mirror of
https://github.com/InvisibleUp/uvmac.git
synced 2025-01-20 09:31:27 +00:00
Move M68K to 'lib' directory
This commit is contained in:
parent
6941422033
commit
4e4f026173
27
lib/M68K/.gitignore
vendored
Normal file
27
lib/M68K/.gitignore
vendored
Normal file
@ -0,0 +1,27 @@
|
||||
build/*
|
||||
*.pbxuser
|
||||
!default.pbxuser
|
||||
*.mode1v3
|
||||
!default.mode1v3
|
||||
*.mode2v3
|
||||
!default.mode2v3
|
||||
*.perspectivev3
|
||||
!default.perspectivev3
|
||||
xcuserdata
|
||||
profile
|
||||
*.moved-aside
|
||||
DerivedData
|
||||
.DS_Store
|
||||
Thumbs.db
|
||||
.svn
|
||||
.BridgeSort
|
||||
*.bak
|
||||
.~*
|
||||
*.orig
|
||||
|
||||
# Make output
|
||||
*.o
|
||||
m68kmake
|
||||
m68kops.?
|
||||
sim
|
||||
tags
|
34
lib/M68K/Makefile
Normal file
34
lib/M68K/Makefile
Normal file
@ -0,0 +1,34 @@
|
||||
# Just a basic makefile to quickly test that everyting is working, it just
|
||||
# compiles the .o and the generator
|
||||
|
||||
MUSASHIFILES = m68kcpu.c m68kdasm.c softfloat/softfloat.c
|
||||
MUSASHIGENCFILES = m68kops.c
|
||||
MUSASHIGENHFILES = m68kops.h
|
||||
MUSASHIGENERATOR = m68kmake
|
||||
|
||||
EXE =
|
||||
EXEPATH = ./
|
||||
|
||||
.CFILES = $(MAINFILES) $(OSDFILES) $(MUSASHIFILES) $(MUSASHIGENCFILES)
|
||||
.OFILES = $(.CFILES:%.c=%.o)
|
||||
|
||||
CC = gcc
|
||||
WARNINGS = -Wall -Wextra -pedantic
|
||||
CFLAGS = $(WARNINGS)
|
||||
LFLAGS = $(WARNINGS)
|
||||
|
||||
DELETEFILES = $(MUSASHIGENCFILES) $(MUSASHIGENHFILES) $(.OFILES) $(TARGET) $(MUSASHIGENERATOR)$(EXE)
|
||||
|
||||
|
||||
all: $(.OFILES)
|
||||
|
||||
clean:
|
||||
rm -f $(DELETEFILES)
|
||||
|
||||
m68kcpu.o: $(MUSASHIGENHFILES) m68kfpu.c m68kmmu.h softfloat/softfloat.c softfloat/softfloat.h
|
||||
|
||||
$(MUSASHIGENCFILES) $(MUSASHIGENHFILES): $(MUSASHIGENERATOR)$(EXE)
|
||||
$(EXEPATH)$(MUSASHIGENERATOR)$(EXE)
|
||||
|
||||
$(MUSASHIGENERATOR)$(EXE): $(MUSASHIGENERATOR).c
|
||||
$(CC) -o $(MUSASHIGENERATOR)$(EXE) $(MUSASHIGENERATOR).c
|
42
lib/M68K/example/Makefile
Normal file
42
lib/M68K/example/Makefile
Normal file
@ -0,0 +1,42 @@
|
||||
EXENAME = sim
|
||||
|
||||
OSD_DOS = osd_dos.c
|
||||
|
||||
OSDFILES = osd_linux.c # $(OSD_DOS)
|
||||
MAINFILES = sim.c
|
||||
MUSASHIFILES = m68kcpu.c m68kdasm.c softfloat/softfloat.c
|
||||
MUSASHIGENCFILES = m68kops.c
|
||||
MUSASHIGENHFILES = m68kops.h
|
||||
MUSASHIGENERATOR = m68kmake
|
||||
|
||||
# EXE = .exe
|
||||
# EXEPATH = .\\
|
||||
EXE =
|
||||
EXEPATH = ./
|
||||
|
||||
.CFILES = $(MAINFILES) $(OSDFILES) $(MUSASHIFILES) $(MUSASHIGENCFILES)
|
||||
.OFILES = $(.CFILES:%.c=%.o)
|
||||
|
||||
CC = gcc
|
||||
WARNINGS = -Wall -Wextra -pedantic
|
||||
CFLAGS = $(WARNINGS)
|
||||
LFLAGS = $(WARNINGS)
|
||||
|
||||
TARGET = $(EXENAME)$(EXE)
|
||||
|
||||
DELETEFILES = $(MUSASHIGENCFILES) $(MUSASHIGENHFILES) $(.OFILES) $(TARGET) $(MUSASHIGENERATOR)$(EXE)
|
||||
|
||||
|
||||
all: $(TARGET)
|
||||
|
||||
clean:
|
||||
rm -f $(DELETEFILES)
|
||||
|
||||
$(TARGET): $(MUSASHIGENHFILES) $(.OFILES) Makefile
|
||||
$(CC) -o $@ $(.OFILES) $(LFLAGS) -lm
|
||||
|
||||
$(MUSASHIGENCFILES) $(MUSASHIGENHFILES): $(MUSASHIGENERATOR)$(EXE)
|
||||
$(EXEPATH)$(MUSASHIGENERATOR)$(EXE)
|
||||
|
||||
$(MUSASHIGENERATOR)$(EXE): $(MUSASHIGENERATOR).c
|
||||
$(CC) -o $(MUSASHIGENERATOR)$(EXE) $(MUSASHIGENERATOR).c
|
290
lib/M68K/example/example.txt
Normal file
290
lib/M68K/example/example.txt
Normal file
@ -0,0 +1,290 @@
|
||||
EXAMPLE:
|
||||
-------
|
||||
As an example, I'll build an imaginary hardware platform.
|
||||
|
||||
|
||||
The system is fairly simple, comprising a 68000, an input device, an output
|
||||
device, a non-maskable-interrupt device, and an interrupt controller.
|
||||
|
||||
|
||||
The input device receives input from the user and asserts its interrupt
|
||||
request line until its value is read. Reading from the input device's
|
||||
memory-mapped port will both clear its interrupt request and read an ASCII
|
||||
representation (8 bits) of what the user entered.
|
||||
|
||||
The output device reads value when it is selected through its memory-mapped
|
||||
port and outputs it to a display. The value it reads will be interpreted as
|
||||
an ASCII value and output to the display. The output device is fairly slow
|
||||
(it can only process 1 byte per second), and so it asserts its interrupt
|
||||
request line when it is ready to receive a byte. Writing to the output device
|
||||
sends a byte to it. If the output device is not ready, the write is ignored.
|
||||
Reading from the output device returns 0 and clears its interrupt request line
|
||||
until another byte is written to it and 1 second elapses.
|
||||
|
||||
The non-maskable-interrupt (NMI) device, as can be surmised from the name,
|
||||
generates a non-maskable-interrupt. This is connected to some kind of external
|
||||
switch that the user can push to generate a NMI.
|
||||
|
||||
Since there are 3 devices interrupting the CPU, an interrupt controller is
|
||||
needed. The interrupt controller takes 7 inputs and encodes the highest
|
||||
priority asserted line on the 3 output pins. the input device is wired to IN2
|
||||
and the output device is wired to IN1 on the controller. The NMI device is
|
||||
wired to IN7 and all the other inputs are wired low.
|
||||
|
||||
The bus is also connected to a 1K ROM and a 256 byte RAM.
|
||||
Beware: This platform places ROM and RAM in the same address range and uses
|
||||
the FC pins to select the correct address space!
|
||||
(You didn't expect me to make it easy, did you? =)
|
||||
|
||||
|
||||
|
||||
Here is the schematic in all its ASCII splendour:
|
||||
-------------------------------------------------
|
||||
|
||||
NMI TIED
|
||||
SWITCH LOW
|
||||
| |
|
||||
| +-+-+-+
|
||||
| | | | | +------------------------------------------------+
|
||||
| | | | | | +------------------------------------+ |
|
||||
| | | | | | | | |
|
||||
+-------------+ | |
|
||||
|7 6 5 4 3 2 1| | |
|
||||
| | | |
|
||||
| INT CONTRLR | | |
|
||||
| | | |
|
||||
|i i i | | |
|
||||
|2 1 0 | | |
|
||||
+-------------+ | |
|
||||
| | | | |
|
||||
| | | +--------------------------------+--+ | |
|
||||
o o o | | | | |
|
||||
+--------------+ +-------+ +----------+ +---------+ +----------+
|
||||
| I I I a | | | | | | r a i | | i |
|
||||
| 2 1 0 23 | | | | | | e c | | |
|
||||
| | | | | | | a k | | |
|
||||
| | | | | | | d | | |
|
||||
| | | | | | | | | |
|
||||
| M68000 | | ROM | | RAM | | IN | | OUT |
|
||||
| | | | | | | | | |
|
||||
| a9|--|a9 |--| |--| |--| |
|
||||
| a8|--|a8 |--| |--| |--| |
|
||||
| a7|--|a7 |--|a7 |--| |--| |
|
||||
| a6|--|a6 |--|a6 |--| |--| |
|
||||
| a5|--|a5 |--|a5 |--| |--| |
|
||||
| a4|--|a4 |--|a4 |--| |--| |
|
||||
| a3|--|a3 |--|a3 |--| |--| |
|
||||
| a2|--|a2 |--|a2 |--| |--| |
|
||||
| a1|--|a1 |--|a1 |--| |--| |
|
||||
| a0|--|a0 |--|a0 |--| |--| |
|
||||
| | | | | | | | | |
|
||||
| d15|--|d15 |--|d15 |--| |--| |
|
||||
| d14|--|d14 |--|d14 |--| |--| |
|
||||
| d13|--|d13 |--|d13 |--| |--| |
|
||||
| d12|--|d12 |--|d12 |--| |--| |
|
||||
| d11|--|d11 |--|d11 |--| |--| |
|
||||
| d10|--|d10 |--|d10 |--| |--| |
|
||||
| d9|--|d9 |--|d9 |--| |--| |
|
||||
| d8|--|d8 |--|d8 |--| |--| |
|
||||
| d7|--|d7 |--|d7 |--|d7 |--|d7 |
|
||||
| d6|--|d6 |--|d6 |--|d6 |--|d6 |
|
||||
| d5|--|d5 |--|d5 |--|d5 |--|d5 |
|
||||
| d4|--|d4 |--|d4 |--|d4 |--|d4 |
|
||||
| d3|--|d3 |--|d3 |--|d3 |--|d3 |
|
||||
| d2|--|d2 |--|d2 |--|d2 |--|d2 |
|
||||
| d1|--|d1 |--|d1 |--|d1 |--|d1 w |
|
||||
| d0|--|d0 |--|d0 |--|d0 |--|d0 r |
|
||||
| | | | | | | | | i a |
|
||||
| a F F F | | | | | | | | t c |
|
||||
|22 rW 2 1 0 | | cs | | cs rW | | | | e k |
|
||||
+--------------+ +-------+ +----------+ +---------+ +----------+
|
||||
| | | | | | | | | |
|
||||
| | | | | | | | | |
|
||||
| | | | | +-------+ +-----+ | +---+ |
|
||||
| | | | | | IC1 | | IC2 | | |AND| |
|
||||
| | | | | |a b c d| |a b c| | +---+ |
|
||||
| | | | | +-------+ +-----+ | | | |
|
||||
| | | | | | | | | | | | | | +--+
|
||||
| | | | | | | | | | | | | | |
|
||||
| | | | | | | | | | | | | | |
|
||||
| | | | | | | | | | | | | | |
|
||||
| | | | +-----)-)-+-)----)-)-+ | | |
|
||||
| | | +-------)-+---)----)-+ | | |
|
||||
| | +---------+-----)----+ | | |
|
||||
| | | | | |
|
||||
| +------------------+-----------+----------------------+ |
|
||||
| |
|
||||
+-----------------------------------------------------------+
|
||||
|
||||
IC1: output=1 if a=0 and b=1 and c=0 and d=0
|
||||
IC2: output=1 if a=0 and b=0 and c=1
|
||||
|
||||
|
||||
|
||||
Here is the listing for program.bin:
|
||||
-----------------------------------
|
||||
|
||||
INPUT_ADDRESS equ $800000
|
||||
OUTPUT_ADDRESS equ $400000
|
||||
CIRCULAR_BUFFER equ $c0
|
||||
CAN_OUTPUT equ $d0
|
||||
STACK_AREA equ $100
|
||||
|
||||
vector_table:
|
||||
00000000 0000 0100 dc.l STACK_AREA * 0: SP
|
||||
00000004 0000 00c0 dc.l init * 1: PC
|
||||
00000008 0000 0148 dc.l unhandled_exception * 2: bus error
|
||||
0000000c 0000 0148 dc.l unhandled_exception * 3: address error
|
||||
00000010 0000 0148 dc.l unhandled_exception * 4: illegal instruction
|
||||
00000014 0000 0148 dc.l unhandled_exception * 5: zero divide
|
||||
00000018 0000 0148 dc.l unhandled_exception * 6: chk
|
||||
0000001c 0000 0148 dc.l unhandled_exception * 7: trapv
|
||||
00000020 0000 0148 dc.l unhandled_exception * 8: privilege violation
|
||||
00000024 0000 0148 dc.l unhandled_exception * 9: trace
|
||||
00000028 0000 0148 dc.l unhandled_exception * 10: 1010
|
||||
0000002c 0000 0148 dc.l unhandled_exception * 11: 1111
|
||||
00000030 0000 0148 dc.l unhandled_exception * 12: -
|
||||
00000034 0000 0148 dc.l unhandled_exception * 13: -
|
||||
00000038 0000 0148 dc.l unhandled_exception * 14: -
|
||||
0000003c 0000 0148 dc.l unhandled_exception * 15: uninitialized interrupt
|
||||
00000040 0000 0148 dc.l unhandled_exception * 16: -
|
||||
00000044 0000 0148 dc.l unhandled_exception * 17: -
|
||||
00000048 0000 0148 dc.l unhandled_exception * 18: -
|
||||
0000004c 0000 0148 dc.l unhandled_exception * 19: -
|
||||
00000050 0000 0148 dc.l unhandled_exception * 20: -
|
||||
00000054 0000 0148 dc.l unhandled_exception * 21: -
|
||||
00000058 0000 0148 dc.l unhandled_exception * 22: -
|
||||
0000005c 0000 0148 dc.l unhandled_exception * 23: -
|
||||
00000060 0000 0148 dc.l unhandled_exception * 24: spurious interrupt
|
||||
00000064 0000 0136 dc.l output_ready * 25: l1 irq
|
||||
00000068 0000 010e dc.l input_ready * 26: l2 irq
|
||||
0000006c 0000 0148 dc.l unhandled_exception * 27: l3 irq
|
||||
00000070 0000 0148 dc.l unhandled_exception * 28: l4 irq
|
||||
00000074 0000 0148 dc.l unhandled_exception * 29: l5 irq
|
||||
00000078 0000 0148 dc.l unhandled_exception * 30: l6 irq
|
||||
0000007c 0000 014e dc.l nmi * 31: l7 irq
|
||||
00000080 0000 0148 dc.l unhandled_exception * 32: trap 0
|
||||
00000084 0000 0148 dc.l unhandled_exception * 33: trap 1
|
||||
00000088 0000 0148 dc.l unhandled_exception * 34: trap 2
|
||||
0000008c 0000 0148 dc.l unhandled_exception * 35: trap 3
|
||||
00000090 0000 0148 dc.l unhandled_exception * 36: trap 4
|
||||
00000094 0000 0148 dc.l unhandled_exception * 37: trap 5
|
||||
00000098 0000 0148 dc.l unhandled_exception * 38: trap 6
|
||||
0000009c 0000 0148 dc.l unhandled_exception * 39: trap 7
|
||||
000000a0 0000 0148 dc.l unhandled_exception * 40: trap 8
|
||||
000000a4 0000 0148 dc.l unhandled_exception * 41: trap 9
|
||||
000000a8 0000 0148 dc.l unhandled_exception * 42: trap 10
|
||||
000000ac 0000 0148 dc.l unhandled_exception * 43: trap 11
|
||||
000000b0 0000 0148 dc.l unhandled_exception * 44: trap 12
|
||||
000000b4 0000 0148 dc.l unhandled_exception * 45: trap 13
|
||||
000000b8 0000 0148 dc.l unhandled_exception * 46: trap 14
|
||||
000000bc 0000 0148 dc.l unhandled_exception * 47: trap 15
|
||||
* This is the end of the useful part of the table.
|
||||
* We will now do the Capcom thing and put code starting at $c0.
|
||||
|
||||
init:
|
||||
* Copy the exception vector table to RAM.
|
||||
000000c0 227c 0000 0000 move.l #0, a1 * a1 is RAM index
|
||||
000000c6 303c 002f move.w #47, d0 * d0 is counter (48 vectors)
|
||||
000000ca 41fa 0006 lea.l (copy_table,PC), a0 * a0 is scratch
|
||||
000000ce 2208 move.l a0, d1 * d1 is ROM index
|
||||
000000d0 4481 neg.l d1
|
||||
copy_table:
|
||||
000000d2 22fb 18fe dc.l $22fb18fe * stoopid as68k generates 020 code here
|
||||
* move.l (copy_table,PC,d1.l), (a1)+
|
||||
000000d6 5841 addq #4, d1
|
||||
000000d8 51c8 fff8 dbf d0, copy_table
|
||||
|
||||
main_init:
|
||||
* Initialize main program
|
||||
000000dc 11fc 0000 00d0 move.b #0, CAN_OUTPUT
|
||||
000000e2 4df8 00c0 lea.l CIRCULAR_BUFFER, a6
|
||||
000000e6 7c00 moveq #0, d6 * output buffer ptr
|
||||
000000e8 7e00 moveq #0, d7 * input buffer ptr
|
||||
000000ea 027c f8ff andi #$f8ff, SR * clear interrupt mask
|
||||
main:
|
||||
* Main program
|
||||
000000ee 4a38 00d0 tst.b CAN_OUTPUT * can we output?
|
||||
000000f2 67fa beq main
|
||||
000000f4 be06 cmp.b d6, d7 * is there data?
