem_writes_total = 0;
exec_reads_total = 0;
bat_transl_total = 0;
ptab_transl_total = 0;
unaligned_reads = 0;
unaligned_writes = 0;
unaligned_crossp_r = 0;
unaligned_crossp_w = 0;
};
};
#endif
/* SoftTLB profiling. */
#ifdef TLB_PROFILING
#include "utils/profiler.h"
#include <memory>
class TLBProfile : public BaseProfile {
public:
TLBProfile() : BaseProfile("PPC:MMU:TLB") {};
void populate_variables(std::vector<ProfileVar>& vars) {
vars.clear();
vars.push_back({.name = "Number of hits in the primary ITLB",
.format = ProfileVarFmt::DEC,
.value = num_primary_itlb_hits});
vars.push_back({.name = "Number of hits in the secondary ITLB",
.format = ProfileVarFmt::DEC,
.value = num_secondary_itlb_hits});
vars.push_back({.name = "Number of ITLB refills",
.format = ProfileVarFmt::DEC,
.value = num_itlb_refills});
vars.push_back({.name = "Number of hits in the primary DTLB",
.format = ProfileVarFmt::DEC,
.value = num_primary_dtlb_hits});
vars.push_back({.name = "Number of hits in the secondary DTLB",
.format = ProfileVarFmt::DEC,
.value = num_secondary_dtlb_hits});
vars.push_back({.name = "Number of DTLB refills",
.format = ProfileVarFmt::DEC,
.value = num_dtlb_refills});
vars.push_back({.name = "Number of replaced TLB entries",
.format = ProfileVarFmt::DEC,
.value = num_entry_replacements});
};
void reset() {
num_primary_dtlb_hits = 0;
num_secondary_dtlb_hits = 0;
num_dtlb_refills = 0;
num_entry_replacements = 0;
};
};
#endif
//=================== Old and slow code. Kept for reference =================
#if 0
template <class T, const bool is_aligned>
static inline T read_phys_mem(AddressMapEntry *mru_rgn, uint32_t addr)
{
if (addr < mru_rgn->start || (addr + sizeof(T)) > mru_rgn->end) {
AddressMapEntry* entry = mem_ctrl_instance->find_range(addr);
if (entry) {
*mru_rgn = *entry;
} else {
LOG_F(ERROR, "Read from unmapped memory at 0x%08X!", addr);
return (-1ULL ? sizeof(T) == 8 : -1UL);
}
}
if (mru_rgn->type & (RT_ROM | RT_RAM)) {
#ifdef MMU_PROFILING
dmem_reads_total++;
#endif
switch(sizeof(T)) {
case 1:
return *(mru_rgn->mem_ptr + (addr - mru_rgn->start));
case 2:
if (is_aligned) {
return READ_WORD_BE_A(mru_rgn->mem_ptr + (addr - mru_rgn->start));
} else {
return READ_WORD_BE_U(mru_rgn->mem_ptr + (addr - mru_rgn->start));
}
case 4:
if (is_aligned) {
return READ_DWORD_BE_A(mru_rgn->mem_ptr + (addr - mru_rgn->start));
} else {
return READ_DWORD_BE_U(mru_rgn->mem_ptr + (addr - mru_rgn->start));
}
case 8:
if (is_aligned) {
return READ_QWORD_BE_A(mru_rgn->mem_ptr + (addr - mru_rgn->start));
}
default:
LOG_F(ERROR, "READ_PHYS: invalid size %lu passed", sizeof(T));
return (-1ULL ? sizeof(T) == 8 : -1UL);
}
} else if (mru_rgn->type & RT_MMIO) {
#ifdef MMU_PROFILING
iomem_reads_total++;
#endif
return (mru_rgn->devobj->read(mru_rgn->start,
addr - mru_rgn->start, sizeof(T)));
} else {
LOG_F(ERROR, "READ_PHYS: invalid region type!");
return (-1ULL ? sizeof(T) == 8 : -1UL);
}
}
template <class T, const bool is_aligned>
