macemu/BasiliskII/src/ether.cpp
2004-01-12 15:29:31 +00:00

450 lines
12 KiB
C++

/*
* ether.cpp - Ethernet device driver
*
* Basilisk II (C) 1997-2004 Christian Bauer
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* SEE ALSO
* Inside Macintosh: Devices, chapter 1 "Device Manager"
* Inside Macintosh: Networking, chapter 11 "Ethernet, Token Ring, and FDDI"
* Inside AppleTalk, chapter 3 "Ethernet and TokenTalk Link Access Protocols"
*/
#include "sysdeps.h"
#include <string.h>
#include <map>
#if SUPPORTS_UDP_TUNNEL
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <netdb.h>
#include <unistd.h>
#include <errno.h>
#endif
#include "cpu_emulation.h"
#include "main.h"
#include "macos_util.h"
#include "emul_op.h"
#include "prefs.h"
#include "ether.h"
#include "ether_defs.h"
#ifndef NO_STD_NAMESPACE
using std::map;
#endif
#define DEBUG 0
#include "debug.h"
#define MONITOR 0
#ifdef __BEOS__
#define CLOSESOCKET closesocket
#else
#define CLOSESOCKET close
#endif
// Global variables
uint8 ether_addr[6]; // Ethernet address (set by ether_init())
static bool net_open = false; // Flag: initialization succeeded, network device open (set by EtherInit())
static bool udp_tunnel = false; // Flag: tunnelling AppleTalk over UDP using BSD socket API
static uint16 udp_port;
static int udp_socket = -1;
// Mac address of driver data in MacOS RAM
uint32 ether_data = 0;
// Attached network protocols for UDP tunneling, maps protocol type to MacOS handler address
static map<uint16, uint32> udp_protocols;
/*
* Initialization
*/
void EtherInit(void)
{
net_open = false;
udp_tunnel = false;
#if SUPPORTS_UDP_TUNNEL
// UDP tunnelling requested?
if (PrefsFindBool("udptunnel")) {
udp_tunnel = true;
udp_port = PrefsFindInt32("udpport");
// Open UDP socket
udp_socket = socket(PF_INET, SOCK_DGRAM, 0);
if (udp_socket < 0) {
perror("socket");
return;
}
// Bind to specified address and port
struct sockaddr_in sa;
memset(&sa, 0, sizeof(sa));
sa.sin_family = AF_INET;
sa.sin_addr.s_addr = INADDR_ANY;
sa.sin_port = htons(udp_port);
if (bind(udp_socket, (struct sockaddr *)&sa, sizeof(sa)) < 0) {
perror("bind");
CLOSESOCKET(udp_socket);
udp_socket = -1;
return;
}
// Retrieve local IP address (or at least one of them)
socklen_t sa_length = sizeof(sa);
getsockname(udp_socket, (struct sockaddr *)&sa, &sa_length);
uint32 udp_ip = sa.sin_addr.s_addr;
if (udp_ip == INADDR_ANY || udp_ip == INADDR_LOOPBACK) {
char name[256];
gethostname(name, sizeof(name));
struct hostent *local = gethostbyname(name);
if (local)
udp_ip = *(uint32 *)local->h_addr_list[0];
}
udp_ip = ntohl(udp_ip);
// Construct dummy Ethernet address from local IP address
ether_addr[0] = 'B';
ether_addr[1] = '2';
ether_addr[2] = udp_ip >> 24;
ether_addr[3] = udp_ip >> 16;
ether_addr[4] = udp_ip >> 8;
ether_addr[5] = udp_ip;
D(bug("Ethernet address %02x %02x %02x %02x %02x %02x\n", ether_addr[0], ether_addr[1], ether_addr[2], ether_addr[3], ether_addr[4], ether_addr[5]));
// Set socket options
int on = 1;
#ifdef __BEOS__
setsockopt(udp_socket, SOL_SOCKET, SO_NONBLOCK, &on, sizeof(on));
#else
setsockopt(udp_socket, SOL_SOCKET, SO_BROADCAST, &on, sizeof(on));
ioctl(udp_socket, FIONBIO, &on);
#endif
// Start thread for packet reception
if (!ether_start_udp_thread(udp_socket)) {
CLOSESOCKET(udp_socket);
udp_socket = -1;
return;
}
net_open = true;
} else
#endif
if (ether_init())
net_open = true;
}
/*
* Deinitialization
*/
void EtherExit(void)
{
if (net_open) {
#if SUPPORTS_UDP_TUNNEL
if (udp_tunnel) {
if (udp_socket >= 0) {
ether_stop_udp_thread();
CLOSESOCKET(udp_socket);
udp_socket = -1;
}
} else
#endif
ether_exit();
net_open = false;
}
}
/*
* Reset
*/
void EtherReset(void)
{
udp_protocols.clear();
ether_reset();
