dingusppc/cpu/ppc/poweropcodes.cpp
2024-09-23 08:07:30 -07:00

651 lines
20 KiB
C++

/*
DingusPPC - The Experimental PowerPC Macintosh emulator
Copyright (C) 2018-24 divingkatae and maximum
(theweirdo) spatium
(Contact divingkatae#1017 or powermax#2286 on Discord for more info)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
// The Power-specific opcodes for the processor - ppcopcodes.cpp
// Any shared opcodes are in ppcopcodes.cpp
#include "ppcemu.h"
#include "ppcmacros.h"
#include "ppcmmu.h"
#include <stdint.h>
/** mask generator for rotate and shift instructions (§ 4.2.1.4 PowerpC PEM) */
static inline uint32_t power_rot_mask(unsigned rot_mb, unsigned rot_me) {
uint32_t m1 = 0xFFFFFFFFU >> rot_mb;
uint32_t m2 = 0xFFFFFFFFU << (31 - rot_me);
return ((rot_mb <= rot_me) ? m2 & m1 : m1 | m2);
}
POWEROPCODEOVREC (abs,
uint32_t ppc_result_d;
ppc_grab_regsda(instr);
if (ppc_result_a == 0x80000000) {
ppc_result_d = ppc_result_a;
if (ov)
ppc_set_xer(XER::SO | XER::OV);
} else {
ppc_result_d = (int32_t(ppc_result_a) < 0) ? -ppc_result_a : ppc_result_a;
if (ov)
ppc_unset_xer(XER::SO | XER::OV);
}
if (rec)
ppc_changecrf0(ppc_result_d);
ppc_state.gpr[reg_d] = ppc_result_d;
)
template void dppc_interpreter::power_abs<RC0, OV0>(uint32_t instr);
template void dppc_interpreter::power_abs<RC0, OV1>(uint32_t instr);
template void dppc_interpreter::power_abs<RC1, OV0>(uint32_t instr);
template void dppc_interpreter::power_abs<RC1, OV1>(uint32_t instr);
POWEROPCODE (clcs,
ppc_grab_da(instr);
uint32_t ppc_result_d = 0;
switch (reg_a) {
case 12: //instruction cache line size
case 13: //data cache line size
case 14: //minimum line size
case 15: //maximum line size
default:
ppc_result_d = is_601 ? 64 : 32; break;
case 7:
case 23:
ppc_result_d = is_601 ? 64 : 0; break;
case 8:
case 9:
case 24:
case 25:
ppc_result_d = is_601 ? 64 : 4; break;
case 10:
case 11:
case 26:
case 27:
ppc_result_d = is_601 ? 64 : 0x4000; break;
}
ppc_state.gpr[reg_d] = ppc_result_d;
)
POWEROPCODEOVREC (div,
uint32_t ppc_result_d;
ppc_grab_regsdab(instr);
int64_t dividend = (uint64_t(ppc_result_a) << 32) | ppc_state.spr[SPR::MQ];
int32_t divisor = ppc_result_b;
int64_t quotient;
int32_t remainder;
if (dividend == -0x80000000 && divisor == -1) {
remainder = 0;
ppc_result_d = 0x80000000U; // -2^31 aka INT32_MIN
if (ov)
ppc_set_xer(XER::SO | XER::OV);
} else if (!divisor) {
remainder = 0;
ppc_result_d = 0x80000000U; // -2^31 aka INT32_MIN
if (ov)
ppc_set_xer(XER::SO | XER::OV);
} else {
quotient = dividend / divisor;
remainder = dividend % divisor;
ppc_result_d = uint32_t(quotient);
if (ov) {
if (((quotient >> 31) + 1) & ~1) {
ppc_set_xer(XER::SO | XER::OV);
} else {
ppc_unset_xer(XER::SO | XER::OV);
}
}
}
if (rec)
ppc_changecrf0(remainder);
ppc_state.gpr[reg_d] = ppc_result_d;
power_store_mq(remainder);
)
template void dppc_interpreter::power_div<RC0, OV0>(uint32_t instr);
template void dppc_interpreter::power_div<RC0, OV1>(uint32_t instr);
template void dppc_interpreter::power_div<RC1, OV0>(uint32_t instr);
template void dppc_interpreter::power_div<RC1, OV1>(uint32_t instr);
POWEROPCODEOVREC (divs,
uint32_t ppc_result_d;
int32_t remainder;
ppc_grab_regsdab(instr);
if (!ppc_result_b) { // handle the "anything / 0" case
ppc_result_d = -1;