static inline void write_phys_mem(AddressMapEntry *mru_rgn, uint32_t addr, T value)
{
if (addr < mru_rgn->start || (addr + sizeof(T)) > mru_rgn->end) {
AddressMapEntry* entry = mem_ctrl_instance->find_range(addr);
if (entry) {
*mru_rgn = *entry;
} else {
LOG_F(ERROR, "Write to unmapped memory at 0x%08X!", addr);
return;
}
}
if (mru_rgn->type & RT_RAM) {
#ifdef MMU_PROFILING
dmem_writes_total++;
#endif
switch(sizeof(T)) {
case 1:
*(mru_rgn->mem_ptr + (addr - mru_rgn->start)) = value;
break;
case 2:
if (is_aligned) {
WRITE_WORD_BE_A(mru_rgn->mem_ptr + (addr - mru_rgn->start), value);
} else {
WRITE_WORD_BE_U(mru_rgn->mem_ptr + (addr - mru_rgn->start), value);
}
break;
case 4:
if (is_aligned) {
WRITE_DWORD_BE_A(mru_rgn->mem_ptr + (addr - mru_rgn->start), value);
} else {
WRITE_DWORD_BE_U(mru_rgn->mem_ptr + (addr - mru_rgn->start), value);
}
break;
case 8:
if (is_aligned) {
WRITE_QWORD_BE_A(mru_rgn->mem_ptr + (addr - mru_rgn->start), value);
}
break;
default:
LOG_F(ERROR, "WRITE_PHYS: invalid size %lu passed", sizeof(T));
return;
}
} else if (mru_rgn->type & RT_MMIO) {
#ifdef MMU_PROFILING
iomem_writes_total++;
#endif
mru_rgn->devobj->write(mru_rgn->start, addr - mru_rgn->start, value,
sizeof(T));
} else {
LOG_F(ERROR, "WRITE_PHYS: invalid region type!");
}
}
/** PowerPC-style MMU data address translation. */
static uint32_t ppc_mmu_addr_translate(uint32_t la, int is_write)
{
uint32_t pa; /* translated physical address */
bool bat_hit = false;
unsigned msr_pr = !!(ppc_state.msr & MSR::PR);
// Format: %XY
// X - supervisor access bit, Y - problem/user access bit
// Those bits are mutually exclusive
unsigned access_bits = ((msr_pr ^ 1) << 1) | msr_pr;
for (int bat_index = 0; bat_index < 4; bat_index++) {
PPC_BAT_entry* bat_entry = &dbat_array[bat_index];
if ((bat_entry->access & access_bits) && ((la & bat_entry->hi_mask) == bat_entry->bepi)) {
bat_hit = true;
#ifdef MMU_PROFILING
bat_transl_total++;
#endif
if (!bat_entry->prot || ((bat_entry->prot & 1) && is_write)) {
ppc_state.spr[SPR::DSISR] = 0x08000000 | (is_write << 25);
ppc_state.spr[SPR::DAR] = la;
mmu_exception_handler(Except_Type::EXC_DSI, 0);
}
// logical to physical translation
pa = bat_entry->phys_hi | (la & ~bat_entry->hi_mask);
break;
}
}
/* page address translation */
if (!bat_hit) {
PATResult pat_res = page_address_translation(la, false, msr_pr, is_write);
pa = pat_res.phys;
#ifdef MMU_PROFILING
ptab_transl_total++;
#endif
}
return pa;
}
static void mem_write_unaligned(uint32_t addr, uint32_t value, uint32_t size) {
#ifdef MMU_DEBUG
LOG_F(WARNING, "Attempt to write unaligned %d bytes to 0x%08X", size, addr);
#endif
if (((addr & 0xFFF) + size) > 0x1000) {
// Special case: unaligned cross-page writes
#ifdef MMU_PROFILING
unaligned_crossp_w++;
#endif
uint32_t phys_addr;
uint32_t shift = (size - 1) * 8;
// Break misaligned memory accesses into multiple, bytewise accesses
// and retranslate on page boundary.