|
||||
000000f6 67f6 beq main
|
||||
000000f8 11fc 0000 00d0 move.b #0, CAN_OUTPUT
|
||||
000000fe 13f6 6000 0040 move.b (0,a6,d6.w), OUTPUT_ADDRESS * write data
|
||||
0000
|
||||
00000106 5246 addq #1, d6
|
||||
00000108 0206 000f andi.b #15, d6 * update circular buffer
|
||||
0000010c 60e0 bra main
|
||||
|
||||
|
||||
input_ready:
|
||||
0000010e 2f00 move.l d0, -(a7)
|
||||
00000110 2f01 move.l d1, -(a7)
|
||||
00000112 1239 0080 0000 move.b INPUT_ADDRESS, d1 * read data
|
||||
00000118 1007 move.b d7, d0 * check if buffer full
|
||||
0000011a 5240 addq #1, d0
|
||||
0000011c 0200 000f andi.b #15, d0
|
||||
00000120 bc00 cmp.b d0, d6
|
||||
00000122 6700 000c beq input_ready_quit * throw away if full
|
||||
00000126 1d81 7000 move.b d1, (0,a6,d7.w) * store the data
|
||||
0000012a 5247 addq #1, d7
|
||||
0000012c 0207 000f andi.b #15, d7 * update circular buffer
|
||||
input_ready_quit:
|
||||
00000130 221f move.l (a7)+, d1
|
||||
00000132 201f move.l (a7)+, d0
|
||||
00000134 4e73 rte
|
||||
|
||||
output_ready:
|
||||
00000136 2f00 move.l d0, -(a7)
|
||||
00000138 11fc 0001 00d0 move.b #1, CAN_OUTPUT
|
||||
0000013e 1039 0040 0000 move.b OUTPUT_ADDRESS, d0 * acknowledge the interrupt
|
||||
00000144 201f move.l (a7)+, d0
|
||||
00000146 4e73 rte
|
||||
|
||||
unhandled_exception:
|
||||
00000148 4e72 2700 stop #$2700 * wait for NMI
|
||||
0000014c 60fa bra unhandled_exception * shouldn't get here
|
||||
|
||||
nmi:
|
||||
* perform a soft reset
|
||||
0000014e 46fc 2700 move #$2700, SR * set status register
|
||||
00000152 2e7a feac move.l (vector_table,PC), a7 * reset stack pointer
|
||||
00000156 4e70 reset * reset peripherals
|
||||
00000158 4efa feaa jmp (vector_table+4,PC) * reset program counter
|
||||
|
||||
END
|
||||
|
||||
|
||||
|
||||
Compiling the example host environment:
|
||||
--------------------------------------
|
||||
|
||||
I've only put in an os-dependant portion for dos/windows, so you'll either
|
||||
have to compile for that system or make your own osd code based on osd_dos.c
|
||||
and modify the makefile accordingly.
|
||||
|
||||
I compiled this example using the compiler from mingw (www.mingw.org) but you
|
||||
could also use djgpp (www.delorie.com).
|
||||
|
||||
- Copy the m68k files to a directory. Then extract the files from example.zip to
|
||||
the same directory, overwriting m68kconf.h. program.bin is the actual 68000
|
||||
program you will be running.
|
||||
- Make your own osd_get_key() in the same fashion as in osd_dos.c if you're not
|
||||
compiling for dos/windows.
|
||||
- Type make
|
||||
- Perform the necessary animal sacrifices.
|
||||
- Type sim program.bin
|
||||
|
||||
|
||||
Keys:
|
||||
ESC - quits the simulator
|
||||
~ - generates an NMI interrupt
|
||||
Any other key - Genearate input for the input device
|
||||
|
||||
|
||||
Note: I've cheated a bit in the emulation. There is no speed control
|
||||
to set the speed the CPU runs at; it simply runs as fast as your
|
||||
processor can run it.
|
||||
To add speed control, you will need a high-precision timestamp
|
||||
function (like the RDTSC instruction for newer Pentium CPUs)
|
||||
and a bit of arithmetic to make the cycles argument for m68k_execute().
|
||||
I'll leave that as an excercise to the reader.
|
1
lib/M68K/example/m68k.h
Symbolic link
1
lib/M68K/example/m68k.h
Symbolic link
@ -0,0 +1 @@
|
||||
../m68k.h
|
1
lib/M68K/example/m68k_in.c
Symbolic link
1
lib/M68K/example/m68k_in.c
Symbolic link
@ -0,0 +1 @@
|
||||
../m68k_in.c
|
220
lib/M68K/example/m68kconf.h
Normal file
220
lib/M68K/example/m68kconf.h
Normal file
@ -0,0 +1,220 @@
|
||||
/* ======================================================================== */
|
||||
/* ========================= LICENSING & COPYRIGHT ======================== */
|
||||
/* ======================================================================== */
|
||||
/*
|
||||
* MUSASHI
|
||||
* Version 3.32
|
||||
*
|
||||
* A portable Motorola M680x0 processor emulation engine.
|
||||
* Copyright Karl Stenerud. All rights reserved.
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
* THE SOFTWARE.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#ifndef M68KCONF__HEADER
|
||||
#define M68KCONF__HEADER
|
||||
|
||||
|
||||
/* Configuration switches.
|
||||
* Use OPT_SPECIFY_HANDLER for configuration options that allow callbacks.
|
||||
* OPT_SPECIFY_HANDLER causes the core to link directly to the function
|
||||
* or macro you specify, rather than using callback functions whose pointer
|
||||
* must be passed in using m68k_set_xxx_callback().
|
||||
*/
|
||||
#define OPT_OFF 0
|
||||
#define OPT_ON 1
|
||||
#define OPT_SPECIFY_HANDLER 2
|
||||
|
||||
|
||||
/* ======================================================================== */
|
||||
/* ============================== MAME STUFF ============================== */
|
||||
/* ======================================================================== */
|
||||
|
||||
/* If you're compiling this for MAME, only change M68K_COMPILE_FOR_MAME
|
||||
* to OPT_ON and use m68kmame.h to configure the 68k core.
|
||||
*/
|
||||
#ifndef M68K_COMPILE_FOR_MAME
|
||||
#define M68K_COMPILE_FOR_MAME OPT_OFF
|
||||
#endif /* M68K_COMPILE_FOR_MAME */
|
||||
|
||||
|
||||
#if M68K_COMPILE_FOR_MAME == OPT_OFF
|
||||
|
||||
|
||||
/* ======================================================================== */
|
||||
/* ============================= CONFIGURATION ============================ */
|
||||
/* ======================================================================== */
|
||||
|
||||
/* Turn ON if you want to use the following M68K variants */
|
||||
#define M68K_EMULATE_010 OPT_ON
|
||||
#define M68K_EMULATE_EC020 OPT_ON
|
||||
#define M68K_EMULATE_020 OPT_ON
|
||||
#define M68K_EMULATE_040 OPT_ON
|
||||
|
||||
|
||||
/* If ON, the CPU will call m68k_read_immediate_xx() for immediate addressing
|
||||
* and m68k_read_pcrelative_xx() for PC-relative addressing.
|
||||
* If off, all read requests from the CPU will be redirected to m68k_read_xx()
|
||||
*/
|
||||
#define M68K_SEPARATE_READS OPT_OFF
|
||||
|
||||
/* If ON, the CPU will call m68k_write_32_pd() when it executes move.l with a
|
||||
* predecrement destination EA mode instead of m68k_write_32().
|
||||
* To simulate real 68k behavior, m68k_write_32_pd() must first write the high
|
||||
* word to [address+2], and then write the low word to [address].
|
||||
*/
|
||||
#define M68K_SIMULATE_PD_WRITES OPT_OFF
|
||||
|
||||
/* If ON, CPU will call the interrupt acknowledge callback when it services an
|
||||
* interrupt.
|
||||
* If off, all interrupts will be autovectored and all interrupt requests will
|
||||
* auto-clear when the interrupt is serviced.
|
||||
*/
|
||||
#define M68K_EMULATE_INT_ACK OPT_SPECIFY_HANDLER
|
||||
#define M68K_INT_ACK_CALLBACK(A) cpu_irq_ack(A)
|
||||
|
||||
|
||||
/* If ON, CPU will call the breakpoint acknowledge callback when it encounters
|
||||
* a breakpoint instruction and it is running a 68010+.
|
||||
*/
|
||||
#define M68K_EMULATE_BKPT_ACK OPT_OFF
|
||||
#define M68K_BKPT_ACK_CALLBACK() your_bkpt_ack_handler_function()
|
||||
|
||||
|
||||
/* If ON, the CPU will monitor the trace flags and take trace exceptions
|
||||
*/
|
||||
#define M68K_EMULATE_TRACE OPT_OFF
|
||||
|
||||
|
||||
/* If ON, CPU will call the output reset callback when it encounters a reset
|
||||
* instruction.
|
||||
*/
|
||||
#define M68K_EMULATE_RESET OPT_SPECIFY_HANDLER
|
||||
#define M68K_RESET_CALLBACK() cpu_pulse_reset()
|
||||
|
||||
/* If ON, CPU will call the callback when it encounters a cmpi.l #v, dn
|
||||
* instruction.
|
||||
*/
|
||||
#define M68K_CMPILD_HAS_CALLBACK OPT_OFF
|
||||
#define M68K_CMPILD_CALLBACK(v,r) your_cmpild_handler_function(v,r)
|
||||
|
||||
|
||||
/* If ON, CPU will call the callback when it encounters a rte
|
||||
* instruction.
|
||||
*/
|
||||
#define M68K_RTE_HAS_CALLBACK OPT_OFF
|
||||
#define M68K_RTE_CALLBACK() your_rte_handler_function()
|
||||
|
||||
/* If ON, CPU will call the callback when it encounters a tas
|
||||
* instruction.
|
||||
*/
|
||||
#define M68K_TAS_HAS_CALLBACK OPT_OFF
|
||||
#define M68K_TAS_CALLBACK() your_tas_handler_function()
|
||||
|
||||
/* If ON, CPU will call the callback when it encounters an illegal instruction
|
||||
* passing the opcode as argument. If the callback returns 1, then it's considered
|
||||
* as a normal instruction, and the illegal exception in canceled. If it returns 0,
|
||||
* the exception occurs normally.
|
||||
* The callback looks like int callback(int opcode)
|
||||
* You should put OPT_SPECIFY_HANDLER here if you cant to use it, otherwise it will
|
||||
* use a dummy default handler and you'll have to call m68k_set_illg_instr_callback explicitely
|
||||
*/
|
||||
#define M68K_ILLG_HAS_CALLBACK OPT_OFF
|
||||
#define M68K_ILLG_CALLBACK(opcode) op_illg(opcode)
|
||||
|
||||
/* If ON, CPU will call the set fc callback on every memory access to
|
||||
* differentiate between user/supervisor, program/data access like a real
|
||||
* 68000 would. This should be enabled and the callback should be set if you
|
||||
* want to properly emulate the m68010 or higher. (moves uses function codes
|
||||
* to read/write data from different address spaces)
|
||||
*/
|
||||
#define M68K_EMULATE_FC OPT_SPECIFY_HANDLER
|
||||
#define M68K_SET_FC_CALLBACK(A) cpu_set_fc(A)
|
||||
|
||||
/* If ON, CPU will call the pc changed callback when it changes the PC by a
|
||||
* large value. This allows host programs to be nicer when it comes to
|
||||
* fetching immediate data and instructions on a banked memory system.
|
||||
*/
|
||||
#define M68K_MONITOR_PC OPT_OFF
|
||||
#define M68K_SET_PC_CALLBACK(A) your_pc_changed_handler_function(A)
|
||||
|
||||
|
||||
/* If ON, CPU will call the instruction hook callback before every
|
||||
* instruction.
|
||||
*/
|
||||
#define M68K_INSTRUCTION_HOOK OPT_SPECIFY_HANDLER
|
||||
#define M68K_INSTRUCTION_CALLBACK(pc) cpu_instr_callback(pc)
|
||||
|
||||
|
||||
/* If ON, the CPU will emulate the 4-byte prefetch queue of a real 68000 */
|
||||
#define M68K_EMULATE_PREFETCH OPT_ON
|
||||
|
||||
|
||||
/* If ON, the CPU will generate address error exceptions if it tries to
|
||||
* access a word or longword at an odd address.
|
||||
* NOTE: This is only emulated properly for 68000 mode.
|
||||
*/
|
||||
#define M68K_EMULATE_ADDRESS_ERROR OPT_ON
|
||||
|
||||
|
||||
/* Turn ON to enable logging of illegal instruction calls.
|
||||
* M68K_LOG_FILEHANDLE must be #defined to a stdio file stream.
|
||||
* Turn on M68K_LOG_1010_1111 to log all 1010 and 1111 calls.
|
||||
*/
|
||||
#define M68K_LOG_ENABLE OPT_OFF
|
||||
#define M68K_LOG_1010_1111 OPT_OFF
|
||||
#define M68K_LOG_FILEHANDLE some_file_handle
|
||||
|
||||
|
||||
/* ----------------------------- COMPATIBILITY ---------------------------- */
|
||||
|
||||
/* The following options set optimizations that violate the current ANSI
|
||||
* standard, but will be compliant under the forthcoming C9X standard.
|
||||
*/
|
||||
|
||||
|
||||
/* If ON, the enulation core will use 64-bit integers to speed up some
|
||||
* operations.
|
||||
*/
|
||||
#define M68K_USE_64_BIT OPT_ON
|
||||
|
||||
|
||||
#include "sim.h"
|
||||
|
||||
#define m68k_read_memory_8(A) cpu_read_byte(A)
|
||||
#define m68k_read_memory_16(A) cpu_read_word(A)
|
||||
#define m68k_read_memory_32(A) cpu_read_long(A)
|
||||
|
||||
#define m68k_read_disassembler_16(A) cpu_read_word_dasm(A)
|
||||
#define m68k_read_disassembler_32(A) cpu_read_long_dasm(A)
|
||||
|
||||
#define m68k_write_memory_8(A, V) cpu_write_byte(A, V)
|
||||
#define m68k_write_memory_16(A, V) cpu_write_word(A, V)
|
||||
#define m68k_write_memory_32(A, V) cpu_write_long(A, V)
|
||||
|
||||
|
||||
#endif /* M68K_COMPILE_FOR_MAME */
|
||||
|
||||
/* ======================================================================== */
|
||||
/* ============================== END OF FILE ============================= */
|
||||
/* ======================================================================== */
|
||||
|
||||
#endif /* M68KCONF__HEADER */
|
1
lib/M68K/example/m68kcpu.c
Symbolic link
1
lib/M68K/example/m68kcpu.c
Symbolic link
@ -0,0 +1 @@
|
||||
../m68kcpu.c
|
1
lib/M68K/example/m68kcpu.h
Symbolic link
1
lib/M68K/example/m68kcpu.h
Symbolic link
@ -0,0 +1 @@
|
||||
../m68kcpu.h
|
1
lib/M68K/example/m68kdasm.c
Symbolic link
1
lib/M68K/example/m68kdasm.c
Symbolic link
@ -0,0 +1 @@
|
||||
../m68kdasm.c
|
1
lib/M68K/example/m68kfpu.c
Symbolic link
1
lib/M68K/example/m68kfpu.c
Symbolic link
@ -0,0 +1 @@
|
||||
../m68kfpu.c
|
1
lib/M68K/example/m68kmake.c
Symbolic link
1
lib/M68K/example/m68kmake.c
Symbolic link
@ -0,0 +1 @@
|
||||
../m68kmake.c
|
1
lib/M68K/example/m68kmmu.h
Symbolic link
1
lib/M68K/example/m68kmmu.h
Symbolic link
@ -0,0 +1 @@
|
||||
../m68kmmu.h
|
6
lib/M68K/example/osd.h
Normal file
6
lib/M68K/example/osd.h
Normal file
@ -0,0 +1,6 @@
|
||||
#ifndef HEADER__OSD
|
||||
#define HEADER__OSD
|
||||
|
||||
int osd_get_char(void);
|
||||
|
||||
#endif /* HEADER__OSD */
|
16
lib/M68K/example/osd_dos.c
Normal file
16
lib/M68K/example/osd_dos.c
Normal file
@ -0,0 +1,16 @@
|
||||
#include "osd.h"
|
||||
|
||||
/* OS-dependant code to get a character from the user.
|
||||
* This function must not block, and must either return an ASCII code or -1.
|
||||
*/
|
||||
#include <conio.h>
|
||||
int osd_get_char(void)
|
||||
{
|
||||
int ch = -1;
|
||||
if(kbhit())
|
||||
{
|
||||
while(kbhit())
|
||||
ch = getch();
|
||||
}
|
||||
return ch;
|
||||
}
|
46
lib/M68K/example/osd_linux.c
Normal file
46
lib/M68K/example/osd_linux.c
Normal file
@ -0,0 +1,46 @@
|
||||
#include <stdio.h>
|
||||
#include <termios.h>
|
||||
#include <unistd.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/time.h>
|
||||
|
||||
void changemode(int dir)
|
||||
{
|
||||
static struct termios oldt, newt;
|
||||
|
||||
if ( dir == 1 )
|
||||
{
|
||||
tcgetattr( STDIN_FILENO, &oldt);
|
||||
newt = oldt;
|
||||
newt.c_lflag &= ~( ICANON | ECHO );
|
||||
tcsetattr( STDIN_FILENO, TCSANOW, &newt);
|
||||
}
|
||||
else
|
||||
tcsetattr( STDIN_FILENO, TCSANOW, &oldt);
|
||||
}
|
||||
|
||||
int kbhit (void)
|
||||
{
|
||||
struct timeval tv;
|
||||
fd_set rdfs;
|
||||
|
||||
tv.tv_sec = 0;
|
||||
tv.tv_usec = 0;
|
||||
|
||||
FD_ZERO(&rdfs);
|
||||
FD_SET (STDIN_FILENO, &rdfs);
|
||||
|
||||
select(STDIN_FILENO+1, &rdfs, NULL, NULL, &tv);
|
||||
return FD_ISSET(STDIN_FILENO, &rdfs);
|
||||
|
||||
}
|
||||
|
||||
int osd_get_char() {
|
||||
changemode(1);
|
||||
int ch = -1;
|
||||
while(kbhit())
|
||||
ch = getchar();
|
||||
changemode(0);
|
||||
return ch;
|
||||
}
|
||||
|
BIN
lib/M68K/example/program.bin
Normal file
BIN
lib/M68K/example/program.bin
Normal file
Binary file not shown.