remainder = ppc_result_a;
if (ov)
ppc_set_xer(XER::SO | XER::OV);
} else if (ppc_result_a == 0x80000000U && ppc_result_b == 0xFFFFFFFFU) {
ppc_result_d = 0x80000000U;
remainder = 0;
if (ov)
ppc_set_xer(XER::SO | XER::OV);
} else { // normal signed devision
ppc_result_d = int32_t(ppc_result_a) / int32_t(ppc_result_b);
remainder = (int32_t(ppc_result_a) % int32_t(ppc_result_b));
if (ov)
ppc_unset_xer(XER::SO | XER::OV);
}
if (rec)
ppc_changecrf0(remainder);
ppc_state.gpr[reg_d] = ppc_result_d;
power_store_mq(remainder);;
)
template void dppc_interpreter::power_divs<RC0, OV0>(uint32_t instr);
template void dppc_interpreter::power_divs<RC0, OV1>(uint32_t instr);
template void dppc_interpreter::power_divs<RC1, OV0>(uint32_t instr);
template void dppc_interpreter::power_divs<RC1, OV1>(uint32_t instr);
POWEROPCODEOVREC (doz,
ppc_grab_regsdab(instr);
uint32_t ppc_result_d = (int32_t(ppc_result_a) < int32_t(ppc_result_b)) ?
ppc_result_b - ppc_result_a : 0;
if (ov) {
if (int32_t(ppc_result_d) < 0) {
ppc_set_xer(XER::SO | XER::OV);
} else {
ppc_unset_xer(XER::SO | XER::OV);
}
}
if (rec)
ppc_changecrf0(ppc_result_d);
ppc_state.gpr[reg_d] = ppc_result_d;
)
template void dppc_interpreter::power_doz<RC0, OV0>(uint32_t instr);
template void dppc_interpreter::power_doz<RC0, OV1>(uint32_t instr);
template void dppc_interpreter::power_doz<RC1, OV0>(uint32_t instr);
template void dppc_interpreter::power_doz<RC1, OV1>(uint32_t instr);
POWEROPCODE (dozi,
uint32_t ppc_result_d;
ppc_grab_regsdasimm(instr);
if (((int32_t)ppc_result_a) > simm) {
ppc_result_d = 0;
} else {
ppc_result_d = simm - ppc_result_a;
}
ppc_state.gpr[reg_d] = ppc_result_d;
)
POWEROPCODEREC (lscbx,
ppc_grab_regsdab(instr);
uint32_t ea = ppc_result_b + (reg_a ? ppc_result_a : 0);
uint32_t bytes_to_load = (ppc_state.spr[SPR::XER] & 0x7F);
uint32_t bytes_remaining = bytes_to_load;
uint8_t matching_byte = (uint8_t)(ppc_state.spr[SPR::XER] >> 8);
uint32_t ppc_result_d = 0;
bool is_match = false;
// for storing each byte
uint8_t shift_amount = 24;
while (bytes_remaining > 0) {
uint8_t return_value = mmu_read_vmem<uint8_t>(ea, instr);
ppc_result_d |= return_value << shift_amount;
if (!shift_amount) {
if (reg_d != reg_a && reg_d != reg_b)
ppc_state.gpr[reg_d] = ppc_result_d;
reg_d = (reg_d + 1) & 0x1F;
ppc_result_d = 0;
shift_amount = 24;
} else {
shift_amount -= 8;
}
ea++;
bytes_remaining--;
if (return_value == matching_byte) {
is_match = true;
break;
}
}
// store partially loaded register if any
if (shift_amount != 24 && reg_d != reg_a && reg_d != reg_b)
ppc_state.gpr[reg_d] = ppc_result_d;
ppc_state.spr[SPR::XER] = (ppc_state.spr[SPR::XER] & ~0x7F) | (bytes_to_load - bytes_remaining);
if (rec) {
ppc_state.cr =
(ppc_state.cr & 0x0FFFFFFFUL) |
(is_match ? CRx_bit::CR_EQ : 0) |
((ppc_state.spr[SPR::XER] & XER::SO) >> 3);
}
)
template void dppc_interpreter::power_lscbx<RC0>(uint32_t instr);
template void dppc_interpreter::power_lscbx<RC1>(uint32_t instr);
POWEROPCODEREC (maskg,
ppc_grab_regssab(instr);
uint32_t mask_start = ppc_result_d & 0x1F;
uint32_t mask_end = ppc_result_b & 0x1F;
uint32_t insert_mask = 0;
if (mask_start < (mask_end + 1)) {
insert_mask = power_rot_mask(mask_start, mask_end);
}
else if (mask_start == (mask_end + 1)) {
insert_mask = 0xFFFFFFFF;