// Because such accesses suffer a performance penalty, they will be
// presumably very rare so don't care much about performance.
for (int i = 0; i < size; shift -= 8, addr++, phys_addr++, i++) {
if ((ppc_state.msr & MSR::DR) && (!i || !(addr & 0xFFF))) {
phys_addr = ppc_mmu_addr_translate(addr, 1);
}
write_phys_mem<uint8_t, false>(&last_write_area, phys_addr,
(value >> shift) & 0xFF);
}
} else {
// data address translation if enabled
if (ppc_state.msr & MSR::DR) {
addr = ppc_mmu_addr_translate(addr, 1);
}
if (size == 2) {
write_phys_mem<uint16_t, false>(&last_write_area, addr, value);
} else {
write_phys_mem<uint32_t, false>(&last_write_area, addr, value);
}
#ifdef MMU_PROFILING
unaligned_writes++;
#endif
}
}
static inline uint64_t tlb_translate_addr(uint32_t guest_va)
{
TLBEntry *tlb1_entry, *tlb2_entry;
const uint32_t tag = guest_va & ~0xFFFUL;
// look up address in the primary TLB
tlb1_entry = &pCurDTLB1[(guest_va >> PAGE_SIZE_BITS) & tlb_size_mask];
if (tlb1_entry->tag == tag) { // primary TLB hit -> fast path
return tlb1_entry->host_va_offs_r + guest_va;
} else { // primary TLB miss -> look up address in the secondary TLB
tlb2_entry = &pCurDTLB2[((guest_va >> PAGE_SIZE_BITS) & tlb_size_mask) * TLB2_WAYS];
if (tlb2_entry->tag == tag) {
// update LRU bits
tlb2_entry[0].lru_bits = 0x3;
tlb2_entry[1].lru_bits = 0x2;
tlb2_entry[2].lru_bits &= 0x1;
tlb2_entry[3].lru_bits &= 0x1;
} else if (tlb2_entry[1].tag == tag) {
// update LRU bits
tlb2_entry[0].lru_bits = 0x2;
tlb2_entry[1].lru_bits = 0x3;
tlb2_entry[2].lru_bits &= 0x1;
tlb2_entry[3].lru_bits &= 0x1;
tlb2_entry = &tlb2_entry[1];
} else if (tlb2_entry[2].tag == tag) {
// update LRU bits
tlb2_entry[0].lru_bits &= 0x1;
tlb2_entry[1].lru_bits &= 0x1;
tlb2_entry[2].lru_bits = 0x3;
tlb2_entry[3].lru_bits = 0x2;
tlb2_entry = &tlb2_entry[2];
} else if (tlb2_entry[3].tag == tag) {
// update LRU bits
tlb2_entry[0].lru_bits &= 0x1;
tlb2_entry[1].lru_bits &= 0x1;
tlb2_entry[2].lru_bits = 0x2;
tlb2_entry[3].lru_bits = 0x3;
tlb2_entry = &tlb2_entry[3];
} else { // secondary TLB miss ->
// perform full address translation and refill the secondary TLB
tlb2_entry = dtlb2_refill(guest_va, 0);
}
if (tlb2_entry->flags & TLBFlags::PAGE_MEM) { // is it a real memory region?
// refill the primary TLB
tlb1_entry->tag = tag;
tlb1_entry->flags = tlb2_entry->flags;
tlb1_entry->host_va_offs_r = tlb2_entry->host_va_offs_r;
tlb1_entry->phys_tag = tlb2_entry->phys_tag;
return tlb1_entry->host_va_offs_r + guest_va;
} else { // an attempt to access a memory-mapped device
return guest_va - tlb2_entry->dev_base_va;
}
}
}
static uint32_t mem_grab_unaligned(uint32_t addr, uint32_t size) {
uint32_t ret = 0;
#ifdef MMU_DEBUG
LOG_F(WARNING, "Attempt to read unaligned %d bytes from 0x%08X", size, addr);
#endif
if (((addr & 0xFFF) + size) > 0x1000) {
// Special case: misaligned cross-page reads
#ifdef MMU_PROFILING
unaligned_crossp_r++;
#endif
uint32_t phys_addr;
uint32_t res = 0;
// Break misaligned memory accesses into multiple, bytewise accesses
// and retranslate on page boundary.