After Width: | Height: | Size: 348 B |
563
lib/M68K/example/sim.c
Normal file
563
lib/M68K/example/sim.c
Normal file
@ -0,0 +1,563 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdarg.h>
|
||||
#include <time.h>
|
||||
#include "sim.h"
|
||||
#include "m68k.h"
|
||||
#include "osd.h"
|
||||
|
||||
void disassemble_program();
|
||||
|
||||
/* Memory-mapped IO ports */
|
||||
#define INPUT_ADDRESS 0x800000
|
||||
#define OUTPUT_ADDRESS 0x400000
|
||||
|
||||
/* IRQ connections */
|
||||
#define IRQ_NMI_DEVICE 7
|
||||
#define IRQ_INPUT_DEVICE 2
|
||||
#define IRQ_OUTPUT_DEVICE 1
|
||||
|
||||
/* Time between characters sent to output device (seconds) */
|
||||
#define OUTPUT_DEVICE_PERIOD 1
|
||||
|
||||
/* ROM and RAM sizes */
|
||||
#define MAX_ROM 0xfff
|
||||
#define MAX_RAM 0xff
|
||||
|
||||
|
||||
/* Read/write macros */
|
||||
#define READ_BYTE(BASE, ADDR) (BASE)[ADDR]
|
||||
#define READ_WORD(BASE, ADDR) (((BASE)[ADDR]<<8) | \
|
||||
(BASE)[(ADDR)+1])
|
||||
#define READ_LONG(BASE, ADDR) (((BASE)[ADDR]<<24) | \
|
||||
((BASE)[(ADDR)+1]<<16) | \
|
||||
((BASE)[(ADDR)+2]<<8) | \
|
||||
(BASE)[(ADDR)+3])
|
||||
|
||||
#define WRITE_BYTE(BASE, ADDR, VAL) (BASE)[ADDR] = (VAL)&0xff
|
||||
#define WRITE_WORD(BASE, ADDR, VAL) (BASE)[ADDR] = ((VAL)>>8) & 0xff; \
|
||||
(BASE)[(ADDR)+1] = (VAL)&0xff
|
||||
#define WRITE_LONG(BASE, ADDR, VAL) (BASE)[ADDR] = ((VAL)>>24) & 0xff; \
|
||||
(BASE)[(ADDR)+1] = ((VAL)>>16)&0xff; \
|
||||
(BASE)[(ADDR)+2] = ((VAL)>>8)&0xff; \
|
||||
(BASE)[(ADDR)+3] = (VAL)&0xff
|
||||
|
||||
|
||||
/* Prototypes */
|
||||
void exit_error(char* fmt, ...);
|
||||
|
||||
unsigned int cpu_read_byte(unsigned int address);
|
||||
unsigned int cpu_read_word(unsigned int address);
|
||||
unsigned int cpu_read_long(unsigned int address);
|
||||
void cpu_write_byte(unsigned int address, unsigned int value);
|
||||
void cpu_write_word(unsigned int address, unsigned int value);
|
||||
void cpu_write_long(unsigned int address, unsigned int value);
|
||||
void cpu_pulse_reset(void);
|
||||
void cpu_set_fc(unsigned int fc);
|
||||
int cpu_irq_ack(int level);
|
||||
|
||||
void nmi_device_reset(void);
|
||||
void nmi_device_update(void);
|
||||
int nmi_device_ack(void);
|
||||
|
||||
void input_device_reset(void);
|
||||
void input_device_update(void);
|
||||
int input_device_ack(void);
|
||||
unsigned int input_device_read(void);
|
||||
void input_device_write(unsigned int value);
|
||||
|
||||
void output_device_reset(void);
|
||||
void output_device_update(void);
|
||||
int output_device_ack(void);
|
||||
unsigned int output_device_read(void);
|
||||
void output_device_write(unsigned int value);
|
||||
|
||||
void int_controller_set(unsigned int value);
|
||||
void int_controller_clear(unsigned int value);
|
||||
|
||||
void get_user_input(void);
|
||||
|
||||
|
||||
/* Data */
|
||||
unsigned int g_quit = 0; /* 1 if we want to quit */
|
||||
unsigned int g_nmi = 0; /* 1 if nmi pending */
|
||||
|
||||
int g_input_device_value = -1; /* Current value in input device */
|
||||
|
||||
unsigned int g_output_device_ready = 0; /* 1 if output device is ready */
|
||||
time_t g_output_device_last_output; /* Time of last char output */
|
||||
|
||||
unsigned int g_int_controller_pending = 0; /* list of pending interrupts */
|
||||
unsigned int g_int_controller_highest_int = 0; /* Highest pending interrupt */
|
||||
|
||||
unsigned char g_rom[MAX_ROM+1]; /* ROM */
|
||||
unsigned char g_ram[MAX_RAM+1]; /* RAM */
|
||||
unsigned int g_fc; /* Current function code from CPU */
|
||||
|
||||
|
||||
/* Exit with an error message. Use printf syntax. */
|
||||
void exit_error(char* fmt, ...)
|
||||
{
|
||||
static int guard_val = 0;
|
||||
char buff[100];
|
||||
unsigned int pc;
|
||||
va_list args;
|
||||
|
||||
if(guard_val)
|
||||
return;
|
||||
else
|
||||
guard_val = 1;
|
||||
|
||||
va_start(args, fmt);
|
||||
vfprintf(stderr, fmt, args);
|
||||
va_end(args);
|
||||
fprintf(stderr, "\n");
|
||||
pc = m68k_get_reg(NULL, M68K_REG_PPC);
|
||||
m68k_disassemble(buff, pc, M68K_CPU_TYPE_68000);
|
||||
fprintf(stderr, "At %04x: %s\n", pc, buff);
|
||||
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
|
||||
/* Read data from RAM, ROM, or a device */
|
||||
unsigned int cpu_read_byte(unsigned int address)
|
||||
{
|
||||
if(g_fc & 2) /* Program */
|
||||
{
|
||||
if(address > MAX_ROM)
|
||||
exit_error("Attempted to read byte from ROM address %08x", address);
|
||||
return READ_BYTE(g_rom, address);
|
||||
}
|
||||
|
||||
/* Otherwise it's data space */
|
||||
switch(address)
|
||||
{
|
||||
case INPUT_ADDRESS:
|
||||
return input_device_read();
|
||||
case OUTPUT_ADDRESS:
|
||||
return output_device_read();
|
||||
default:
|
||||
break;
|
||||
}
|
||||
if(address > MAX_RAM)
|
||||
exit_error("Attempted to read byte from RAM address %08x", address);
|
||||
return READ_BYTE(g_ram, address);
|
||||
}
|
||||
|
||||
unsigned int cpu_read_word(unsigned int address)
|
||||
{
|
||||
if(g_fc & 2) /* Program */
|
||||
{
|
||||
if(address > MAX_ROM)
|
||||
exit_error("Attempted to read word from ROM address %08x", address);
|
||||
return READ_WORD(g_rom, address);
|
||||
}
|
||||
|
||||
/* Otherwise it's data space */
|
||||
switch(address)
|
||||
{
|
||||
case INPUT_ADDRESS:
|
||||
return input_device_read();
|
||||
case OUTPUT_ADDRESS:
|
||||
return output_device_read();
|
||||
default:
|
||||
break;
|
||||
}
|
||||
if(address > MAX_RAM)
|
||||
exit_error("Attempted to read word from RAM address %08x", address);
|
||||
return READ_WORD(g_ram, address);
|
||||
}
|
||||
|
||||
unsigned int cpu_read_long(unsigned int address)
|
||||
{
|
||||
if(g_fc & 2) /* Program */
|
||||
{
|
||||
if(address > MAX_ROM)
|
||||
exit_error("Attempted to read long from ROM address %08x", address);
|
||||
return READ_LONG(g_rom, address);
|
||||
}
|
||||
|
||||
/* Otherwise it's data space */
|
||||
switch(address)
|
||||
{
|
||||
case INPUT_ADDRESS:
|
||||
return input_device_read();
|
||||
case OUTPUT_ADDRESS:
|
||||
return output_device_read();
|
||||
default:
|
||||
break;
|
||||
}
|
||||
if(address > MAX_RAM)
|
||||
exit_error("Attempted to read long from RAM address %08x", address);
|
||||
return READ_LONG(g_ram, address);
|
||||
}
|
||||
|
||||
|
||||
unsigned int cpu_read_word_dasm(unsigned int address)
|
||||
{
|
||||
if(address > MAX_ROM)
|
||||
exit_error("Disassembler attempted to read word from ROM address %08x", address);
|
||||
return READ_WORD(g_rom, address);
|
||||
}
|
||||
|
||||
unsigned int cpu_read_long_dasm(unsigned int address)
|
||||
{
|
||||
if(address > MAX_ROM)
|
||||
exit_error("Dasm attempted to read long from ROM address %08x", address);
|
||||
return READ_LONG(g_rom, address);
|
||||
}
|
||||
|
||||
|
||||
/* Write data to RAM or a device */
|
||||
void cpu_write_byte(unsigned int address, unsigned int value)
|
||||
{
|
||||
if(g_fc & 2) /* Program */
|
||||
exit_error("Attempted to write %02x to ROM address %08x", value&0xff, address);
|
||||
|
||||
/* Otherwise it's data space */
|
||||
switch(address)
|
||||
{
|
||||
case INPUT_ADDRESS:
|
||||
input_device_write(value&0xff);
|
||||
return;
|
||||
case OUTPUT_ADDRESS:
|
||||
output_device_write(value&0xff);
|
||||
return;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
if(address > MAX_RAM)
|
||||
exit_error("Attempted to write %02x to RAM address %08x", value&0xff, address);
|
||||
WRITE_BYTE(g_ram, address, value);
|
||||
}
|
||||
|
||||
void cpu_write_word(unsigned int address, unsigned int value)
|
||||
{
|
||||
if(g_fc & 2) /* Program */
|
||||
exit_error("Attempted to write %04x to ROM address %08x", value&0xffff, address);
|
||||
|
||||
/* Otherwise it's data space */
|
||||
switch(address)
|
||||
{
|
||||
case INPUT_ADDRESS:
|
||||
input_device_write(value&0xffff);
|
||||
return;
|
||||
case OUTPUT_ADDRESS:
|
||||
output_device_write(value&0xffff);
|
||||
return;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
if(address > MAX_RAM)
|
||||
exit_error("Attempted to write %04x to RAM address %08x", value&0xffff, address);
|
||||
WRITE_WORD(g_ram, address, value);
|
||||
}
|
||||
|
||||
void cpu_write_long(unsigned int address, unsigned int value)
|
||||
{
|
||||
if(g_fc & 2) /* Program */
|
||||
exit_error("Attempted to write %08x to ROM address %08x", value, address);
|
||||
|
||||
/* Otherwise it's data space */
|
||||
switch(address)
|
||||
{
|
||||
case INPUT_ADDRESS:
|
||||
input_device_write(value);
|
||||
return;
|
||||
case OUTPUT_ADDRESS:
|
||||
output_device_write(value);
|
||||
return;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
if(address > MAX_RAM)
|
||||
exit_error("Attempted to write %08x to RAM address %08x", value, address);
|
||||
WRITE_LONG(g_ram, address, value);
|
||||
}
|
||||
|
||||
/* Called when the CPU pulses the RESET line */
|
||||
void cpu_pulse_reset(void)
|
||||
{
|
||||
nmi_device_reset();
|
||||
output_device_reset();
|
||||
input_device_reset();
|
||||
}
|
||||
|
||||
/* Called when the CPU changes the function code pins */
|
||||
void cpu_set_fc(unsigned int fc)
|
||||
{
|
||||
g_fc = fc;
|
||||
}
|
||||
|
||||
/* Called when the CPU acknowledges an interrupt */
|
||||
int cpu_irq_ack(int level)
|
||||
{
|
||||
switch(level)
|
||||
{
|
||||
case IRQ_NMI_DEVICE:
|
||||
return nmi_device_ack();
|
||||
case IRQ_INPUT_DEVICE:
|
||||
return input_device_ack();
|
||||
case IRQ_OUTPUT_DEVICE:
|
||||
return output_device_ack();
|
||||
}
|
||||
return M68K_INT_ACK_SPURIOUS;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/* Implementation for the NMI device */
|
||||
void nmi_device_reset(void)
|
||||
{
|
||||
g_nmi = 0;
|
||||
}
|
||||
|
||||
void nmi_device_update(void)
|
||||
{
|
||||
if(g_nmi)
|
||||
{
|
||||
g_nmi = 0;
|
||||
int_controller_set(IRQ_NMI_DEVICE);
|
||||
}
|
||||
}
|
||||
|
||||
int nmi_device_ack(void)
|
||||
{
|
||||
printf("\nNMI\n");fflush(stdout);
|
||||
int_controller_clear(IRQ_NMI_DEVICE);
|
||||
return M68K_INT_ACK_AUTOVECTOR;
|
||||
}
|
||||
|
||||
|
||||
/* Implementation for the input device */
|
||||
void input_device_reset(void)
|
||||
{
|
||||
g_input_device_value = -1;
|
||||
int_controller_clear(IRQ_INPUT_DEVICE);
|
||||
}
|
||||
|
||||
void input_device_update(void)
|
||||
{
|
||||
if(g_input_device_value >= 0)
|
||||
int_controller_set(IRQ_INPUT_DEVICE);
|
||||
}
|
||||
|
||||
int input_device_ack(void)
|
||||
{
|
||||
return M68K_INT_ACK_AUTOVECTOR;
|
||||
}
|
||||
|
||||
unsigned int input_device_read(void)
|
||||
{
|
||||
int value = g_input_device_value > 0 ? g_input_device_value : 0;
|
||||
int_controller_clear(IRQ_INPUT_DEVICE);
|
||||
g_input_device_value = -1;
|
||||
return value;
|
||||
}
|
||||
|
||||
void input_device_write(unsigned int value)
|
||||
{
|
||||
(void)value;
|
||||
}
|
||||
|
||||
|
||||
/* Implementation for the output device */
|
||||
void output_device_reset(void)
|
||||
{
|
||||
g_output_device_last_output = time(NULL);
|
||||
g_output_device_ready = 0;
|
||||
int_controller_clear(IRQ_OUTPUT_DEVICE);
|
||||
}
|
||||
|
||||
void output_device_update(void)
|
||||
{
|
||||
if(!g_output_device_ready)
|
||||
{
|
||||
if((time(NULL) - g_output_device_last_output) >= OUTPUT_DEVICE_PERIOD)
|
||||
{
|
||||
g_output_device_ready = 1;
|
||||
int_controller_set(IRQ_OUTPUT_DEVICE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int output_device_ack(void)
|
||||
{
|
||||
return M68K_INT_ACK_AUTOVECTOR;
|
||||
}
|
||||
|
||||
unsigned int output_device_read(void)
|
||||
{
|
||||
int_controller_clear(IRQ_OUTPUT_DEVICE);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void output_device_write(unsigned int value)
|
||||
{
|
||||
char ch;
|
||||
if(g_output_device_ready)
|
||||
{
|
||||
ch = value & 0xff;
|
||||
printf("%c", ch);
|
||||
g_output_device_last_output = time(NULL);
|
||||
g_output_device_ready = 0;
|
||||
int_controller_clear(IRQ_OUTPUT_DEVICE);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Implementation for the interrupt controller */
|
||||
void int_controller_set(unsigned int value)
|
||||
{
|
||||
unsigned int old_pending = g_int_controller_pending;
|
||||
|
||||
g_int_controller_pending |= (1<<value);
|
||||
|
||||
if(old_pending != g_int_controller_pending && value > g_int_controller_highest_int)
|
||||
{
|
||||
g_int_controller_highest_int = value;
|
||||
m68k_set_irq(g_int_controller_highest_int);
|
||||
}
|
||||
}
|
||||
|
||||
void int_controller_clear(unsigned int value)
|
||||
{
|
||||
g_int_controller_pending &= ~(1<<value);
|
||||
|
||||
for(g_int_controller_highest_int = 7;g_int_controller_highest_int > 0;g_int_controller_highest_int--)
|
||||
if(g_int_controller_pending & (1<<g_int_controller_highest_int))
|
||||
break;
|
||||
|
||||
m68k_set_irq(g_int_controller_highest_int);
|
||||
}
|
||||
|
||||
|
||||
/* Parse user input and update any devices that need user input */
|
||||
void get_user_input(void)
|
||||
{
|
||||
static int last_ch = -1;
|
||||
int ch = osd_get_char();
|
||||
|
||||
if(ch >= 0)
|
||||
{
|
||||
switch(ch)
|
||||
{
|
||||
case 0x1b:
|
||||
g_quit = 1;
|
||||
break;
|
||||
case '~':
|
||||
if(last_ch != ch)
|
||||
g_nmi = 1;
|
||||
break;
|
||||
default:
|
||||
g_input_device_value = ch;
|
||||
}
|
||||
}
|
||||
last_ch = ch;
|
||||
}
|
||||
|
||||
/* Disassembler */
|
||||
void make_hex(char* buff, unsigned int pc, unsigned int length)
|
||||
{
|
||||
char* ptr = buff;
|
||||
|
||||
for(;length>0;length -= 2)
|
||||
{
|
||||
sprintf(ptr, "%04x", cpu_read_word_dasm(pc));
|
||||
pc += 2;
|
||||
ptr += 4;
|
||||
if(length > 2)
|
||||
*ptr++ = ' ';
|
||||
}
|
||||
}
|
||||
|
||||
void disassemble_program()
|
||||
{
|
||||
unsigned int pc;
|
||||
unsigned int instr_size;
|
||||
char buff[100];
|
||||
char buff2[100];
|
||||
|
||||
pc = cpu_read_long_dasm(4);
|
||||
|
||||
while(pc <= 0x16e)
|
||||
{
|
||||
instr_size = m68k_disassemble(buff, pc, M68K_CPU_TYPE_68000);
|
||||
make_hex(buff2, pc, instr_size);
|
||||
printf("%03x: %-20s: %s\n", pc, buff2, buff);
|
||||
pc += instr_size;
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
void cpu_instr_callback(int pc)
|
||||
{
|
||||
(void)pc;
|
||||
/* The following code would print out instructions as they are executed */
|
||||
/*
|
||||
static char buff[100];
|
||||
static char buff2[100];
|
||||
static unsigned int pc;
|
||||
static unsigned int instr_size;
|
||||
|
||||
pc = m68k_get_reg(NULL, M68K_REG_PC);
|
||||
instr_size = m68k_disassemble(buff, pc, M68K_CPU_TYPE_68000);
|
||||
make_hex(buff2, pc, instr_size);
|
||||
printf("E %03x: %-20s: %s\n", pc, buff2, buff);
|
||||
fflush(stdout);
|
||||
*/
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* The main loop */
|
||||
int main(int argc, char* argv[])
|
||||
{
|
||||
FILE* fhandle;
|
||||
|
||||
if(argc != 2)
|
||||
{
|
||||
printf("Usage: sim <program file>\n");
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
if((fhandle = fopen(argv[1], "rb")) == NULL)
|
||||
exit_error("Unable to open %s", argv[1]);
|
||||
|
||||
if(fread(g_rom, 1, MAX_ROM+1, fhandle) <= 0)
|
||||
exit_error("Error reading %s", argv[1]);
|
||||
|
||||
// disassemble_program();
|
||||
|
||||
m68k_init();
|
||||
m68k_set_cpu_type(M68K_CPU_TYPE_68000);
|
||||
m68k_pulse_reset();
|
||||
input_device_reset();
|
||||
output_device_reset();
|
||||
nmi_device_reset();
|
||||
|
||||
g_quit = 0;
|
||||
while(!g_quit)
|
||||
{
|
||||
// Our loop requires some interleaving to allow us to update the
|
||||
// input, output, and nmi devices.