}
/*
* Check whether Ethernet address is AppleTalk or Ethernet broadcast address
*/
static inline bool is_apple_talk_broadcast(uint8 *p)
{
return p[0] == 0x09 && p[1] == 0x00 && p[2] == 0x07
&& p[3] == 0xff && p[4] == 0xff && p[5] == 0xff;
}
static inline bool is_ethernet_broadcast(uint8 *p)
{
return p[0] == 0xff && p[1] == 0xff && p[2] == 0xff
&& p[3] == 0xff && p[4] == 0xff && p[5] == 0xff;
}
/*
* Driver Open() routine
*/
int16 EtherOpen(uint32 pb, uint32 dce)
{
D(bug("EtherOpen\n"));
// Allocate driver data
M68kRegisters r;
r.d[0] = SIZEOF_etherdata;
Execute68kTrap(0xa71e, &r); // NewPtrSysClear()
if (r.a[0] == 0)
return openErr;
ether_data = r.a[0];
D(bug(" data %08x\n", ether_data));
WriteMacInt16(ether_data + ed_DeferredTask + qType, dtQType);
WriteMacInt32(ether_data + ed_DeferredTask + dtAddr, ether_data + ed_Code);
WriteMacInt32(ether_data + ed_DeferredTask + dtParam, ether_data + ed_Result);
// Deferred function for signalling that packet write is complete (pointer to mydtResult in a1)
WriteMacInt16(ether_data + ed_Code, 0x2019); // move.l (a1)+,d0 (result)
WriteMacInt16(ether_data + ed_Code + 2, 0x2251); // move.l (a1),a1 (dce)
WriteMacInt32(ether_data + ed_Code + 4, 0x207808fc); // move.l JIODone,a0
WriteMacInt16(ether_data + ed_Code + 8, 0x4ed0); // jmp (a0)
WriteMacInt32(ether_data + ed_DCE, dce);
// ReadPacket/ReadRest routines
WriteMacInt16(ether_data + ed_ReadPacket, 0x6010); // bra 2
WriteMacInt16(ether_data + ed_ReadPacket + 2, 0x3003); // move.w d3,d0
WriteMacInt16(ether_data + ed_ReadPacket + 4, 0x9041); // sub.w d1,d0
WriteMacInt16(ether_data + ed_ReadPacket + 6, 0x4a43); // tst.w d3
WriteMacInt16(ether_data + ed_ReadPacket + 8, 0x6702); // beq 1
WriteMacInt16(ether_data + ed_ReadPacket + 10, M68K_EMUL_OP_ETHER_READ_PACKET);
WriteMacInt16(ether_data + ed_ReadPacket + 12, 0x3600); //1 move.w d0,d3
WriteMacInt16(ether_data + ed_ReadPacket + 14, 0x7000); // moveq #0,d0
WriteMacInt16(ether_data + ed_ReadPacket + 16, 0x4e75); // rts
WriteMacInt16(ether_data + ed_ReadPacket + 18, M68K_EMUL_OP_ETHER_READ_PACKET); //2
WriteMacInt16(ether_data + ed_ReadPacket + 20, 0x4a43); // tst.w d3
WriteMacInt16(ether_data + ed_ReadPacket + 22, 0x4e75); // rts
return 0;
}
/*
* Driver Control() routine
*/
int16 EtherControl(uint32 pb, uint32 dce)
{
uint16 code = ReadMacInt16(pb + csCode);
D(bug("EtherControl %d\n", code));
switch (code) {
case 1: // KillIO
return -1;
case kENetAddMulti: // Add multicast address
D(bug(" AddMulti %08x%04x\n", ReadMacInt32(pb + eMultiAddr), ReadMacInt16(pb + eMultiAddr + 4)));
if (net_open && !udp_tunnel)
return ether_add_multicast(pb);
return noErr;
case kENetDelMulti: // Delete multicast address
D(bug(" DelMulti %08x%04x\n", ReadMacInt32(pb + eMultiAddr), ReadMacInt16(pb + eMultiAddr + 4)));
if (net_open && !udp_tunnel)
return ether_del_multicast(pb);
return noErr;
case kENetAttachPH: { // Attach protocol handler
uint16 type = ReadMacInt16(pb + eProtType);
uint32 handler = ReadMacInt32(pb + ePointer);
D(bug(" AttachPH prot %04x, handler %08x\n", type, handler));
if (net_open) {
if (udp_tunnel) {
if (udp_protocols.find(type) != udp_protocols.end())
return lapProtErr;
udp_protocols[type] = handler;
} else
return ether_attach_ph(type, handler);
}
return noErr;
}
case kENetDetachPH: { // Detach protocol handler
uint16 type = ReadMacInt16(pb + eProtType);
D(bug(" DetachPH prot %04x\n", type));
if (net_open) {
if (udp_tunnel) {
if (udp_protocols.erase(type) == 0)
return lapProtErr;
} else
return ether_detach_ph(type);
}
return noErr;
}
case kENetWrite: { // Transmit raw Ethernet packet
uint32 wds = ReadMacInt32(pb + ePointer);
D(bug(" EtherWrite "));
if (ReadMacInt16(wds) < 14)