// Because such accesses suffer a performance penalty, they will be
// presumably very rare so don't care much about performance.
for (int i = 0; i < size; addr++, phys_addr++, i++) {
tlb_translate_addr(addr);
if ((ppc_state.msr & MSR::DR) && (!i || !(addr & 0xFFF))) {
phys_addr = ppc_mmu_addr_translate(addr, 0);
}
res = (res << 8) |
read_phys_mem<uint8_t, false>(&last_read_area, phys_addr);
}
return res;
} else {
/* data address translation if enabled */
if (ppc_state.msr & MSR::DR) {
addr = ppc_mmu_addr_translate(addr, 0);
}
if (size == 2) {
return read_phys_mem<uint16_t, false>(&last_read_area, addr);
} else {
return read_phys_mem<uint32_t, false>(&last_read_area, addr);
}
#ifdef MMU_PROFILING
unaligned_reads++;
#endif
}
return ret;
}
void mem_write_byte(uint32_t addr, uint8_t value) {
mmu_write_vmem<uint8_t>(addr, value);
/* data address translation if enabled */
if (ppc_state.msr & MSR::DR) {
addr = ppc_mmu_addr_translate(addr, 1);
}
write_phys_mem<uint8_t, true>(&last_write_area, addr, value);
}
void mem_write_word(uint32_t addr, uint16_t value) {
mmu_write_vmem<uint16_t>(addr, value);
if (addr & 1) {
mem_write_unaligned(addr, value, 2);
return;
}
/* data address translation if enabled */
if (ppc_state.msr & MSR::DR) {
addr = ppc_mmu_addr_translate(addr, 1);
}
write_phys_mem<uint16_t, true>(&last_write_area, addr, value);
}
void mem_write_dword(uint32_t addr, uint32_t value) {
mmu_write_vmem<uint32_t>(addr, value);
if (addr & 3) {
mem_write_unaligned(addr, value, 4);
return;
}
/* data address translation if enabled */
if (ppc_state.msr & MSR::DR) {
addr = ppc_mmu_addr_translate(addr, 1);
}
write_phys_mem<uint32_t, true>(&last_write_area, addr, value);
}
void mem_write_qword(uint32_t addr, uint64_t value) {
mmu_write_vmem<uint64_t>(addr, value);
if (addr & 7) {
ABORT_F("SOS! Attempt to write unaligned QWORD to 0x%08X\n", addr);
}
/* data address translation if enabled */
if (ppc_state.msr & MSR::DR) {
addr = ppc_mmu_addr_translate(addr, 1);
}
write_phys_mem<uint64_t, true>(&last_write_area, addr, value);
}
/** Grab a value from memory into a register */
uint8_t mem_grab_byte(uint32_t addr) {
tlb_translate_addr(addr);
/* data address translation if enabled */
if (ppc_state.msr & MSR::DR) {
addr = ppc_mmu_addr_translate(addr, 0);
}
return read_phys_mem<uint8_t, true>(&last_read_area, addr);
}
uint16_t mem_grab_word(uint32_t addr) {
tlb_translate_addr(addr);
if (addr & 1) {
return mem_grab_unaligned(addr, 2);
}
/* data address translation if enabled */
if (ppc_state.msr & MSR::DR) {
addr = ppc_mmu_addr_translate(addr, 0);
}
return read_phys_mem<uint16_t, true>(&last_read_area, addr);
}
uint32_t mem_grab_dword(uint32_t addr) {
tlb_translate_addr(addr);
if (addr & 3) {
return mem_grab_unaligned(addr, 4);
}
/* data address translation if enabled */
if (ppc_state.msr & MSR::DR) {
addr = ppc_mmu_addr_translate(addr, 0);
}
return read_phys_mem<uint32_t, true>(&last_read_area, addr);
}
uint64_t mem_grab_qword(uint32_t addr) {
tlb_translate_addr(addr);
if (addr & 7) {
ABORT_F("SOS! Attempt to read unaligned QWORD at 0x%08X\n", addr);
}
/* data address translation if enabled */
if (ppc_state.msr & MSR::DR) {
addr = ppc_mmu_addr_translate(addr, 0);
}
return read_phys_mem<uint64_t, true>(&last_read_area, addr);
}
/** PowerPC-style MMU instruction address translation. */
static uint32_t mmu_instr_translation(uint32_t la)
{
uint32_t pa; /* translated physical address */
bool bat_hit = false;
unsigned msr_pr = !!(ppc_state.msr & MSR::PR);
// Format: %XY
// X - supervisor access bit, Y - problem/user access bit