|
||||
|
||||
get_user_input();
|
||||
|
||||
// Values to execute determine the interleave rate.
|
||||
// Smaller values allow for more accurate interleaving with multiple
|
||||
// devices/CPUs but is more processor intensive.
|
||||
// 100000 is usually a good value to start at, then work from there.
|
||||
|
||||
// Note that I am not emulating the correct clock speed!
|
||||
m68k_execute(100000);
|
||||
output_device_update();
|
||||
input_device_update();
|
||||
nmi_device_update();
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
15
lib/M68K/example/sim.h
Normal file
15
lib/M68K/example/sim.h
Normal file
@ -0,0 +1,15 @@
|
||||
#ifndef SIM__HEADER
|
||||
#define SIM__HEADER
|
||||
|
||||
unsigned int cpu_read_byte(unsigned int address);
|
||||
unsigned int cpu_read_word(unsigned int address);
|
||||
unsigned int cpu_read_long(unsigned int address);
|
||||
void cpu_write_byte(unsigned int address, unsigned int value);
|
||||
void cpu_write_word(unsigned int address, unsigned int value);
|
||||
void cpu_write_long(unsigned int address, unsigned int value);
|
||||
void cpu_pulse_reset(void);
|
||||
void cpu_set_fc(unsigned int fc);
|
||||
int cpu_irq_ack(int level);
|
||||
void cpu_instr_callback(int pc);
|
||||
|
||||
#endif /* SIM__HEADER */
|
115
lib/M68K/history.txt
Normal file
115
lib/M68K/history.txt
Normal file
@ -0,0 +1,115 @@
|
||||
The history of Musashi for anyone who might be interested:
|
||||
---------------------------------------------------------
|
||||
|
||||
Musashi was born out of sheer boredom.
|
||||
I needed something to code, and so having had fun with a few of the emulators
|
||||
around, I decided to try my hand at CPU emulation.
|
||||
I had owned an Amiga for many years and had done some assembly coding on it so
|
||||
I figured it would be the ideal chip to cut my teeth on.
|
||||
Had I known then how much work was involved in emulating a chip like this, I
|
||||
may not have even started ;-)
|
||||
|
||||
|
||||
15-Jul-2013: Musashi license changed to MIT.
|
||||
|
||||
10-Jun-2002: Musashi 3.4 released
|
||||
- Added various undocumented m68k features thanks to Bart
|
||||
Trzynadlowski's experiments.
|
||||
See http://dynarec.com/~bart/files/68knotes.txt for details.
|
||||
- Fixed a bug that caused privilege violation and illegal
|
||||
instruction exceptions to stack the wrong PC value.
|
||||
- Added emulation of address errors (Note: this only works
|
||||
in 68000 mode. All other CPUs require a LOT of overhead
|
||||
to emulate this. I'm not sure if I'll implement them or not.
|
||||
|
||||
27-Jan-2001: Musashi 3.3 released
|
||||
- Fixed problem when displaying negative numbers in disassembler
|
||||
- Fixed cpu type selector - was allowing 020 instructions to be
|
||||
disassembled when in 000 mode.
|
||||
- Fixed opcode jumptable generator (ambiguous operators in the
|
||||
test for f-line ops)
|
||||
- Fixed signed/unsigned problem in divl and mull opcodes (not
|
||||
sure if this was causing an error but best to be sure)
|
||||
- Cleaned up the naming scheme for the opcode handlers
|
||||
|
||||
14-Aug-2000: Musashi 3.2 released
|
||||
- Fixed RTE bug that killed the program counter when in m68020
|
||||
mode.
|
||||
- Minor fixes in negx and nbcd.
|
||||
- renamed d68k.c to m68kdasm.c and merged d68k.h into m68k.h.
|
||||
d68k_read_xxx() instructions have been renamed to
|
||||
m68k_read_xxx_disassembler().
|
||||
- Rewrote exception processing and fixed 68020 stack frame
|
||||
problems.
|
||||
- FINALLY fixed the mull and divl instructions.
|
||||
- Added 64-bit safe code fixes.
|
||||
- Added 64-bit optimizations (these will only be ANSI compliant
|
||||
under c9x, and so to use them you must turn on M68K_USE_64_BIT
|
||||
in m68kconf.h).
|
||||
|
||||
28-May-2000: Musashi 3.1 released
|
||||
- Fixed bug in m68k_get_reg() that retrieved the wrong value for
|
||||
the status register.
|
||||
- Fixed register bug in movec.
|
||||
- Fixed cpu type comparison problem that caused indexed
|
||||
addressing modes to be incorrectly interpreted when in m68ec020
|
||||
mode.
|
||||
- Added code to speed up busy waiting on some branch instructions.
|
||||
- Fixed some bfxxx opcode bugs.
|
||||
|
||||
05-Apr-2000: Musashi 3.0 released
|
||||
- Major code overhaul.
|
||||
- Rewrote code generator program and changed the format of
|
||||
m68k_in.c.
|
||||
- Added support for m68ec020.
|
||||
- Removed timing from the opcode handlers.
|
||||
- Added correct timing for m68000, m68010, and m68020.
|
||||
Note: 68020 timing is the cache timing from the manual.
|
||||
- Removed the m68k_peek_xxx() and m68k_poke_xxx() instructions and
|
||||
replaced them with m68k_get_reg() and m68k_set_reg().
|
||||
- Added support for function codes.
|
||||
- Revamped m68kconf.h to be easier to configure and more powerful.
|
||||
- Added option to separate immediate and normal reads.
|
||||
- Added support for (undocumented) m68000 instruction prefetch.
|
||||
- Rewrote indexed addressing mode handling.
|
||||
- Rewrote interrupt handling.
|
||||
- Fixed a masking bug for m68k_get_reg() when requesting the PC.
|
||||
- Moved the instruction table sorting routine to m68kmake.c so
|
||||
that it is invoked at compile time rather than at runtime.
|
||||
- Rewrote the exception handling routines to support different
|
||||
stack frames (needed for m68020 emulation).
|
||||
- Rewrote faster status register and condition code flag handling
|
||||
functions / macros.
|
||||
- Fixed function code handling to fetch from program space when
|
||||
using pc-relative addressing.
|
||||
- Fixed initial program counter and stack pointer fetching on
|
||||
reset (loads from program space now).
|
||||
- A lot of code cleanup.
|
||||
- LOTS of bugfixes (especially in the m68020 code).
|
||||
|
||||
13-May-1999: Musashi 2.2 released
|
||||
- Added support for m68020.
|
||||
- Lots of bugfixes.
|
||||
|
||||
25-Mar-1999: Musashi 2.1 released
|
||||
- Added support for m68010.
|
||||
- Many bugfixes.
|
||||
|
||||
17-Mar-1999: Musashi 2.0 released
|
||||
- Major code overhaul.
|
||||
- Replaced monolithic codebase with a code generator program.
|
||||
- Added correct m68000 timing.
|
||||
- Moved timing into the opcode handlers.
|
||||
|
||||
06-Jan-1999: Musashi 1.0 released
|
||||
|
||||
20-Dec-1998: Beta release of Musashi v0.5 that could run Rastan Saga under MAME
|
||||
(barely).
|
||||
|
||||
04-Dec-1998: Final prototype v0.4
|
||||
|
||||
20-Nov-1998: First prototype v0.1
|
||||
|
||||
11-Jun-1998: Early disassembler
|
||||
|
||||
12-May-1998: First outline
|
10653
lib/M68K/m68k_in.c
Normal file
10653
lib/M68K/m68k_in.c
Normal file
File diff suppressed because it is too large
Load Diff
210
lib/M68K/m68kconf.h
Normal file
210
lib/M68K/m68kconf.h
Normal file
@ -0,0 +1,210 @@
|
||||
/* ======================================================================== */
|
||||
/* ========================= LICENSING & COPYRIGHT ======================== */
|
||||
/* ======================================================================== */
|
||||
/*
|
||||
* MUSASHI
|
||||
* Version 3.32
|
||||
*
|
||||
* A portable Motorola M680x0 processor emulation engine.
|
||||
* Copyright Karl Stenerud. All rights reserved.
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
* THE SOFTWARE.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#ifndef M68KCONF__HEADER
|
||||
#define M68KCONF__HEADER
|
||||
|
||||
|
||||
/* Configuration switches.
|
||||
* Use OPT_SPECIFY_HANDLER for configuration options that allow callbacks.
|
||||
* OPT_SPECIFY_HANDLER causes the core to link directly to the function
|
||||
* or macro you specify, rather than using callback functions whose pointer
|
||||
* must be passed in using m68k_set_xxx_callback().
|
||||
*/
|
||||
#define OPT_OFF 0
|
||||
#define OPT_ON 1
|
||||
#define OPT_SPECIFY_HANDLER 2
|
||||
|
||||
|
||||
/* ======================================================================== */
|
||||
/* ============================== MAME STUFF ============================== */
|
||||
/* ======================================================================== */
|
||||
|
||||
/* If you're compiling this for MAME, only change M68K_COMPILE_FOR_MAME
|
||||
* to OPT_ON and use m68kmame.h to configure the 68k core.
|
||||
*/
|
||||
#ifndef M68K_COMPILE_FOR_MAME
|
||||
#define M68K_COMPILE_FOR_MAME OPT_OFF
|
||||
#endif /* M68K_COMPILE_FOR_MAME */
|
||||
|
||||
|
||||
#if M68K_COMPILE_FOR_MAME == OPT_OFF
|
||||
|
||||
|
||||
/* ======================================================================== */
|
||||
/* ============================= CONFIGURATION ============================ */
|
||||
/* ======================================================================== */
|
||||
|
||||
/* Turn ON if you want to use the following M68K variants */
|
||||
#define M68K_EMULATE_010 OPT_ON
|
||||
#define M68K_EMULATE_EC020 OPT_OFF
|
||||
#define M68K_EMULATE_020 OPT_ON
|
||||
#define M68K_EMULATE_030 OPT_OFF
|
||||
#define M68K_EMULATE_040 OPT_OFF
|
||||
|
||||
|
||||
/* If ON, the CPU will call m68k_read_immediate_xx() for immediate addressing
|
||||
* and m68k_read_pcrelative_xx() for PC-relative addressing.
|
||||
* If off, all read requests from the CPU will be redirected to m68k_read_xx()
|
||||
*/
|
||||
#define M68K_SEPARATE_READS OPT_OFF
|
||||
|
||||
/* If ON, the CPU will call m68k_write_32_pd() when it executes move.l with a
|
||||
* predecrement destination EA mode instead of m68k_write_32().
|
||||
* To simulate real 68k behavior, m68k_write_32_pd() must first write the high
|
||||
* word to [address+2], and then write the low word to [address].
|
||||
*/
|
||||
#define M68K_SIMULATE_PD_WRITES OPT_ON
|
||||
|
||||
/* If ON, CPU will call the interrupt acknowledge callback when it services an
|
||||
* interrupt.
|
||||
* If off, all interrupts will be autovectored and all interrupt requests will
|
||||
* auto-clear when the interrupt is serviced.
|
||||
*/
|
||||
#define M68K_EMULATE_INT_ACK OPT_OFF
|
||||
#define M68K_INT_ACK_CALLBACK(A) your_int_ack_handler_function(A)
|
||||
|
||||
|
||||
/* If ON, CPU will call the breakpoint acknowledge callback when it encounters
|
||||
* a breakpoint instruction and it is running a 68010+.
|
||||
*/
|
||||
#define M68K_EMULATE_BKPT_ACK OPT_OFF
|
||||
#define M68K_BKPT_ACK_CALLBACK() your_bkpt_ack_handler_function()
|
||||
|
||||
|
||||
/* If ON, the CPU will monitor the trace flags and take trace exceptions
|
||||
*/
|
||||
#define M68K_EMULATE_TRACE OPT_OFF
|
||||
|
||||
|
||||
/* If ON, CPU will call the output reset callback when it encounters a reset
|
||||
* instruction.
|
||||
*/
|
||||
#define M68K_EMULATE_RESET OPT_OFF
|
||||
#define M68K_RESET_CALLBACK() your_reset_handler_function()
|
||||
|
||||
/* If ON, CPU will call the callback when it encounters a cmpi.l #v, dn
|
||||
* instruction.
|
||||
*/
|
||||
#define M68K_CMPILD_HAS_CALLBACK OPT_OFF
|
||||
#define M68K_CMPILD_CALLBACK(v,r) your_cmpild_handler_function(v,r)
|
||||
|
||||
|
||||
/* If ON, CPU will call the callback when it encounters a rte
|
||||
* instruction.
|
||||
*/
|
||||
#define M68K_RTE_HAS_CALLBACK OPT_OFF
|
||||
#define M68K_RTE_CALLBACK() your_rte_handler_function()
|
||||
|
||||
/* If ON, CPU will call the callback when it encounters a tas
|
||||
* instruction.
|
||||
*/
|
||||
#define M68K_TAS_HAS_CALLBACK OPT_OFF
|
||||
#define M68K_TAS_CALLBACK() your_tas_handler_function()
|
||||
|
||||
/* If ON, CPU will call the callback when it encounters an illegal instruction
|
||||
* passing the opcode as argument. If the callback returns 1, then it's considered
|
||||
* as a normal instruction, and the illegal exception in canceled. If it returns 0,
|
||||
* the exception occurs normally.
|
||||
* The callback looks like int callback(int opcode)
|
||||
* You should put OPT_SPECIFY_HANDLER here if you cant to use it, otherwise it will
|
||||
* use a dummy default handler and you'll have to call m68k_set_illg_instr_callback explicitely
|
||||
*/
|
||||
#define M68K_ILLG_HAS_CALLBACK OPT_OFF
|
||||
#define M68K_ILLG_CALLBACK(opcode) op_illg(opcode)
|
||||
|
||||
/* If ON, CPU will call the set fc callback on every memory access to
|
||||
* differentiate between user/supervisor, program/data access like a real
|
||||
* 68000 would. This should be enabled and the callback should be set if you
|
||||
* want to properly emulate the m68010 or higher. (moves uses function codes
|
||||
* to read/write data from different address spaces)
|
||||
*/
|
||||
#define M68K_EMULATE_FC OPT_OFF
|
||||
#define M68K_SET_FC_CALLBACK(A) your_set_fc_handler_function(A)
|
||||
|
||||
/* If ON, CPU will call the pc changed callback when it changes the PC by a
|
||||
* large value. This allows host programs to be nicer when it comes to
|
||||
* fetching immediate data and instructions on a banked memory system.
|
||||
*/
|
||||
#define M68K_MONITOR_PC OPT_OFF
|
||||
#define M68K_SET_PC_CALLBACK(A) your_pc_changed_handler_function(A)
|
||||
|
||||
|
||||
/* If ON, CPU will call the instruction hook callback before every
|
||||
* instruction.
|
||||
*/
|
||||
#define M68K_INSTRUCTION_HOOK OPT_SPECIFY_HANDLER
|
||||
#define M68K_INSTRUCTION_CALLBACK(pc) m68k_instruction_hook(pc)
|
||||
|
||||
|
||||
/* If ON, the CPU will emulate the 4-byte prefetch queue of a real 68000 */
|
||||
#define M68K_EMULATE_PREFETCH OPT_OFF
|
||||
|
||||
|
||||
/* If ON, the CPU will generate address error exceptions if it tries to
|
||||
* access a word or longword at an odd address.
|
||||
* NOTE: This is only emulated properly for 68000 mode.
|
||||
*/
|
||||
#define M68K_EMULATE_ADDRESS_ERROR OPT_OFF
|
||||
|
||||
|
||||
/* Turn ON to enable logging of illegal instruction calls.
|
||||
* M68K_LOG_FILEHANDLE must be #defined to a stdio file stream.
|
||||
* Turn on M68K_LOG_1010_1111 to log all 1010 and 1111 calls.
|
||||
*/
|
||||
#define M68K_LOG_ENABLE OPT_OFF
|
||||
#define M68K_LOG_1010_1111 OPT_OFF
|
||||
#define M68K_LOG_FILEHANDLE some_file_handle
|
||||
|
||||
/* Emulate PMMU : if you enable this, there will be a test to see if the current chip has some enabled pmmu added to every memory access,
|
||||
* so enable this only if it's useful */
|
||||
#define M68K_EMULATE_PMMU OPT_OFF
|
||||
|
||||
/* ----------------------------- COMPATIBILITY ---------------------------- */
|
||||
|
||||
/* The following options set optimizations that violate the current ANSI
|
||||
* standard, but will be compliant under the forthcoming C9X standard.
|
||||
*/
|
||||
|
||||
|
||||
/* If ON, the enulation core will use 64-bit integers to speed up some
|
||||
* operations.