return eLenErr; // Header incomplete
// Set source address
uint32 hdr = ReadMacInt32(wds + 2);
Host2Mac_memcpy(hdr + 6, ether_addr, 6);
D(bug("to %08x%04x, type %04x\n", ReadMacInt32(hdr), ReadMacInt16(hdr + 4), ReadMacInt16(hdr + 12)));
if (net_open) {
#if SUPPORTS_UDP_TUNNEL
if (udp_tunnel) {
// Copy packet to buffer
uint8 packet[1514];
int len = ether_wds_to_buffer(wds, packet);
// Extract destination address
uint32 dest_ip;
if (packet[0] == 'B' && packet[1] == '2')
dest_ip = (packet[2] << 24) | (packet[3] << 16) | (packet[4] << 8) | packet[5];
else if (is_apple_talk_broadcast(packet) || is_ethernet_broadcast(packet))
dest_ip = INADDR_BROADCAST;
else
return eMultiErr;
#if MONITOR
bug("Sending Ethernet packet:\n");
for (int i=0; i<len; i++) {
bug("%02x ", packet[i]);
}
bug("\n");
#endif
// Send packet
struct sockaddr_in sa;
sa.sin_family = AF_INET;
sa.sin_addr.s_addr = htonl(dest_ip);
sa.sin_port = htons(udp_port);
if (sendto(udp_socket, packet, len, 0, (struct sockaddr *)&sa, sizeof(sa)) < 0) {
D(bug("WARNING: Couldn't transmit packet\n"));
return excessCollsns;
}
} else
#endif
return ether_write(wds);
}
return noErr;
}
case kENetGetInfo: { // Get device information/statistics
D(bug(" GetInfo buf %08x, size %d\n", ReadMacInt32(pb + ePointer), ReadMacInt16(pb + eBuffSize)));
// Collect info (only ethernet address)
uint8 buf[18];
memset(buf, 0, 18);
memcpy(buf, ether_addr, 6);
// Transfer info to supplied buffer
int16 size = ReadMacInt16(pb + eBuffSize);
if (size > 18)
size = 18;
WriteMacInt16(pb + eDataSize, size); // Number of bytes actually written
Host2Mac_memcpy(ReadMacInt32(pb + ePointer), buf, size);
return noErr;
}
case kENetSetGeneral: // Set general mode (always in general mode)
D(bug(" SetGeneral\n"));
return noErr;
default:
printf("WARNING: Unknown EtherControl(%d)\n", code);
return controlErr;
}
}
/*
* Ethernet ReadPacket routine
*/
void EtherReadPacket(uint8 **src, uint32 &dest, uint32 &len, uint32 &remaining)
{
D(bug("EtherReadPacket src %p, dest %08x, len %08x, remaining %08x\n", *src, dest, len, remaining));
uint32 todo = len > remaining ? remaining : len;
Host2Mac_memcpy(dest, *src, todo);
*src += todo;
dest += todo;
len -= todo;
remaining -= todo;
}
#if SUPPORTS_UDP_TUNNEL
/*
* Read packet from UDP socket
*/
void ether_udp_read(uint8 *packet, int length, struct sockaddr_in *from)
{
// Drop packets sent by us
if (memcmp(packet + 6, ether_addr, 6) == 0)
return;
#if MONITOR
bug("Receiving Ethernet packet:\n");
for (int i=0; i<length; i++) {
bug("%02x ", packet[i]);
}
bug("\n");
#endif
// Get packet type
uint16 type = (packet[12] << 8) | packet[13];
// Look for protocol
uint16 search_type = (type <= 1500 ? 0 : type);
if (udp_protocols.find(search_type) == udp_protocols.end())
return;
uint32 handler = udp_protocols[search_type];
if (handler == 0)
return;
// Copy header to RHA
Host2Mac_memcpy(ether_data + ed_RHA, packet, 14);
D(bug(" header %08x%04x %08x%04x %04x\n", ReadMacInt32(ether_data + ed_RHA), ReadMacInt16(ether_data + ed_RHA + 4), ReadMacInt32(ether_data + ed_RHA + 6), ReadMacInt16(ether_data + ed_RHA + 10), ReadMacInt16(ether_data + ed_RHA + 12)));
// Call protocol handler
M68kRegisters r;
r.d[0] = type; // Packet type
r.d[1] = length - 14; // Remaining packet length (without header, for ReadPacket)
r.a[0] = (uint32)packet + 14; // Pointer to packet (host address, for ReadPacket)
r.a[3] = ether_data + ed_RHA + 14; // Pointer behind header in RHA
r.a[4] = ether_data + ed_ReadPacket; // Pointer to ReadPacket/ReadRest routines
D(bug(" calling protocol handler %08x, type %08x, length %08x, data %08x, rha %08x, read_packet %08x\n", handler, r.d[0], r.d[1], r.a[0], r.a[3], r.a[4]));
Execute68k(handler, &r);
}
#endif