}
else {
insert_mask = ~(power_rot_mask(mask_end + 1, mask_start - 1));
}
ppc_result_a = insert_mask;
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.gpr[reg_a] = ppc_result_a;
}
template void dppc_interpreter::power_maskg<RC0>(uint32_t instr);
template void dppc_interpreter::power_maskg<RC1>(uint32_t instr);
POWEROPCODEREC (maskir,
ppc_grab_regssab(instr);
ppc_result_a = (ppc_result_a & ~ppc_result_b) | (ppc_result_d & ppc_result_b);
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.gpr[reg_a] = ppc_result_a;
}
template void dppc_interpreter::power_maskir<RC0>(uint32_t instr);
template void dppc_interpreter::power_maskir<RC1>(uint32_t instr);
POWEROPCODEOVREC (mul,
ppc_grab_regsdab(instr);
int64_t product = int64_t(int32_t(ppc_result_a)) * int32_t(ppc_result_b);
uint32_t ppc_result_d = uint32_t(uint64_t(product) >> 32);
ppc_state.spr[SPR::MQ] = uint32_t(product);
if (ov) {
if (uint64_t(product >> 31) + 1 & ~1) {
ppc_set_xer(XER::SO | XER::OV);
} else {
ppc_unset_xer(XER::SO | XER::OV);
}
}
if (rec)
ppc_changecrf0(uint32_t(product));
ppc_state.gpr[reg_d] = ppc_result_d;
}
template void dppc_interpreter::power_mul<RC0, OV0>(uint32_t instr);
template void dppc_interpreter::power_mul<RC0, OV1>(uint32_t instr);
template void dppc_interpreter::power_mul<RC1, OV0>(uint32_t instr);
template void dppc_interpreter::power_mul<RC1, OV1>(uint32_t instr);
POWEROPCODEOVREC (nabs,
ppc_grab_regsda(instr);
uint32_t ppc_result_d = (int32_t(ppc_result_a) < 0) ? ppc_result_a : -ppc_result_a;
if (ov)
ppc_unset_xer(XER::SO | XER::OV);
if (rec)
ppc_changecrf0(ppc_result_d);
ppc_state.gpr[reg_d] = ppc_result_d;
}
template void dppc_interpreter::power_nabs<RC0, OV0>(uint32_t instr);
template void dppc_interpreter::power_nabs<RC0, OV1>(uint32_t instr);
template void dppc_interpreter::power_nabs<RC1, OV0>(uint32_t instr);
template void dppc_interpreter::power_nabs<RC1, OV1>(uint32_t instr);
POWEROPCODE (rlmi,
ppc_grab_regssab(instr);
unsigned rot_mb = (instr >> 6) & 0x1F;
unsigned rot_me = (instr >> 1) & 0x1F;
unsigned rot_sh = ppc_result_b & 0x1F;
uint32_t r = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
uint32_t mask = power_rot_mask(rot_mb, rot_me);
ppc_result_a = ((r & mask) | (ppc_result_a & ~mask));
if ((instr & 0x01) == 1)
ppc_changecrf0(ppc_result_a);
ppc_state.gpr[reg_a] = ppc_result_a;
}
POWEROPCODEREC (rrib,
ppc_grab_regssab(instr);
unsigned rot_sh = ppc_result_b & 0x1F;
if (int32_t(ppc_result_d) < 0) {
ppc_result_a |= (0x80000000U >> rot_sh);
} else {
ppc_result_a &= ~(0x80000000U >> rot_sh);
}
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.gpr[reg_a] = ppc_result_a;
}
template void dppc_interpreter::power_rrib<RC0>(uint32_t instr);
template void dppc_interpreter::power_rrib<RC1>(uint32_t instr);
POWEROPCODEREC (sle,
ppc_grab_regssab(instr);
unsigned rot_sh = ppc_result_b & 0x1F;
ppc_result_a = ppc_result_d << rot_sh;
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
ppc_state.gpr[reg_a] = ppc_result_a;
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.gpr[reg_a] = ppc_result_a;
)
template void dppc_interpreter::power_sle<RC0>(uint32_t instr);
template void dppc_interpreter::power_sle<RC1>(uint32_t instr);
POWEROPCODEREC (sleq,
ppc_grab_regssab(instr);