|
||||
*/
|
||||
#define M68K_USE_64_BIT OPT_ON
|
||||
|
||||
|
||||
#endif /* M68K_COMPILE_FOR_MAME */
|
||||
|
||||
/* ======================================================================== */
|
||||
/* ============================== END OF FILE ============================= */
|
||||
/* ======================================================================== */
|
||||
|
||||
#endif /* M68KCONF__HEADER */
|
1223
lib/M68K/m68kcpu.c
Normal file
1223
lib/M68K/m68kcpu.c
Normal file
File diff suppressed because it is too large
Load Diff
2150
lib/M68K/m68kcpu.h
Normal file
2150
lib/M68K/m68kcpu.h
Normal file
File diff suppressed because it is too large
Load Diff
4004
lib/M68K/m68kdasm.c
Normal file
4004
lib/M68K/m68kdasm.c
Normal file
File diff suppressed because it is too large
Load Diff
1770
lib/M68K/m68kfpu.c
Normal file
1770
lib/M68K/m68kfpu.c
Normal file
File diff suppressed because it is too large
Load Diff
1408
lib/M68K/m68kmake.c
Normal file
1408
lib/M68K/m68kmake.c
Normal file
File diff suppressed because it is too large
Load Diff
321
lib/M68K/m68kmmu.h
Normal file
321
lib/M68K/m68kmmu.h
Normal file
@ -0,0 +1,321 @@
|
||||
/*
|
||||
m68kmmu.h - PMMU implementation for 68851/68030/68040
|
||||
|
||||
By R. Belmont
|
||||
|
||||
Copyright Nicola Salmoria and the MAME Team.
|
||||
Visit http://mamedev.org for licensing and usage restrictions.
|
||||
*/
|
||||
|
||||
/*
|
||||
pmmu_translate_addr: perform 68851/68030-style PMMU address translation
|
||||
*/
|
||||
uint pmmu_translate_addr(uint addr_in)
|
||||
{
|
||||
uint32 addr_out, tbl_entry = 0, tbl_entry2, tamode = 0, tbmode = 0, tcmode = 0;
|
||||
uint root_aptr, root_limit, tofs, is, abits, bbits, cbits;
|
||||
uint resolved, tptr, shift;
|
||||
|
||||
resolved = 0;
|
||||
addr_out = addr_in;
|
||||
|
||||
// if SRP is enabled and we're in supervisor mode, use it
|
||||
if ((m68ki_cpu.mmu_tc & 0x02000000) && (m68ki_get_sr() & 0x2000))
|
||||
{
|
||||
root_aptr = m68ki_cpu.mmu_srp_aptr;
|
||||
root_limit = m68ki_cpu.mmu_srp_limit;
|
||||
}
|
||||
else // else use the CRP
|
||||
{
|
||||
root_aptr = m68ki_cpu.mmu_crp_aptr;
|
||||
root_limit = m68ki_cpu.mmu_crp_limit;
|
||||
}
|
||||
|
||||
// get initial shift (# of top bits to ignore)
|
||||
is = (m68ki_cpu.mmu_tc>>16) & 0xf;
|
||||
abits = (m68ki_cpu.mmu_tc>>12)&0xf;
|
||||
bbits = (m68ki_cpu.mmu_tc>>8)&0xf;
|
||||
cbits = (m68ki_cpu.mmu_tc>>4)&0xf;
|
||||
|
||||
// fprintf(stderr,"PMMU: tcr %08x limit %08x aptr %08x is %x abits %d bbits %d cbits %d\n", m68ki_cpu.mmu_tc, root_limit, root_aptr, is, abits, bbits, cbits);
|
||||
|
||||
// get table A offset
|
||||
tofs = (addr_in<<is)>>(32-abits);
|
||||
|
||||
// find out what format table A is
|
||||
switch (root_limit & 3)
|
||||
{
|
||||
case 0: // invalid, should cause MMU exception
|
||||
case 1: // page descriptor, should cause direct mapping
|
||||
fatalerror("680x0 PMMU: Unhandled root mode\n");
|
||||
break;
|
||||
|
||||
case 2: // valid 4 byte descriptors
|
||||
tofs *= 4;
|
||||
// fprintf(stderr,"PMMU: reading table A entry at %08x\n", tofs + (root_aptr & 0xfffffffc));
|
||||
tbl_entry = m68k_read_memory_32( tofs + (root_aptr & 0xfffffffc));
|
||||
tamode = tbl_entry & 3;
|
||||
// fprintf(stderr,"PMMU: addr %08x entry %08x mode %x tofs %x\n", addr_in, tbl_entry, tamode, tofs);
|
||||
break;
|
||||
|
||||
case 3: // valid 8 byte descriptors
|
||||
tofs *= 8;
|
||||
// fprintf(stderr,"PMMU: reading table A entries at %08x\n", tofs + (root_aptr & 0xfffffffc));
|
||||
tbl_entry2 = m68k_read_memory_32( tofs + (root_aptr & 0xfffffffc));
|
||||
tbl_entry = m68k_read_memory_32( tofs + (root_aptr & 0xfffffffc)+4);
|
||||
tamode = tbl_entry2 & 3;
|
||||
// fprintf(stderr,"PMMU: addr %08x entry %08x entry2 %08x mode %x tofs %x\n", addr_in, tbl_entry, tbl_entry2, tamode, tofs);
|
||||
break;
|
||||
}
|
||||
|
||||
// get table B offset and pointer
|
||||
tofs = (addr_in<<(is+abits))>>(32-bbits);
|
||||
tptr = tbl_entry & 0xfffffff0;
|
||||
|
||||
// find out what format table B is, if any
|
||||
switch (tamode)
|
||||
{
|
||||
case 0: // invalid, should cause MMU exception
|
||||
fatalerror("680x0 PMMU: Unhandled Table A mode %d (addr_in %08x)\n", tamode, addr_in);
|
||||
break;
|
||||
|
||||
case 2: // 4-byte table B descriptor
|
||||
tofs *= 4;
|
||||
// fprintf(stderr,"PMMU: reading table B entry at %08x\n", tofs + tptr);
|
||||
tbl_entry = m68k_read_memory_32( tofs + tptr);
|
||||
tbmode = tbl_entry & 3;
|
||||
// fprintf(stderr,"PMMU: addr %08x entry %08x mode %x tofs %x\n", addr_in, tbl_entry, tbmode, tofs);
|
||||
break;
|
||||
|
||||
case 3: // 8-byte table B descriptor
|
||||
tofs *= 8;
|
||||
// fprintf(stderr,"PMMU: reading table B entries at %08x\n", tofs + tptr);
|
||||
tbl_entry2 = m68k_read_memory_32( tofs + tptr);
|
||||
tbl_entry = m68k_read_memory_32( tofs + tptr + 4);
|
||||
tbmode = tbl_entry2 & 3;
|
||||
// fprintf(stderr,"PMMU: addr %08x entry %08x entry2 %08x mode %x tofs %x\n", addr_in, tbl_entry, tbl_entry2, tbmode, tofs);
|
||||
break;
|
||||
|
||||
case 1: // early termination descriptor
|
||||
tbl_entry &= 0xffffff00;
|
||||
|
||||
shift = is+abits;
|
||||
addr_out = ((addr_in<<shift)>>shift) + tbl_entry;
|
||||
resolved = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
// if table A wasn't early-out, continue to process table B
|
||||
if (!resolved)
|
||||
{
|
||||
// get table C offset and pointer
|
||||
tofs = (addr_in<<(is+abits+bbits))>>(32-cbits);
|
||||
tptr = tbl_entry & 0xfffffff0;
|
||||
|
||||
switch (tbmode)
|
||||
{
|
||||
case 0: // invalid, should cause MMU exception
|
||||
fatalerror("680x0 PMMU: Unhandled Table B mode %d (addr_in %08x PC %x)\n", tbmode, addr_in, REG_PC);
|
||||
break;
|
||||
|
||||
case 2: // 4-byte table C descriptor
|
||||
tofs *= 4;
|
||||
// fprintf(stderr,"PMMU: reading table C entry at %08x\n", tofs + tptr);
|
||||
tbl_entry = m68k_read_memory_32(tofs + tptr);
|
||||
tcmode = tbl_entry & 3;
|
||||
// fprintf(stderr,"PMMU: addr %08x entry %08x mode %x tofs %x\n", addr_in, tbl_entry, tbmode, tofs);
|
||||
break;
|
||||
|
||||
case 3: // 8-byte table C descriptor
|
||||
tofs *= 8;
|
||||
// fprintf(stderr,"PMMU: reading table C entries at %08x\n", tofs + tptr);
|
||||
tbl_entry2 = m68k_read_memory_32(tofs + tptr);
|
||||
tbl_entry = m68k_read_memory_32(tofs + tptr + 4);
|
||||
tcmode = tbl_entry2 & 3;
|
||||
// fprintf(stderr,"PMMU: addr %08x entry %08x entry2 %08x mode %x tofs %x\n", addr_in, tbl_entry, tbl_entry2, tbmode, tofs);
|
||||
break;
|
||||
|
||||
case 1: // termination descriptor
|
||||
tbl_entry &= 0xffffff00;
|
||||
|
||||
shift = is+abits+bbits;
|
||||
addr_out = ((addr_in<<shift)>>shift) + tbl_entry;
|
||||
resolved = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!resolved)
|
||||
{
|
||||
switch (tcmode)
|
||||
{
|
||||
case 0: // invalid, should cause MMU exception
|
||||
case 2: // 4-byte ??? descriptor
|
||||
case 3: // 8-byte ??? descriptor
|
||||
fatalerror("680x0 PMMU: Unhandled Table B mode %d (addr_in %08x PC %x)\n", tbmode, addr_in, REG_PC);
|
||||
break;
|
||||
|
||||
case 1: // termination descriptor
|
||||
tbl_entry &= 0xffffff00;
|
||||
|
||||
shift = is+abits+bbits+cbits;
|
||||
addr_out = ((addr_in<<shift)>>shift) + tbl_entry;
|
||||
resolved = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// fprintf(stderr,"PMMU: [%08x] => [%08x]\n", addr_in, addr_out);
|
||||
|
||||
return addr_out;
|
||||
}
|
||||
|
||||
/*
|
||||
|
||||
m68881_mmu_ops: COP 0 MMU opcode handling
|
||||
|
||||
*/
|
||||
|
||||
void m68881_mmu_ops()
|
||||
{
|
||||
uint16 modes;
|
||||
uint32 ea = m68ki_cpu.ir & 0x3f;
|
||||
uint64 temp64;
|
||||
|
||||
// catch the 2 "weird" encodings up front (PBcc)
|
||||
if ((m68ki_cpu.ir & 0xffc0) == 0xf0c0)
|
||||
{
|
||||
fprintf(stderr,"680x0: unhandled PBcc\n");
|
||||
return;
|
||||
}
|
||||
else if ((m68ki_cpu.ir & 0xffc0) == 0xf080)
|
||||
{
|
||||
fprintf(stderr,"680x0: unhandled PBcc\n");
|
||||
return;
|
||||
}
|
||||
else // the rest are 1111000xxxXXXXXX where xxx is the instruction family
|
||||
{
|
||||
switch ((m68ki_cpu.ir>>9) & 0x7)
|
||||
{
|
||||
case 0:
|
||||
modes = OPER_I_16();
|
||||
|
||||
if ((modes & 0xfde0) == 0x2000) // PLOAD
|
||||
{
|
||||
fprintf(stderr,"680x0: unhandled PLOAD\n");
|
||||
return;
|
||||
}
|
||||
else if ((modes & 0xe200) == 0x2000) // PFLUSH
|
||||
{
|
||||
fprintf(stderr,"680x0: unhandled PFLUSH PC=%x\n", REG_PC);
|
||||
return;
|
||||
}
|
||||
else if (modes == 0xa000) // PFLUSHR
|
||||
{
|
||||
fprintf(stderr,"680x0: unhandled PFLUSHR\n");
|
||||
return;
|
||||
}
|
||||
else if (modes == 0x2800) // PVALID (FORMAT 1)
|
||||
{
|
||||
fprintf(stderr,"680x0: unhandled PVALID1\n");
|
||||
return;
|
||||
}
|
||||
else if ((modes & 0xfff8) == 0x2c00) // PVALID (FORMAT 2)
|
||||
{
|
||||
fprintf(stderr,"680x0: unhandled PVALID2\n");
|
||||
return;
|
||||
}
|
||||
else if ((modes & 0xe000) == 0x8000) // PTEST
|
||||
{
|
||||
fprintf(stderr,"680x0: unhandled PTEST\n");
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
switch ((modes>>13) & 0x7)
|
||||
{
|
||||
case 0: // MC68030/040 form with FD bit
|
||||
case 2: // MC68881 form, FD never set
|
||||
if (modes & 0x200)
|
||||
{
|
||||
switch ((modes>>10) & 7)
|
||||
{
|
||||
case 0: // translation control register
|
||||
WRITE_EA_32(ea, m68ki_cpu.mmu_tc);
|
||||
break;
|
||||
|
||||
case 2: // supervisor root pointer
|
||||
WRITE_EA_64(ea, (uint64)m68ki_cpu.mmu_srp_limit<<32 | (uint64)m68ki_cpu.mmu_srp_aptr);
|
||||
break;
|
||||
|
||||
case 3: // CPU root pointer
|
||||
WRITE_EA_64(ea, (uint64)m68ki_cpu.mmu_crp_limit<<32 | (uint64)m68ki_cpu.mmu_crp_aptr);
|
||||
break;
|
||||
|
||||
default:
|
||||
fprintf(stderr,"680x0: PMOVE from unknown MMU register %x, PC %x\n", (modes>>10) & 7, REG_PC);
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
switch ((modes>>10) & 7)
|
||||
{
|
||||
case 0: // translation control register
|
||||
m68ki_cpu.mmu_tc = READ_EA_32(ea);
|
||||
|
||||
if (m68ki_cpu.mmu_tc & 0x80000000)
|
||||
{
|
||||
m68ki_cpu.pmmu_enabled = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
m68ki_cpu.pmmu_enabled = 0;
|
||||
}
|
||||
break;
|
||||
|
||||
case 2: // supervisor root pointer
|
||||
temp64 = READ_EA_64(ea);
|
||||
m68ki_cpu.mmu_srp_limit = (temp64>>32) & 0xffffffff;
|
||||
m68ki_cpu.mmu_srp_aptr = temp64 & 0xffffffff;
|
||||
break;
|
||||
|
||||
case 3: // CPU root pointer
|
||||
temp64 = READ_EA_64(ea);
|
||||
m68ki_cpu.mmu_crp_limit = (temp64>>32) & 0xffffffff;
|
||||
m68ki_cpu.mmu_crp_aptr = temp64 & 0xffffffff;
|
||||
break;
|
||||
|
||||
default:
|
||||
fprintf(stderr,"680x0: PMOVE to unknown MMU register %x, PC %x\n", (modes>>10) & 7, REG_PC);
|
||||
break;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case 3: // MC68030 to/from status reg
|
||||
if (modes & 0x200)
|
||||
{
|
||||
WRITE_EA_32(ea, m68ki_cpu.mmu_sr);
|
||||
}
|
||||
else
|
||||
{
|
||||
m68ki_cpu.mmu_sr = READ_EA_32(ea);
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
fprintf(stderr,"680x0: unknown PMOVE mode %x (modes %04x) (PC %x)\n", (modes>>13) & 0x7, modes, REG_PC);
|
||||
break;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
fprintf(stderr,"680x0: unknown PMMU instruction group %d\n", (m68ki_cpu.ir>>9) & 0x7);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
342
lib/M68K/readme.txt
Normal file
342
lib/M68K/readme.txt
Normal file
@ -0,0 +1,342 @@
|
||||
MUSASHI
|
||||
=======
|
||||
|
||||
Version 4.10
|
||||
|
||||
A portable Motorola M680x0 processor emulation engine.
|
||||
Copyright 1998-2002 Karl Stenerud. All rights reserved.
|
||||
|
||||
|
||||
|
||||
INTRODUCTION:
|
||||
------------
|
||||
|
||||
Musashi is a Motorola 68000, 68010, 68EC020, 68020, 68EC030, 68030, 68EC040 and
|
||||
68040 emulator written in C. This emulator was written with two goals in mind:
|
||||
portability and speed.
|
||||
|
||||
The emulator is written to ANSI C89 specifications. It also uses inline
|
||||
functions, which are C9X compliant.
|
||||
|
||||
It has been successfully running in the MAME project (www.mame.net) for years
|
||||
and so has had time to mature.
|
||||
|
||||
|
||||
|
||||
LICENSE AND COPYRIGHT:
|
||||
---------------------
|
||||
|
||||
Copyright © 1998-2001 Karl Stenerud
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
|
||||
|
||||
|
||||
AVAILABILITY:
|
||||
------------
|
||||
The latest version of this code can be obtained at:
|
||||
https://github.com/kstenerud/Musashi
|
||||
|
||||
|
||||
|
||||
CONTACTING THE AUTHOR:
|
||||
---------------------
|
||||
I can be reached at kstenerud@gmail.com
|
||||
|
||||
|
||||
|
||||
BASIC CONFIGURATION:
|
||||
-------------------
|
||||
The basic configuration will give you a standard 68000 that has sufficient
|
||||
functionality to work in a primitive environment.
|
||||
|
||||
This setup assumes that you only have 1 device interrupting it, that the
|
||||
device will always request an autovectored interrupt, and it will always clear
|
||||
the interrupt before the interrupt service routine finishes (but could
|
||||
possibly re-assert the interrupt).
|
||||
You will have only one address space, no tracing, and no instruction prefetch.
|
||||
|
||||
To implement the basic configuration:
|
||||
|
||||
- Open m68kconf.h and verify that the settings for INLINE will work with your
|
||||
compiler. (Currently set to "static __inline__", which works in gcc 2.9.
|
||||
For C9X compliance, it should be "inline")
|
||||
|
||||
- In your host program, implement the following functions:
|
||||
unsigned int m68k_read_memory_8(unsigned int address);
|
||||
unsigned int m68k_read_memory_16(unsigned int address);
|
||||
unsigned int m68k_read_memory_32(unsigned int address);
|
||||
void m68k_write_memory_8(unsigned int address, unsigned int value);
|
||||
void m68k_write_memory_16(unsigned int address, unsigned int value);
|
||||
void m68k_write_memory_32(unsigned int address, unsigned int value);
|
||||
|
||||
- In your host program, be sure to call m68k_pulse_reset() once before calling
|
||||
any of the other functions as this initializes the core.