// Those bits are mutually exclusive
unsigned access_bits = ((msr_pr ^ 1) << 1) | msr_pr;
for (int bat_index = 0; bat_index < 4; bat_index++) {
PPC_BAT_entry* bat_entry = &ibat_array[bat_index];
if ((bat_entry->access & access_bits) && ((la & bat_entry->hi_mask) == bat_entry->bepi)) {
bat_hit = true;
#ifdef MMU_PROFILING
bat_transl_total++;
#endif
if (!bat_entry->prot) {
mmu_exception_handler(Except_Type::EXC_ISI, 0x08000000);
}
// logical to physical translation
pa = bat_entry->phys_hi | (la & ~bat_entry->hi_mask);
break;
}
}
/* page address translation */
if (!bat_hit) {
PATResult pat_res = page_address_translation(la, true, msr_pr, 0);
pa = pat_res.phys;
#ifdef MMU_PROFILING
ptab_transl_total++;
#endif
}
return pa;
}
uint8_t* quickinstruction_translate(uint32_t addr) {
uint8_t* real_addr;
#ifdef MMU_PROFILING
exec_reads_total++;
#endif
/* perform instruction address translation if enabled */
if (ppc_state.msr & MSR::IR) {
addr = mmu_instr_translation(addr);
}
if (addr >= last_exec_area.start && addr <= last_exec_area.end) {
real_addr = last_exec_area.mem_ptr + (addr - last_exec_area.start);
ppc_set_cur_instruction(real_addr);
} else {
AddressMapEntry* entry = mem_ctrl_instance->find_range(addr);
if (entry && entry->type & (RT_ROM | RT_RAM)) {
last_exec_area.start = entry->start;
last_exec_area.end = entry->end;
last_exec_area.mem_ptr = entry->mem_ptr;
real_addr = last_exec_area.mem_ptr + (addr - last_exec_area.start);
ppc_set_cur_instruction(real_addr);
} else {
ABORT_F("Attempt to execute code at %08X!\n", addr);
}
}
return real_addr;
}
#endif // Old and slow code
uint64_t mem_read_dbg(uint32_t virt_addr, uint32_t size) {
uint32_t save_dsisr, save_dar;
uint64_t ret_val;
/* save MMU-related CPU state */
save_dsisr = ppc_state.spr[SPR::DSISR];
save_dar = ppc_state.spr[SPR::DAR];
mmu_exception_handler = dbg_exception_handler;
try {
switch (size) {
case 1:
ret_val = mmu_read_vmem<uint8_t>(virt_addr);
break;
case 2:
ret_val = mmu_read_vmem<uint16_t>(virt_addr);
break;
case 4:
ret_val = mmu_read_vmem<uint32_t>(virt_addr);
break;
case 8:
ret_val = mmu_read_vmem<uint64_t>(virt_addr);
break;
default:
ret_val = mmu_read_vmem<uint8_t>(virt_addr);
}
} catch (std::invalid_argument& exc) {
/* restore MMU-related CPU state */
mmu_exception_handler = ppc_exception_handler;
ppc_state.spr[SPR::DSISR] = save_dsisr;
ppc_state.spr[SPR::DAR] = save_dar;
/* rethrow MMU exception */
throw exc;
}
/* restore MMU-related CPU state */
mmu_exception_handler = ppc_exception_handler;
ppc_state.spr[SPR::DSISR] = save_dsisr;
ppc_state.spr[SPR::DAR] = save_dar;
return ret_val;
}
bool mmu_translate_dbg(uint32_t guest_va, uint32_t &guest_pa) {
uint32_t save_dsisr, save_dar;
bool is_mapped;
/* save MMU-related CPU state */
save_dsisr = ppc_state.spr[SPR::DSISR];
save_dar = ppc_state.spr[SPR::DAR];
mmu_exception_handler = dbg_exception_handler;
try {
TLBEntry *tlb1_entry, *tlb2_entry;
const uint32_t tag = guest_va & ~0xFFFUL;
// look up guest virtual address in the primary TLB
tlb1_entry = &pCurDTLB1[(guest_va >> PAGE_SIZE_BITS) & tlb_size_mask];
do {
if (tlb1_entry->tag != tag) {
// primary TLB miss -> look up address in the secondary TLB
tlb2_entry = lookup_secondary_tlb<TLBType::DTLB>(guest_va, tag);
if (tlb2_entry == nullptr) {
// secondary TLB miss ->
// perform full address translation and refill the secondary TLB
tlb2_entry = dtlb2_refill(guest_va, 0, true);
if (tlb2_entry->flags & PAGE_NOPHYS) {
is_mapped = false;
break;
}
}
if (tlb2_entry->flags & TLBFlags::PAGE_MEM) { // is it a real memory region?