unsigned rot_sh = ppc_result_b & 0x1F;
uint32_t r = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
uint32_t mask = power_rot_mask(0, 31 - rot_sh);
ppc_result_a = ((r & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
ppc_state.spr[SPR::MQ] = r;
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.gpr[reg_a] = ppc_result_a;
)
template void dppc_interpreter::power_sleq<RC0>(uint32_t instr);
template void dppc_interpreter::power_sleq<RC1>(uint32_t instr);
POWEROPCODEREC (sliq,
ppc_grab_regssash(instr);
ppc_result_a = ppc_result_d << rot_sh;
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.gpr[reg_a] = ppc_result_a;
)
template void dppc_interpreter::power_sliq<RC0>(uint32_t instr);
template void dppc_interpreter::power_sliq<RC1>(uint32_t instr);
POWEROPCODEREC (slliq,
ppc_grab_regssash(instr);
uint32_t r = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
uint32_t mask = power_rot_mask(0, 31 - rot_sh);
ppc_result_a = ((r & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
ppc_state.spr[SPR::MQ] = r;
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.gpr[reg_a] = ppc_result_a;
)
template void dppc_interpreter::power_slliq<RC0>(uint32_t instr);
template void dppc_interpreter::power_slliq<RC1>(uint32_t instr);
POWEROPCODEREC (sllq,
ppc_grab_regssab(instr);
unsigned rot_sh = ppc_result_b & 0x1F;
if (ppc_result_b & 0x20) {
ppc_result_a = ppc_state.spr[SPR::MQ] & (-1U << rot_sh);
} else {
ppc_result_a = ((ppc_result_d << rot_sh) | (ppc_state.spr[SPR::MQ] & ((1 << rot_sh) - 1)));
}
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.gpr[reg_a] = ppc_result_a;
)
template void dppc_interpreter::power_sllq<RC0>(uint32_t instr);
template void dppc_interpreter::power_sllq<RC1>(uint32_t instr);
POWEROPCODEREC (slq,
ppc_grab_regssab(instr);
unsigned rot_sh = ppc_result_b & 0x1F;
if (ppc_result_b & 0x20) {
ppc_result_a = 0;
} else {
ppc_result_a = ppc_result_d << rot_sh;
}
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
ppc_state.gpr[reg_a] = ppc_result_a;
)
template void dppc_interpreter::power_slq<RC0>(uint32_t instr);
template void dppc_interpreter::power_slq<RC1>(uint32_t instr);
POWEROPCODEREC (sraiq,
ppc_grab_regssash(instr);
uint32_t mask = (1 << rot_sh) - 1;
ppc_result_a = (int32_t)ppc_result_d >> rot_sh;
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
if ((int32_t(ppc_result_d) < 0) && (ppc_result_d & mask)) {
ppc_state.spr[SPR::XER] |= XER::CA;
} else {
ppc_state.spr[SPR::XER] &= ~XER::CA;
}
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.gpr[reg_a] = ppc_result_a;
)
template void dppc_interpreter::power_sraiq<RC0>(uint32_t instr);
template void dppc_interpreter::power_sraiq<RC1>(uint32_t instr);
POWEROPCODEREC (sraq,
ppc_grab_regssab(instr);
unsigned rot_sh = ppc_result_b & 0x1F;
uint32_t mask = (ppc_result_b & 0x20) ? -1 : (1 << rot_sh) - 1;
ppc_result_a = (int32_t)ppc_result_d >> ((ppc_result_b & 0x20) ? 31 : rot_sh);
ppc_state.spr[SPR::MQ] = ((ppc_result_d << rot_sh) | (ppc_result_d >> (32 - rot_sh)));
if ((int32_t(ppc_result_d) < 0) && (ppc_result_d & mask)) {
ppc_state.spr[SPR::XER] |= XER::CA;
} else {
ppc_state.spr[SPR::XER] &= ~XER::CA;
}
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.gpr[reg_a] = ppc_result_a;
)
template void dppc_interpreter::power_sraq<RC0>(uint32_t instr);