|
||||
|
||||
- Use m68k_execute() to execute instructions and m68k_set_irq() to cause an
|
||||
interrupt.
|
||||
|
||||
|
||||
|
||||
ADDING PROPER INTERRUPT HANDLING:
|
||||
--------------------------------
|
||||
The interrupt handling in the basic configuration doesn't emulate the
|
||||
interrupt acknowledge phase of the CPU and automatically clears an interrupt
|
||||
request during interrupt processing.
|
||||
While this works for most systems, you may need more accurate interrupt
|
||||
handling.
|
||||
|
||||
To add proper interrupt handling:
|
||||
|
||||
- In m68kconf.h, set M68K_EMULATE_INT_ACK to OPT_SPECIFY_HANDLER
|
||||
|
||||
- In m68kconf.h, set M68K_INT_ACK_CALLBACK(A) to your interrupt acknowledge
|
||||
routine
|
||||
|
||||
- Your interrupt acknowledge routine must return an interrupt vector,
|
||||
M68K_INT_ACK_AUTOVECTOR, or M68K_INT_ACK_SPURIOUS. most m68k
|
||||
implementations just use autovectored interrupts.
|
||||
|
||||
- When the interrupting device is satisfied, you must call m68k_set_irq(0) to
|
||||
remove the interrupt request.
|
||||
|
||||
|
||||
|
||||
MULTIPLE INTERRUPTS:
|
||||
-------------------
|
||||
The above system will work if you have only one device interrupting the CPU,
|
||||
but if you have more than one device, you must do a bit more.
|
||||
|
||||
To add multiple interrupts:
|
||||
|
||||
- You must make an interrupt arbitration device that will take the highest
|
||||
priority interrupt and encode it onto the IRQ pins on the CPU.
|
||||
|
||||
- The interrupt arbitration device should use m68k_set_irq() to set the
|
||||
highest pending interrupt, or 0 for no interrupts pending.
|
||||
|
||||
|
||||
|
||||
SEPARATE IMMEDIATE READS:
|
||||
------------------------
|
||||
You can write faster memory access functions if you know whether you are
|
||||
fetching from ROM or RAM. Immediate reads are always from the program space
|
||||
(Always in ROM unless it is running self-modifying code).
|
||||
|
||||
To enable separate immediate reads:
|
||||
|
||||
- In m68kconf.h, turn on M68K_SEPARATE_READ_IMM.
|
||||
|
||||
- In your host program, implement the following functions:
|
||||
unsigned int m68k_read_immediate_16(unsigned int address);
|
||||
unsigned int m68k_read_immediate_32(unsigned int address);
|
||||
|
||||
Now you also have the pcrelative stuff:
|
||||
unsigned int m68k_read_pcrelative_8(unsigned int address);
|
||||
unsigned int m68k_read_pcrelative_16(unsigned int address);
|
||||
unsigned int m68k_read_pcrelative_32(unsigned int address);
|
||||
|
||||
- If you need to know the current PC (for banking and such), set
|
||||
M68K_MONITOR_PC to OPT_SPECIFY_HANDLER, and set M68K_SET_PC_CALLBACK(A) to
|
||||
your routine.
|
||||
|
||||
- In the unlikely case where you need to emulate some PMMU in the immediate
|
||||
reads and/or pcrealtive stuff, you'll need to explicitely call the
|
||||
translation address mechanism from your user functions this way :
|
||||
|
||||
if (PMMU_ENABLED)
|
||||
address = pmmu_translate_addr(address);
|
||||
|
||||
(this is handled automatically by normal memory accesses).
|
||||
|
||||
ADDRESS SPACES:
|
||||
--------------
|
||||
Most systems will only implement one address space, placing ROM at the lower
|
||||
addresses and RAM at the higher. However, there is the possibility that a
|
||||
system will implement ROM and RAM in the same address range, but in different
|
||||
address spaces.
|
||||
|
||||
In this case, you might get away with assuming that immediate reads are in the
|
||||
program space and all other reads are in the data space, if it weren't for the
|
||||
fact that the exception vectors are fetched from the data space. As a result,
|
||||
anyone implementing this kind of system will have to copy the vector table
|
||||
from ROM to RAM using pc-relative instructions.
|
||||
|
||||
This makes things bad for emulation, because this means that a non-immediate
|
||||
read is not necessarily in the data space.
|
||||
The m68k deals with this by encoding the requested address space on the
|
||||
function code pins:
|
||||
|
||||
FC
|
||||
Address Space 210
|
||||
------------------ ---
|
||||
USER DATA 001
|
||||
USER PROGRAM 010
|
||||
SUPERVISOR DATA 101
|
||||
SUPERVISOR PROGRAM 110
|
||||
CPU SPACE 111 <-- not emulated in this core since we emulate
|
||||
interrupt acknowledge in another way.
|
||||
|
||||
To emulate the function code pins:
|
||||
|
||||
- In m68kconf.h, set M68K_EMULATE_FC to OPT_SPECIFY_HANDLER and set
|
||||
M68K_SET_FC_CALLBACK(A) to your function code handler function.
|
||||
|
||||
- Your function code handler should select the proper address space for
|
||||
subsequent calls to m68k_read_xx (and m68k_write_xx for 68010+).
|
||||
|
||||
Note: immediate reads are always done from program space, so technically you
|
||||
don't need to implement the separate immediate reads, although you could
|
||||
gain more speed improvements leaving them in and doing some clever
|
||||
programming.
|
||||
|
||||
|
||||
|
||||
USING DIFFERENT CPU TYPES:
|
||||
-------------------------
|
||||
The default is to enable only the 68000 cpu type. To change this, change the
|
||||
settings for M68K_EMULATE_010 etc in m68kconf.h.
|
||||
|
||||
To set the CPU type you want to use:
|
||||
|
||||
- Make sure it is enabled in m68kconf.h. Current switches are:
|
||||
M68K_EMULATE_010
|
||||
M68K_EMULATE_EC020
|
||||
M68K_EMULATE_020
|
||||
|
||||
- In your host program, call m68k_set_cpu_type() and then call
|
||||
m68k_pulse_reset(). Valid CPU types are:
|
||||
M68K_CPU_TYPE_68000,
|
||||
M68K_CPU_TYPE_68010,
|
||||
M68K_CPU_TYPE_68EC020,
|
||||
M68K_CPU_TYPE_68020,
|
||||
M68K_CPU_TYPE_68EC030,
|
||||
M68K_CPU_TYPE_68030,
|
||||
M68K_CPU_TYPE_68EC040,
|
||||
M68K_CPU_TYPE_68040,
|
||||
M68K_CPU_TYPE_SCC68070 (which is a 68010 with a 32 bit data bus).
|
||||
|
||||
CLOCK FREQUENCY:
|
||||
---------------
|
||||
In order to emulate the correct clock frequency, you will have to calculate
|
||||
how long it takes the emulation to execute a certain number of "cycles" and
|
||||
vary your calls to m68k_execute() accordingly.
|
||||
As well, it is a good idea to take away the CPU's timeslice when it writes to
|
||||
a memory-mapped port in order to give the device it wrote to a chance to
|
||||
react.
|
||||
|
||||
You can use the functions m68k_cycles_run(), m68k_cycles_remaining(),
|
||||
m68k_modify_timeslice(), and m68k_end_timeslice() to do this.
|
||||
Try to use large cycle values in your calls to m68k_execute() since it will
|
||||
increase throughput. You can always take away the timeslice later.
|
||||
|
||||
|
||||
|
||||
MORE CORRECT EMULATION:
|
||||
----------------------
|
||||
You may need to enable these in order to properly emulate some of the more
|
||||
obscure functions of the m68k:
|
||||
|
||||
- M68K_EMULATE_BKPT_ACK causes the CPU to call a breakpoint handler on a BKPT
|
||||
instruction
|
||||
|
||||
- M68K_EMULATE_TRACE causes the CPU to generate trace exceptions when the
|
||||
trace bits are set
|
||||
|
||||
- M68K_EMULATE_RESET causes the CPU to call a reset handler on a RESET
|
||||
instruction.
|
||||
|
||||
- M68K_EMULATE_PREFETCH emulates the 4-word instruction prefetch that is part
|
||||
of the 68000/68010 (needed for Amiga emulation).
|
||||
NOTE: if the CPU fetches a word or longword at an odd address when this
|
||||
option is on, it will yield unpredictable results, which is why a real
|
||||
68000 will generate an address error exception.
|
||||
|
||||
- M68K_EMULATE_ADDRESS_ERROR will cause the CPU to generate address error
|
||||
exceptions if it attempts to read a word or longword at an odd address.
|
||||
|
||||
- call m68k_pulse_halt() to emulate the HALT pin.
|
||||
|
||||
|
||||
|
||||
CONVENIENCE FUNCTIONS:
|
||||
---------------------
|
||||
These are in here for programmer convenience:
|
||||
|
||||
- M68K_INSTRUCTION_HOOK lets you call a handler before each instruction.
|
||||
|
||||
- M68K_LOG_ENABLE and M68K_LOG_1010_1111 lets you log illegal and A/F-line
|
||||
instructions.
|
||||
|
||||
|
||||
|
||||
MULTIPLE CPU EMULATION:
|
||||
----------------------
|
||||
The default is to use only one CPU. To use more than one CPU in this core,
|
||||
there are some things to keep in mind:
|
||||
|
||||
- To have different cpus call different functions, use OPT_ON instead of
|
||||
OPT_SPECIFY_HANDLER, and use the m68k_set_xxx_callback() functions to set
|
||||
your callback handlers on a per-cpu basis.
|
||||
|
||||
- Be sure to call set_cpu_type() for each CPU you use.
|
||||
|
||||
- Use m68k_set_context() and m68k_get_context() to switch to another CPU.
|
||||
|
||||
|
||||
|
||||
LOAD AND SAVE CPU CONTEXTS FROM DISK:
|
||||
------------------------------------
|
||||
You can use them68k_load_context() and m68k_save_context() functions to load
|
||||
and save the CPU state to disk.
|
||||
|
||||
|
||||
|
||||
GET/SET INFORMATION FROM THE CPU:
|
||||
--------------------------------
|
||||
You can use m68k_get_reg() and m68k_set_reg() to gain access to the internals
|
||||
of the CPU.
|
||||
|
||||
|
||||
|
||||
EXAMPLE:
|
||||
-------
|
||||
|
||||
The subdir example contains a full example (currently linux & Dos only).
|
||||
|
||||
Compilation
|
||||
-----------
|
||||
|
||||
You can use the default Makefile in Musashi's directory, it works like this :
|
||||
1st build m68kmake, which will build m68kops.c and m68kops.h based on the
|
||||
contents of m68k_in.c.
|
||||
Then compile m68kcpu.o and m68kops.o. Add m68kdasm.o if you want the
|
||||
disassemble functions. When linking this to your project you will need libm
|
||||
for the fpu emulation of the 68040.
|
||||
|
||||
Using some custom m68kconf.h outside Musashi's directory
|
||||
--------------------------------------------------------
|
||||
|
||||
It can be useful to keep an untouched musashi directory in a project (from
|
||||
git for example) and maintain a separate m68kconf.h specific to the
|
||||
project. For this, pass -DMUSASHI_CNF="mycustomconfig.h" to gcc (or whatever
|
||||
compiler you use). Notice that if you use an unix shell (or make which uses
|
||||
the shell to launch its commands), then you need to escape the quotes like
|
||||
this : -DMUSASHI_CNF=\"mycustomconfig.h\"
|
||||
|
78
lib/M68K/softfloat/README.txt
Normal file
78
lib/M68K/softfloat/README.txt
Normal file
@ -0,0 +1,78 @@
|
||||
MAME note: this package is derived from the following original SoftFloat
|
||||
package and has been "re-packaged" to work with MAME's conventions and
|
||||
build system. The source files come from bits64/ and bits64/templates
|
||||
in the original distribution as MAME requires a compiler with a 64-bit
|
||||
integer type.
|
||||
|
||||
|
||||
Package Overview for SoftFloat Release 2b
|
||||
|
||||
John R. Hauser
|
||||
2002 May 27
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Overview
|
||||
|
||||
SoftFloat is a software implementation of floating-point that conforms to
|
||||
the IEC/IEEE Standard for Binary Floating-Point Arithmetic. SoftFloat is
|
||||
distributed in the form of C source code. Compiling the SoftFloat sources
|
||||
generates two things:
|
||||
|
||||
-- A SoftFloat object file (typically `softfloat.o') containing the complete
|
||||
set of IEC/IEEE floating-point routines.
|
||||
|
||||
-- A `timesoftfloat' program for evaluating the speed of the SoftFloat
|
||||
routines. (The SoftFloat module is linked into this program.)
|
||||
|
||||
The SoftFloat package is documented in four text files:
|
||||
|
||||
SoftFloat.txt Documentation for using the SoftFloat functions.
|
||||
SoftFloat-source.txt Documentation for compiling SoftFloat.
|
||||
SoftFloat-history.txt History of major changes to SoftFloat.
|
||||
timesoftfloat.txt Documentation for using `timesoftfloat'.
|
||||
|
||||
Other files in the package comprise the source code for SoftFloat.
|
||||
|
||||
Please be aware that some work is involved in porting this software to other
|
||||
targets. It is not just a matter of getting `make' to complete without
|
||||
error messages. I would have written the code that way if I could, but
|
||||
there are fundamental differences between systems that can't be hidden.
|
||||
You should not attempt to compile SoftFloat without first reading both
|
||||
`SoftFloat.txt' and `SoftFloat-source.txt'.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Legal Notice
|
||||
|
||||
SoftFloat was written by me, John R. Hauser. This work was made possible in
|
||||
part by the International Computer Science Institute, located at Suite 600,
|
||||
1947 Center Street, Berkeley, California 94704. Funding was partially
|
||||
provided by the National Science Foundation under grant MIP-9311980. The
|
||||
original version of this code was written as part of a project to build
|
||||
a fixed-point vector processor in collaboration with the University of
|
||||
California at Berkeley, overseen by Profs. Nelson Morgan and John Wawrzynek.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
|
||||
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
|
||||
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
|
||||
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL
|
||||
LOSSES, COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO
|
||||
FURTHERMORE EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER
|
||||
SCIENCE INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE
|
||||
SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, provided
|
||||
that the minimal documentation requirements stated in the source code are
|
||||
satisfied.
|
||||
|
||||
|
||||
----------------------------------------------------------------------------
|
||||
Contact Information
|
||||
|
||||
At the time of this writing, the most up-to-date information about
|
||||
SoftFloat and the latest release can be found at the Web page `http://
|
||||
www.cs.berkeley.edu/~jhauser/arithmetic/SoftFloat.html'.
|
||||
|
||||
|
61
lib/M68K/softfloat/mamesf.h
Normal file
61
lib/M68K/softfloat/mamesf.h
Normal file
@ -0,0 +1,61 @@
|
||||
/*----------------------------------------------------------------------------
|
||||
| One of the macros `BIGENDIAN' or `LITTLEENDIAN' must be defined.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#ifdef LSB_FIRST
|
||||
#define LITTLEENDIAN
|
||||
#else
|
||||
#define BIGENDIAN
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The macro `BITS64' can be defined to indicate that 64-bit integer types are
|
||||
| supported by the compiler.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define BITS64
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Each of the following `typedef's defines the most convenient type that holds
|
||||
| integers of at least as many bits as specified. For example, `uint8' should
|
||||
| be the most convenient type that can hold unsigned integers of as many as
|
||||
| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
|
||||
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
|
||||
| to the same as `int'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
typedef sint8 flag;
|
||||
typedef sint8 int8;
|
||||
typedef sint16 int16;
|
||||
typedef sint32 int32;
|
||||
typedef sint64 int64;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Each of the following `typedef's defines a type that holds integers
|
||||
| of _exactly_ the number of bits specified. For instance, for most
|
||||
| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
|
||||
| `unsigned short int' and `signed short int' (or `short int'), respectively.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef uint8 bits8;
|
||||
typedef sint8 sbits8;
|
||||
typedef uint16 bits16;
|
||||
typedef sint16 sbits16;
|
||||
typedef uint32 bits32;
|
||||
typedef sint32 sbits32;
|
||||
typedef uint64 bits64;
|
||||
typedef sint64 sbits64;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The `LIT64' macro takes as its argument a textual integer literal and
|
||||
| if necessary ``marks'' the literal as having a 64-bit integer type.
|
||||
| For example, the GNU C Compiler (`gcc') requires that 64-bit literals be
|
||||
| appended with the letters `LL' standing for `long long', which is `gcc's
|
||||
| name for the 64-bit integer type. Some compilers may allow `LIT64' to be
|
||||
| defined as the identity macro: `#define LIT64( a ) a'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define LIT64( a ) a##ULL
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The macro `INLINE' can be used before functions that should be inlined. If
|
||||
| a compiler does not support explicit inlining, this macro should be defined
|
||||
| to be `static'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
// MAME defines INLINE
|
42
lib/M68K/softfloat/milieu.h
Normal file
42
lib/M68K/softfloat/milieu.h
Normal file
@ -0,0 +1,42 @@
|
||||
|
||||
/*============================================================================
|
||||
|
||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
||||
Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Include common integer types and flags.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#include "mamesf.h"
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Symbolic Boolean literals.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define FALSE 0
|
||||
#define TRUE 1
|
732
lib/M68K/softfloat/softfloat-macros
Normal file
732
lib/M68K/softfloat/softfloat-macros
Normal file
@ -0,0 +1,732 @@
|
||||
|
||||
/*============================================================================
|
||||
|
||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts `a' right by the number of bits given in `count'. If any nonzero
|
||||
| bits are shifted off, they are ``jammed'' into the least significant bit of
|
||||
| the result by setting the least significant bit to 1. The value of `count'
|
||||
| can be arbitrarily large; in particular, if `count' is greater than 32, the
|
||||
| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
|
||||
| The result is stored in the location pointed to by `zPtr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
|
||||
{
|
||||
bits32 z;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z = a;
|
||||
}
|
||||
else if ( count < 32 ) {
|
||||
z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
|
||||
}
|
||||
else {
|
||||
z = ( a != 0 );
|
||||
}
|
||||
*zPtr = z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts `a' right by the number of bits given in `count'. If any nonzero
|
||||
| bits are shifted off, they are ``jammed'' into the least significant bit of
|
||||
| the result by setting the least significant bit to 1. The value of `count'
|
||||
| can be arbitrarily large; in particular, if `count' is greater than 64, the
|
||||
| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
|
||||
| The result is stored in the location pointed to by `zPtr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr )
|
||||
{
|
||||
bits64 z;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z = a;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 );
|
||||
}
|
||||
else {
|
||||
z = ( a != 0 );
|
||||
}
|
||||
*zPtr = z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64
|
||||
| _plus_ the number of bits given in `count'. The shifted result is at most
|
||||
| 64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The
|
||||
| bits shifted off form a second 64-bit result as follows: The _last_ bit
|
||||
| shifted off is the most-significant bit of the extra result, and the other
|
||||
| 63 bits of the extra result are all zero if and only if _all_but_the_last_
|
||||
| bits shifted off were all zero. This extra result is stored in the location
|
||||
| pointed to by `z1Ptr'. The value of `count' can be arbitrarily large.
|
||||
| (This routine makes more sense if `a0' and `a1' are considered to form
|
||||
| a fixed-point value with binary point between `a0' and `a1'. This fixed-
|
||||
| point value is shifted right by the number of bits given in `count', and
|
||||
| the integer part of the result is returned at the location pointed to by
|
||||
| `z0Ptr'. The fractional part of the result may be slightly corrupted as
|
||||
| described above, and is returned at the location pointed to by `z1Ptr'.)