// refill the primary TLB
*tlb1_entry = *tlb2_entry;
}
else {
tlb1_entry = tlb2_entry;
}
}
guest_pa = tlb1_entry->phys_tag | (guest_va & 0xFFFUL);
is_mapped = true;
} while (0);
} catch (std::invalid_argument& exc) {
LOG_F(WARNING, "Unmapped address 0x%08X", guest_va);
is_mapped = false;
}
/* restore MMU-related CPU state */
mmu_exception_handler = ppc_exception_handler;
ppc_state.spr[SPR::DSISR] = save_dsisr;
ppc_state.spr[SPR::DAR] = save_dar;
return is_mapped;
}
template <std::size_t N>
static void invalidate_tlb_entries(std::array<TLBEntry, N> &tlb) {
for (auto &tlb_el : tlb) {
tlb_el.tag = TLB_INVALID_TAG;
tlb_el.flags = 0;
tlb_el.lru_bits = 0;
tlb_el.host_va_offs_r = 0;
tlb_el.host_va_offs_w = 0;
tlb_el.phys_tag = 0;
tlb_el.reserved = 0;
}
}
void ppc_mmu_init()
{
last_read_area = {0xFFFFFFFF, 0xFFFFFFFF, 0, 0, nullptr, nullptr};
last_write_area = {0xFFFFFFFF, 0xFFFFFFFF, 0, 0, nullptr, nullptr};
last_exec_area = {0xFFFFFFFF, 0xFFFFFFFF, 0, 0, nullptr, nullptr};
last_ptab_area = {0xFFFFFFFF, 0xFFFFFFFF, 0, 0, nullptr, nullptr};
last_dma_area = {0xFFFFFFFF, 0xFFFFFFFF, 0, 0, nullptr, nullptr};
mmu_exception_handler = ppc_exception_handler;
if (is_601) {
// use 601-style unified BATs
ibat_update = &mpc601_bat_update;
} else {
// use PPC-style BATs
ibat_update = &ppc_ibat_update;
dbat_update = &ppc_dbat_update;
}
// invalidate all IDTLB entries
invalidate_tlb_entries(itlb1_mode1);
invalidate_tlb_entries(itlb1_mode2);
invalidate_tlb_entries(itlb1_mode3);
invalidate_tlb_entries(itlb2_mode1);
invalidate_tlb_entries(itlb2_mode2);
invalidate_tlb_entries(itlb2_mode3);
// invalidate all DTLB entries
invalidate_tlb_entries(dtlb1_mode1);
invalidate_tlb_entries(dtlb1_mode2);
invalidate_tlb_entries(dtlb1_mode3);
invalidate_tlb_entries(dtlb2_mode1);
invalidate_tlb_entries(dtlb2_mode2);
invalidate_tlb_entries(dtlb2_mode3);
mmu_change_mode();
#ifdef MMU_PROFILING
gProfilerObj->register_profile("PPC:MMU",
std::unique_ptr<BaseProfile>(new MMUProfile()));
#endif
#ifdef TLB_PROFILING
gProfilerObj->register_profile("PPC:MMU:TLB",
std::unique_ptr<BaseProfile>(new TLBProfile()));
#endif
}