template void dppc_interpreter::power_sraq<RC1>(uint32_t instr);
POWEROPCODEREC (sre,
ppc_grab_regssab(instr);
unsigned rot_sh = ppc_result_b & 0x1F;
ppc_result_a = ppc_result_d >> rot_sh;
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.gpr[reg_a] = ppc_result_a;
)
template void dppc_interpreter::power_sre<RC0>(uint32_t instr);
template void dppc_interpreter::power_sre<RC1>(uint32_t instr);
POWEROPCODEREC (srea,
ppc_grab_regssab(instr);
unsigned rot_sh = ppc_result_b & 0x1F;
ppc_result_a = (int32_t)ppc_result_d >> rot_sh;
uint32_t r = ((ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh)));
uint32_t mask = -1U >> rot_sh;
if ((int32_t(ppc_result_d) < 0) && (r & ~mask)) {
ppc_state.spr[SPR::XER] |= XER::CA;
} else {
ppc_state.spr[SPR::XER] &= ~XER::CA;
}
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.gpr[reg_a] = ppc_result_a;
ppc_state.spr[SPR::MQ] = r;
)
template void dppc_interpreter::power_srea<RC0>(uint32_t instr);
template void dppc_interpreter::power_srea<RC1>(uint32_t instr);
POWEROPCODEREC (sreq,
ppc_grab_regssab(instr);
unsigned rot_sh = ppc_result_b & 0x1F;
uint32_t mask = -1U >> rot_sh;
ppc_result_a = (ppc_result_d >> rot_sh) | (ppc_state.spr[SPR::MQ] & ~mask);
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.gpr[reg_a] = ppc_result_a;
)
template void dppc_interpreter::power_sreq<RC0>(uint32_t instr);
template void dppc_interpreter::power_sreq<RC1>(uint32_t instr);
POWEROPCODEREC (sriq,
ppc_grab_regssash(instr);
ppc_result_a = ppc_result_d >> rot_sh;
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.gpr[reg_a] = ppc_result_a;
)
template void dppc_interpreter::power_sriq<RC0>(uint32_t instr);
template void dppc_interpreter::power_sriq<RC1>(uint32_t instr);
POWEROPCODEREC (srliq,
ppc_grab_regssash(instr);
uint32_t r = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
unsigned mask = power_rot_mask(rot_sh, 31);
ppc_result_a = ((r & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
ppc_state.spr[SPR::MQ] = r;
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.gpr[reg_a] = ppc_result_a;
)
template void dppc_interpreter::power_srliq<RC0>(uint32_t instr);
template void dppc_interpreter::power_srliq<RC1>(uint32_t instr);
POWEROPCODEREC (srlq,
ppc_grab_regssab(instr);
unsigned rot_sh = ppc_result_b & 0x1F;
uint32_t r = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
unsigned mask = power_rot_mask(rot_sh, 31);
if (ppc_result_b & 0x20) {
ppc_result_a = (ppc_state.spr[SPR::MQ] & mask);
} else {
ppc_result_a = ((r & mask) | (ppc_state.spr[SPR::MQ] & ~mask));
}
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.gpr[reg_a] = ppc_result_a;
)
template void dppc_interpreter::power_srlq<RC0>(uint32_t instr);
template void dppc_interpreter::power_srlq<RC1>(uint32_t instr);
POWEROPCODEREC (srq,
ppc_grab_regssab(instr);
unsigned rot_sh = ppc_result_b & 0x1F;
if (ppc_result_b & 0x20) {
ppc_result_a = 0;
} else {
ppc_result_a = ppc_result_d >> rot_sh;
}
ppc_state.spr[SPR::MQ] = (ppc_result_d >> rot_sh) | (ppc_result_d << (32 - rot_sh));
if (rec)
ppc_changecrf0(ppc_result_a);
ppc_state.gpr[reg_a] = ppc_result_a;
)
template void dppc_interpreter::power_srq<RC0>(uint32_t instr);
template void dppc_interpreter::power_srq<RC1>(uint32_t instr);