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline void
|
||||
shift64ExtraRightJamming(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z0, z1;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1 != 0 );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 64 ) {
|
||||
z1 = a0 | ( a1 != 0 );
|
||||
}
|
||||
else {
|
||||
z1 = ( ( a0 | a1 ) != 0 );
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
|
||||
| number of bits given in `count'. Any bits shifted off are lost. The value
|
||||
| of `count' can be arbitrarily large; in particular, if `count' is greater
|
||||
| than 128, the result will be 0. The result is broken into two 64-bit pieces
|
||||
| which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline void
|
||||
shift128Right(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z0, z1;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1>>count );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0;
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
|
||||
| number of bits given in `count'. If any nonzero bits are shifted off, they
|
||||
| are ``jammed'' into the least significant bit of the result by setting the
|
||||
| least significant bit to 1. The value of `count' can be arbitrarily large;
|
||||
| in particular, if `count' is greater than 128, the result will be either
|
||||
| 0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or
|
||||
| nonzero. The result is broken into two 64-bit pieces which are stored at
|
||||
| the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline void
|
||||
shift128RightJamming(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z0, z1;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 64 ) {
|
||||
z1 = a0 | ( a1 != 0 );
|
||||
}
|
||||
else if ( count < 128 ) {
|
||||
z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
|
||||
}
|
||||
else {
|
||||
z1 = ( ( a0 | a1 ) != 0 );
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right
|
||||
| by 64 _plus_ the number of bits given in `count'. The shifted result is
|
||||
| at most 128 nonzero bits; these are broken into two 64-bit pieces which are
|
||||
| stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
|
||||
| off form a third 64-bit result as follows: The _last_ bit shifted off is
|
||||
| the most-significant bit of the extra result, and the other 63 bits of the
|
||||
| extra result are all zero if and only if _all_but_the_last_ bits shifted off
|
||||
| were all zero. This extra result is stored in the location pointed to by
|
||||
| `z2Ptr'. The value of `count' can be arbitrarily large.
|
||||
| (This routine makes more sense if `a0', `a1', and `a2' are considered
|
||||
| to form a fixed-point value with binary point between `a1' and `a2'. This
|
||||
| fixed-point value is shifted right by the number of bits given in `count',
|
||||
| and the integer part of the result is returned at the locations pointed to
|
||||
| by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
|
||||
| corrupted as described above, and is returned at the location pointed to by
|
||||
| `z2Ptr'.)
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline void
|
||||
shift128ExtraRightJamming(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
int16 count,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z2 = a2;
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else {
|
||||
if ( count < 64 ) {
|
||||
z2 = a1<<negCount;
|
||||
z1 = ( a0<<negCount ) | ( a1>>count );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 64 ) {
|
||||
z2 = a1;
|
||||
z1 = a0;
|
||||
}
|
||||
else {
|
||||
a2 |= a1;
|
||||
if ( count < 128 ) {
|
||||
z2 = a0<<negCount;
|
||||
z1 = a0>>( count & 63 );
|
||||
}
|
||||
else {
|
||||
z2 = ( count == 128 ) ? a0 : ( a0 != 0 );
|
||||
z1 = 0;
|
||||
}
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
z2 |= ( a2 != 0 );
|
||||
}
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the
|
||||
| number of bits given in `count'. Any bits shifted off are lost. The value
|
||||
| of `count' must be less than 64. The result is broken into two 64-bit
|
||||
| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline void
|
||||
shortShift128Left(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
|
||||
*z1Ptr = a1<<count;
|
||||
*z0Ptr =
|
||||
( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left
|
||||
| by the number of bits given in `count'. Any bits shifted off are lost.
|
||||
| The value of `count' must be less than 64. The result is broken into three
|
||||
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
||||
| `z1Ptr', and `z2Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline void
|
||||
shortShift192Left(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
int16 count,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
int8 negCount;
|
||||
|
||||
z2 = a2<<count;
|
||||
z1 = a1<<count;
|
||||
z0 = a0<<count;
|
||||
if ( 0 < count ) {
|
||||
negCount = ( ( - count ) & 63 );
|
||||
z1 |= a2>>negCount;
|
||||
z0 |= a1>>negCount;
|
||||
}
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit
|
||||
| value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so
|
||||
| any carry out is lost. The result is broken into two 64-bit pieces which
|
||||
| are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline void
|
||||
add128(
|
||||
bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z1;
|
||||
|
||||
z1 = a1 + b1;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = a0 + b0 + ( z1 < a1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the
|
||||
| 192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
|
||||
| modulo 2^192, so any carry out is lost. The result is broken into three
|
||||
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
||||
| `z1Ptr', and `z2Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline void
|
||||
add192(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
bits64 b0,
|
||||
bits64 b1,
|
||||
bits64 b2,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
uint8 carry0, carry1;
|
||||
|
||||
z2 = a2 + b2;
|
||||
carry1 = ( z2 < a2 );
|
||||
z1 = a1 + b1;
|
||||
carry0 = ( z1 < a1 );
|
||||
z0 = a0 + b0;
|
||||
z1 += carry1;
|
||||
z0 += ( z1 < carry1 );
|
||||
z0 += carry0;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the
|
||||
| 128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
|
||||
| 2^128, so any borrow out (carry out) is lost. The result is broken into two
|
||||
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr' and
|
||||
| `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline void
|
||||
sub128(
|
||||
bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
|
||||
*z1Ptr = a1 - b1;
|
||||
*z0Ptr = a0 - b0 - ( a1 < b1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2'
|
||||
| from the 192-bit value formed by concatenating `a0', `a1', and `a2'.
|
||||
| Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The
|
||||
| result is broken into three 64-bit pieces which are stored at the locations
|
||||
| pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline void
|
||||
sub192(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
bits64 b0,
|
||||
bits64 b1,
|
||||
bits64 b2,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
uint8 borrow0, borrow1;
|
||||
|
||||
z2 = a2 - b2;
|
||||
borrow1 = ( a2 < b2 );
|
||||
z1 = a1 - b1;
|
||||
borrow0 = ( a1 < b1 );
|
||||
z0 = a0 - b0;
|
||||
z0 -= ( z1 < borrow1 );
|
||||
z1 -= borrow1;
|
||||
z0 -= borrow0;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Multiplies `a' by `b' to obtain a 128-bit product. The product is broken
|
||||
| into two 64-bit pieces which are stored at the locations pointed to by
|
||||
| `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits32 aHigh, aLow, bHigh, bLow;
|
||||
bits64 z0, zMiddleA, zMiddleB, z1;
|
||||
|
||||
aLow = a;
|
||||
aHigh = a>>32;
|
||||
bLow = b;
|
||||
bHigh = b>>32;
|
||||
z1 = ( (bits64) aLow ) * bLow;
|
||||
zMiddleA = ( (bits64) aLow ) * bHigh;
|
||||
zMiddleB = ( (bits64) aHigh ) * bLow;
|
||||
z0 = ( (bits64) aHigh ) * bHigh;
|
||||
zMiddleA += zMiddleB;
|
||||
z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
|
||||
zMiddleA <<= 32;
|
||||
z1 += zMiddleA;
|
||||
z0 += ( z1 < zMiddleA );
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Multiplies the 128-bit value formed by concatenating `a0' and `a1' by
|
||||
| `b' to obtain a 192-bit product. The product is broken into three 64-bit
|
||||
| pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
|
||||
| `z2Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline void
|
||||
mul128By64To192(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 b,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2, more1;
|
||||
|
||||
mul64To128( a1, b, &z1, &z2 );
|
||||
mul64To128( a0, b, &z0, &more1 );
|
||||
add128( z0, more1, 0, z1, &z0, &z1 );
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the
|
||||
| 128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit
|
||||
| product. The product is broken into four 64-bit pieces which are stored at
|
||||
| the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline void
|
||||
mul128To256(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 b0,
|
||||
bits64 b1,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr,
|
||||
bits64 *z3Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2, z3;
|
||||
bits64 more1, more2;
|
||||
|
||||
mul64To128( a1, b1, &z2, &z3 );
|
||||
mul64To128( a1, b0, &z1, &more2 );
|
||||
add128( z1, more2, 0, z2, &z1, &z2 );
|
||||
mul64To128( a0, b0, &z0, &more1 );
|
||||
add128( z0, more1, 0, z1, &z0, &z1 );
|
||||
mul64To128( a0, b1, &more1, &more2 );
|
||||
add128( more1, more2, 0, z2, &more1, &z2 );
|
||||
add128( z0, z1, 0, more1, &z0, &z1 );
|
||||
*z3Ptr = z3;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns an approximation to the 64-bit integer quotient obtained by dividing
|
||||
| `b' into the 128-bit value formed by concatenating `a0' and `a1'. The
|
||||
| divisor `b' must be at least 2^63. If q is the exact quotient truncated
|
||||
| toward zero, the approximation returned lies between q and q + 2 inclusive.
|
||||
| If the exact quotient q is larger than 64 bits, the maximum positive 64-bit
|
||||
| unsigned integer is returned.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b )
|
||||
{
|
||||
bits64 b0, b1;
|
||||
bits64 rem0, rem1, term0, term1;
|
||||
bits64 z;
|
||||
|
||||
if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF );
|
||||
b0 = b>>32;
|
||||
z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32;
|
||||
mul64To128( b, z, &term0, &term1 );
|
||||
sub128( a0, a1, term0, term1, &rem0, &rem1 );
|
||||
while ( ( (sbits64) rem0 ) < 0 ) {
|
||||
z -= LIT64( 0x100000000 );
|
||||
b1 = b<<32;
|
||||
add128( rem0, rem1, b0, b1, &rem0, &rem1 );
|
||||
}
|
||||
rem0 = ( rem0<<32 ) | ( rem1>>32 );
|
||||
z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns an approximation to the square root of the 32-bit significand given
|
||||
| by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
|
||||
| `aExp' (the least significant bit) is 1, the integer returned approximates
|
||||
| 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
|
||||
| is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
|
||||
| case, the approximation returned lies strictly within +/-2 of the exact
|
||||
| value.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline bits32 estimateSqrt32( int16 aExp, bits32 a )
|
||||
{
|
||||
static const bits16 sqrtOddAdjustments[] = {
|
||||
0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
|
||||
0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
|
||||
};
|
||||
static const bits16 sqrtEvenAdjustments[] = {
|
||||
0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
|
||||
0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
|
||||
};
|
||||
int8 index;
|
||||
bits32 z;
|
||||
|
||||
index = ( a>>27 ) & 15;
|
||||
if ( aExp & 1 ) {
|
||||
z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
|
||||
z = ( ( a / z )<<14 ) + ( z<<15 );
|
||||
a >>= 1;
|
||||
}
|
||||
else {
|
||||
z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
|
||||
z = a / z + z;
|
||||
z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
|
||||
if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
|
||||
}
|
||||
return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the number of leading 0 bits before the most-significant 1 bit of
|
||||
| `a'. If `a' is zero, 32 is returned.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static int8 countLeadingZeros32( bits32 a )
|
||||
{
|
||||
static const int8 countLeadingZerosHigh[] = {
|
||||
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
|
||||
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
};
|
||||
int8 shiftCount;
|
||||
|
||||
shiftCount = 0;
|
||||
if ( a < 0x10000 ) {
|
||||
shiftCount += 16;
|
||||
a <<= 16;
|
||||
}
|
||||
if ( a < 0x1000000 ) {
|
||||
shiftCount += 8;
|
||||
a <<= 8;
|
||||
}
|
||||
shiftCount += countLeadingZerosHigh[ a>>24 ];
|
||||
return shiftCount;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the number of leading 0 bits before the most-significant 1 bit of
|
||||
| `a'. If `a' is zero, 64 is returned.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static int8 countLeadingZeros64( bits64 a )
|
||||
{
|
||||
int8 shiftCount;
|
||||
|
||||
shiftCount = 0;
|
||||
if ( a < ( (bits64) 1 )<<32 ) {
|
||||
shiftCount += 32;
|
||||
}
|
||||
else {
|
||||
a >>= 32;
|
||||
}
|
||||
shiftCount += countLeadingZeros32( a );
|
||||
return shiftCount;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1'
|
||||
| is equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
||||
| Otherwise, returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 == b0 ) && ( a1 == b1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
|
||||
| than or equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
||||
| Otherwise, returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
|
||||
| than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
||||
| returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is
|
||||
| not equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
||||
| Otherwise, returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 != b0 ) || ( a1 != b1 );
|
||||
|
||||
}
|
||||
|
||||
/*-----------------------------------------------------------------------------
|
||||
| Changes the sign of the extended double-precision floating-point value 'a'.
|
||||
| The operation is performed according to the IEC/IEEE Standard for Binary
|
||||
| Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline floatx80 floatx80_chs(floatx80 reg)
|
||||
{
|
||||
reg.high ^= 0x8000;
|
||||
return reg;
|
||||
}
|
||||
|
470
lib/M68K/softfloat/softfloat-specialize
Normal file
470
lib/M68K/softfloat/softfloat-specialize
Normal file
@ -0,0 +1,470 @@
|
||||
|
||||
/*============================================================================
|
||||
|
||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Underflow tininess-detection mode, statically initialized to default value.
|
||||
| (The declaration in `softfloat.h' must match the `int8' type here.)
|
||||
*----------------------------------------------------------------------------*/
|
||||
int8 float_detect_tininess = float_tininess_after_rounding;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Raises the exceptions specified by `flags'. Floating-point traps can be
|
||||
| defined here if desired. It is currently not possible for such a trap to
|
||||
| substitute a result value. If traps are not implemented, this routine
|
||||
| should be simply `float_exception_flags |= flags;'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
void float_raise( int8 flags )
|
||||
{
|
||||
|
||||
float_exception_flags |= flags;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Internal canonical NaN format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef struct {
|
||||
flag sign;
|
||||
bits64 high, low;
|
||||
} commonNaNT;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated single-precision NaN.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define float32_default_nan 0xFFFFFFFF
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the single-precision floating-point value `a' is a NaN;
|
||||
| otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float32_is_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( 0xFF000000 < (bits32) ( a<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the single-precision floating-point value `a' is a signaling
|
||||
| NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float32_is_signaling_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the single-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
| exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT float32ToCommonNaN( float32 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a>>31;
|
||||
z.low = 0;
|
||||
z.high = ( (bits64) a )<<41;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the single-
|
||||
| precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float32 commonNaNToFloat32( commonNaNT a )
|
||||
{
|
||||
|
||||
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two single-precision floating-point values `a' and `b', one of which
|
||||
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
| signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float32 propagateFloat32NaN( float32 a, float32 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float32_is_nan( a );
|
||||
aIsSignalingNaN = float32_is_signaling_nan( a );
|
||||
bIsNaN = float32_is_nan( b );
|
||||
bIsSignalingNaN = float32_is_signaling_nan( b );
|
||||
a |= 0x00400000;
|
||||
b |= 0x00400000;
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated double-precision NaN.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the double-precision floating-point value `a' is a NaN;
|
||||
| otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float64_is_nan( float64 a )
|
||||
{
|
||||
|
||||
return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the double-precision floating-point value `a' is a signaling
|
||||
| NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float64_is_signaling_nan( float64 a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
|
||||
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the double-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
| exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT float64ToCommonNaN( float64 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a>>63;
|
||||
z.low = 0;
|
||||
z.high = a<<12;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the double-
|
||||
| precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float64 commonNaNToFloat64( commonNaNT a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( (bits64) a.sign )<<63 )
|
||||
| LIT64( 0x7FF8000000000000 )
|
||||
| ( a.high>>12 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two double-precision floating-point values `a' and `b', one of which
|
||||
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
| signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float64 propagateFloat64NaN( float64 a, float64 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float64_is_nan( a );
|
||||
aIsSignalingNaN = float64_is_signaling_nan( a );
|
||||
bIsNaN = float64_is_nan( b );
|
||||
bIsSignalingNaN = float64_is_signaling_nan( b );
|
||||
a |= LIT64( 0x0008000000000000 );
|
||||
b |= LIT64( 0x0008000000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated extended double-precision NaN. The
|
||||
| `high' and `low' values hold the most- and least-significant bits,
|
||||
| respectively.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define floatx80_default_nan_high 0xFFFF
|
||||
#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the extended double-precision floating-point value `a' is a
|
||||
| NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag floatx80_is_nan( floatx80 a )
|
||||
{
|
||||
|
||||
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the extended double-precision floating-point value `a' is a
|
||||
| signaling NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag floatx80_is_signaling_nan( floatx80 a )
|
||||
{
|
||||
bits64 aLow;
|
||||
|
||||
aLow = a.low & ~ LIT64( 0x4000000000000000 );
|
||||
return
|
||||
( ( a.high & 0x7FFF ) == 0x7FFF )
|
||||
&& (bits64) ( aLow<<1 )
|
||||
&& ( a.low == aLow );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the extended double-precision floating-
|
||||
| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
|
||||
| invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT floatx80ToCommonNaN( floatx80 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a.high>>15;
|
||||
z.low = 0;
|
||||
z.high = a.low<<1;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the extended
|
||||
| double-precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static floatx80 commonNaNToFloatx80( commonNaNT a )
|
||||
{
|
||||
floatx80 z;
|
||||
|
||||
z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
|
||||
z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two extended double-precision floating-point values `a' and `b', one
|
||||
| of which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||||
| `b' is a signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = floatx80_is_nan( a );
|
||||
aIsSignalingNaN = floatx80_is_signaling_nan( a );
|
||||
bIsNaN = floatx80_is_nan( b );
|
||||
bIsSignalingNaN = floatx80_is_signaling_nan( b );
|
||||
a.low |= LIT64( 0xC000000000000000 );
|
||||
b.low |= LIT64( 0xC000000000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#define EXP_BIAS 0x3FFF
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the fraction bits of the extended double-precision floating-point
|
||||
| value `a'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline bits64 extractFloatx80Frac( floatx80 a )
|
||||
{
|
||||
|
||||
return a.low;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the exponent bits of the extended double-precision floating-point
|
||||
| value `a'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline int32 extractFloatx80Exp( floatx80 a )
|
||||
{
|
||||
|
||||
return a.high & 0x7FFF;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the sign bit of the extended double-precision floating-point value
|
||||
| `a'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline flag extractFloatx80Sign( floatx80 a )
|
||||
{
|
||||
|
||||
return a.high>>15;
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef FLOAT128
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated quadruple-precision NaN. The `high' and
|
||||
| `low' values hold the most- and least-significant bits, respectively.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
|
||||
| otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float128_is_nan( float128 a )
|
||||
{
|
||||
|
||||
return
|
||||
( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
|
||||
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the quadruple-precision floating-point value `a' is a
|
||||
| signaling NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float128_is_signaling_nan( float128 a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
|
||||
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the quadruple-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
| exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT float128ToCommonNaN( float128 a )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
|
||||
z.sign = a.high>>63;
|
||||
shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the quadruple-
|
||||
| precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float128 commonNaNToFloat128( commonNaNT a )
|
||||
{
|
||||
float128 z;
|
||||
|
||||
shift128Right( a.high, a.low, 16, &z.high, &z.low );
|
||||
z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two quadruple-precision floating-point values `a' and `b', one of
|
||||
| which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||||
| `b' is a signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float128 propagateFloat128NaN( float128 a, float128 b )
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float128_is_nan( a );
|
||||
aIsSignalingNaN = float128_is_signaling_nan( a );
|
||||
bIsNaN = float128_is_nan( b );
|
||||
bIsSignalingNaN = float128_is_signaling_nan( b );
|
||||
a.high |= LIT64( 0x0000800000000000 );
|
||||
b.high |= LIT64( 0x0000800000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
|
||||
if ( aIsNaN ) {
|
||||
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
4940
lib/M68K/softfloat/softfloat.c
Normal file
4940
lib/M68K/softfloat/softfloat.c
Normal file
File diff suppressed because it is too large
Load Diff
460
lib/M68K/softfloat/softfloat.h
Normal file
460
lib/M68K/softfloat/softfloat.h
Normal file
@ -0,0 +1,460 @@
|
||||
|
||||
/*============================================================================
|
||||
|
||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
||||
Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The macro `FLOATX80' must be defined to enable the extended double-precision
|
||||
| floating-point format `floatx80'. If this macro is not defined, the
|
||||
| `floatx80' type will not be defined, and none of the functions that either
|
||||
| input or output the `floatx80' type will be defined. The same applies to
|
||||
| the `FLOAT128' macro and the quadruple-precision format `float128'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define FLOATX80
|
||||
#define FLOAT128
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point types.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef bits32 float32;
|
||||
typedef bits64 float64;
|
||||
#ifdef FLOATX80
|
||||
typedef struct {
|
||||
bits16 high;
|
||||
bits64 low;
|
||||
} floatx80;
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
typedef struct {
|
||||
bits64 high, low;
|
||||
} float128;
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Primitive arithmetic functions, including multi-word arithmetic, and
|
||||
| division and square root approximations. (Can be specialized to target if
|
||||
| desired.)
|
||||
*----------------------------------------------------------------------------*/
|
||||
#include "softfloat-macros"
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point underflow tininess-detection mode.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern int8 float_detect_tininess;
|
||||
enum {
|
||||
float_tininess_after_rounding = 0,
|
||||
float_tininess_before_rounding = 1
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point rounding mode.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern int8 float_rounding_mode;
|
||||
enum {
|
||||
float_round_nearest_even = 0,
|
||||
float_round_to_zero = 1,
|
||||
float_round_down = 2,
|
||||
float_round_up = 3
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point exception flags.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern int8 float_exception_flags;
|
||||
enum {
|
||||
float_flag_invalid = 0x01, float_flag_denormal = 0x02, float_flag_divbyzero = 0x04, float_flag_overflow = 0x08,
|
||||
float_flag_underflow = 0x10, float_flag_inexact = 0x20
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Routine to raise any or all of the software IEC/IEEE floating-point
|
||||
| exception flags.
|
||||
*----------------------------------------------------------------------------*/
|
||||
void float_raise( int8 );
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE integer-to-floating-point conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 int32_to_float32( int32 );
|
||||
float64 int32_to_float64( int32 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 int32_to_floatx80( int32 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 int32_to_float128( int32 );
|
||||
#endif
|
||||
float32 int64_to_float32( int64 );
|
||||
float64 int64_to_float64( int64 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 int64_to_floatx80( int64 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 int64_to_float128( int64 );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int32 float32_to_int32( float32 );
|
||||
int32 float32_to_int32_round_to_zero( float32 );
|
||||
int64 float32_to_int64( float32 );
|
||||
int64 float32_to_int64_round_to_zero( float32 );
|
||||
float64 float32_to_float64( float32 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float32_to_floatx80( float32 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float32_to_float128( float32 );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 float32_round_to_int( float32 );
|
||||
float32 float32_add( float32, float32 );
|
||||
float32 float32_sub( float32, float32 );
|
||||
float32 float32_mul( float32, float32 );
|
||||
float32 float32_div( float32, float32 );
|
||||
float32 float32_rem( float32, float32 );
|
||||
float32 float32_sqrt( float32 );
|
||||
flag float32_eq( float32, float32 );
|
||||
flag float32_le( float32, float32 );
|
||||
flag float32_lt( float32, float32 );
|
||||
flag float32_eq_signaling( float32, float32 );
|
||||
flag float32_le_quiet( float32, float32 );
|
||||
flag float32_lt_quiet( float32, float32 );
|
||||
flag float32_is_signaling_nan( float32 );
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int32 float64_to_int32( float64 );
|
||||
int32 float64_to_int32_round_to_zero( float64 );
|
||||
int64 float64_to_int64( float64 );
|
||||
int64 float64_to_int64_round_to_zero( float64 );
|
||||
float32 float64_to_float32( float64 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float64_to_floatx80( float64 );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float64_to_float128( float64 );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float64 float64_round_to_int( float64 );
|
||||
float64 float64_add( float64, float64 );
|
||||
float64 float64_sub( float64, float64 );
|
||||
float64 float64_mul( float64, float64 );
|
||||
float64 float64_div( float64, float64 );
|
||||
float64 float64_rem( float64, float64 );
|
||||
float64 float64_sqrt( float64 );
|
||||
flag float64_eq( float64, float64 );
|
||||
flag float64_le( float64, float64 );
|
||||
flag float64_lt( float64, float64 );
|
||||
flag float64_eq_signaling( float64, float64 );
|
||||
flag float64_le_quiet( float64, float64 );
|
||||
flag float64_lt_quiet( float64, float64 );
|
||||
flag float64_is_signaling_nan( float64 );
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int32 floatx80_to_int32( floatx80 );
|
||||
int32 floatx80_to_int32_round_to_zero( floatx80 );
|
||||
int64 floatx80_to_int64( floatx80 );
|
||||
int64 floatx80_to_int64_round_to_zero( floatx80 );
|
||||
float32 floatx80_to_float32( floatx80 );
|
||||
float64 floatx80_to_float64( floatx80 );
|
||||
#ifdef FLOAT128
|
||||
float128 floatx80_to_float128( floatx80 );
|
||||
#endif
|
||||
floatx80 floatx80_scale(floatx80 a, floatx80 b);
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
|
||||
| extended double-precision floating-point value, returning the result.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
|
||||
{
|
||||
floatx80 z;
|
||||
|
||||
z.low = zSig;
|
||||
z.high = ( ( (bits16) zSign )<<15 ) + zExp;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision rounding precision. Valid
|
||||
| values are 32, 64, and 80.
|
||||
*----------------------------------------------------------------------------*/
|
||||
extern int8 floatx80_rounding_precision;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
floatx80 floatx80_round_to_int( floatx80 );
|
||||
floatx80 floatx80_add( floatx80, floatx80 );
|
||||
floatx80 floatx80_sub( floatx80, floatx80 );
|
||||
floatx80 floatx80_mul( floatx80, floatx80 );
|
||||
floatx80 floatx80_div( floatx80, floatx80 );
|
||||
floatx80 floatx80_rem( floatx80, floatx80 );
|
||||
floatx80 floatx80_sqrt( floatx80 );
|
||||
flag floatx80_eq( floatx80, floatx80 );
|
||||
flag floatx80_le( floatx80, floatx80 );
|
||||
flag floatx80_lt( floatx80, floatx80 );
|
||||
flag floatx80_eq_signaling( floatx80, floatx80 );
|
||||
flag floatx80_le_quiet( floatx80, floatx80 );
|
||||
flag floatx80_lt_quiet( floatx80, floatx80 );
|
||||
flag floatx80_is_signaling_nan( floatx80 );
|
||||
|
||||
/* int floatx80_fsin(floatx80 &a);
|
||||
int floatx80_fcos(floatx80 &a);
|
||||
int floatx80_ftan(floatx80 &a); */
|
||||
|
||||
floatx80 floatx80_flognp1(floatx80 a);
|
||||
floatx80 floatx80_flogn(floatx80 a);
|
||||
floatx80 floatx80_flog2(floatx80 a);
|
||||
floatx80 floatx80_flog10(floatx80 a);
|
||||
|
||||
// roundAndPackFloatx80 used to be in softfloat-round-pack, is now in softfloat.c
|
||||
floatx80 roundAndPackFloatx80(int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1);
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef FLOAT128
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE quadruple-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int32 float128_to_int32( float128 );
|
||||
int32 float128_to_int32_round_to_zero( float128 );
|
||||
int64 float128_to_int64( float128 );
|
||||
int64 float128_to_int64_round_to_zero( float128 );
|
||||
float32 float128_to_float32( float128 );
|
||||
float64 float128_to_float64( float128 );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float128_to_floatx80( float128 );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE quadruple-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float128 float128_round_to_int( float128 );
|
||||
float128 float128_add( float128, float128 );
|
||||
float128 float128_sub( float128, float128 );
|
||||
float128 float128_mul( float128, float128 );
|
||||
float128 float128_div( float128, float128 );
|
||||
float128 float128_rem( float128, float128 );
|
||||
float128 float128_sqrt( float128 );
|
||||
flag float128_eq( float128, float128 );
|
||||
flag float128_le( float128, float128 );
|
||||
flag float128_lt( float128, float128 );
|
||||
flag float128_eq_signaling( float128, float128 );
|
||||
flag float128_le_quiet( float128, float128 );
|
||||
flag float128_lt_quiet( float128, float128 );
|
||||
flag float128_is_signaling_nan( float128 );
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Packs the sign `zSign', the exponent `zExp', and the significand formed
|
||||
| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
|
||||
| floating-point value, returning the result. After being shifted into the
|
||||
| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
|
||||
| added together to form the most significant 32 bits of the result. This
|
||||
| means that any integer portion of `zSig0' will be added into the exponent.
|
||||
| Since a properly normalized significand will have an integer portion equal
|
||||
| to 1, the `zExp' input should be 1 less than the desired result exponent
|
||||
| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
|
||||
| significand.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline float128
|
||||
packFloat128( flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
|
||||
{
|
||||
float128 z;
|
||||
|
||||
z.low = zSig1;
|
||||
z.high = ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<48 ) + zSig0;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
||||
| and extended significand formed by the concatenation of `zSig0', `zSig1',
|
||||
| and `zSig2', and returns the proper quadruple-precision floating-point value
|
||||
| corresponding to the abstract input. Ordinarily, the abstract value is
|
||||
| simply rounded and packed into the quadruple-precision format, with the
|
||||
| inexact exception raised if the abstract input cannot be represented
|
||||
| exactly. However, if the abstract value is too large, the overflow and
|
||||
| inexact exceptions are raised and an infinity or maximal finite value is
|
||||
| returned. If the abstract value is too small, the input value is rounded to
|
||||
| a subnormal number, and the underflow and inexact exceptions are raised if
|
||||
| the abstract input cannot be represented exactly as a subnormal quadruple-
|
||||
| precision floating-point number.
|
||||
| The input significand must be normalized or smaller. If the input
|
||||
| significand is not normalized, `zExp' must be 0; in that case, the result
|
||||
| returned is a subnormal number, and it must not require rounding. In the
|
||||
| usual case that the input significand is normalized, `zExp' must be 1 less
|
||||
| than the ``true'' floating-point exponent. The handling of underflow and
|
||||
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline float128
|
||||
roundAndPackFloat128(
|
||||
flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1, bits64 zSig2 )
|
||||
{
|
||||
int8 roundingMode;
|
||||
flag roundNearestEven, increment, isTiny;
|
||||
|
||||
roundingMode = float_rounding_mode;
|
||||
roundNearestEven = ( roundingMode == float_round_nearest_even );
|
||||
increment = ( (sbits64) zSig2 < 0 );
|
||||
if ( ! roundNearestEven ) {
|
||||
if ( roundingMode == float_round_to_zero ) {
|
||||
increment = 0;
|
||||
}
|
||||
else {
|
||||
if ( zSign ) {
|
||||
increment = ( roundingMode == float_round_down ) && zSig2;
|
||||
}
|
||||
else {
|
||||
increment = ( roundingMode == float_round_up ) && zSig2;
|
||||
}
|
||||
}
|
||||
}
|
||||
if ( 0x7FFD <= (bits32) zExp ) {
|
||||
if ( ( 0x7FFD < zExp )
|
||||
|| ( ( zExp == 0x7FFD )
|
||||
&& eq128(
|
||||
LIT64( 0x0001FFFFFFFFFFFF ),
|
||||
LIT64( 0xFFFFFFFFFFFFFFFF ),
|
||||
zSig0,
|
||||
zSig1
|
||||
)
|
||||
&& increment
|
||||
)
|
||||
) {
|
||||
float_raise( float_flag_overflow | float_flag_inexact );
|
||||
if ( ( roundingMode == float_round_to_zero )
|
||||
|| ( zSign && ( roundingMode == float_round_up ) )
|
||||
|| ( ! zSign && ( roundingMode == float_round_down ) )
|
||||
) {
|
||||
return
|
||||
packFloat128(
|
||||
zSign,
|
||||
0x7FFE,
|
||||
LIT64( 0x0000FFFFFFFFFFFF ),
|
||||
LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
);
|
||||
}
|
||||
return packFloat128( zSign, 0x7FFF, 0, 0 );
|
||||
}
|
||||
if ( zExp < 0 ) {
|
||||
isTiny =
|
||||
( float_detect_tininess == float_tininess_before_rounding )
|
||||
|| ( zExp < -1 )
|
||||
|| ! increment
|
||||
|| lt128(
|
||||
zSig0,
|
||||
zSig1,
|
||||
LIT64( 0x0001FFFFFFFFFFFF ),
|
||||
LIT64( 0xFFFFFFFFFFFFFFFF )
|
||||
);
|
||||
shift128ExtraRightJamming(
|
||||
zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
|
||||
zExp = 0;
|
||||
if ( isTiny && zSig2 ) float_raise( float_flag_underflow );
|
||||
if ( roundNearestEven ) {
|
||||
increment = ( (sbits64) zSig2 < 0 );
|
||||
}
|
||||
else {
|
||||
if ( zSign ) {
|
||||
increment = ( roundingMode == float_round_down ) && zSig2;
|
||||
}
|
||||
else {
|
||||
increment = ( roundingMode == float_round_up ) && zSig2;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if ( zSig2 ) float_exception_flags |= float_flag_inexact;
|
||||
if ( increment ) {
|
||||
add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
|
||||
zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
|
||||
}
|
||||
else {
|
||||
if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
|
||||
}
|
||||
return packFloat128( zSign, zExp, zSig0, zSig1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
||||
| and significand formed by the concatenation of `zSig0' and `zSig1', and
|
||||
| returns the proper quadruple-precision floating-point value corresponding
|
||||
| to the abstract input. This routine is just like `roundAndPackFloat128'
|
||||
| except that the input significand has fewer bits and does not have to be
|
||||
| normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
|
||||
| point exponent.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static inline float128
|
||||
normalizeRoundAndPackFloat128(
|
||||
flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
|
||||
{
|
||||
int8 shiftCount;
|
||||
bits64 zSig2;
|
||||
|
||||
if ( zSig0 == 0 ) {
|
||||
zSig0 = zSig1;
|
||||
zSig1 = 0;
|
||||
zExp -= 64;
|
||||
}
|
||||
shiftCount = countLeadingZeros64( zSig0 ) - 15;
|
||||
if ( 0 <= shiftCount ) {
|
||||
zSig2 = 0;
|
||||
shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
|
||||
}
|
||||
else {
|
||||
shift128ExtraRightJamming(
|
||||
zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
|
||||
}
|
||||
zExp -= shiftCount;
|
||||
return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
|
||||
|
||||
}
|
||||
#endif
|
@ -79,6 +79,7 @@ HW_SRC = {
|
||||
'src/HW/M68K/m68kdasm.c',
|
||||
'src/HW/M68K/m68khooks.c',
|
||||
'src/HW/M68K/m68kops.c',
|
||||
'src/HW/M68K/m68kgdb.c',
|
||||
'src/HW/M68K/softfloat/softfloat.c',
|
||||
],
|
||||
'MOUSE': [
|
||||
|
@ -106,7 +106,7 @@ GLOBALFUNC bool ROM_Init(void)
|
||||
|
||||
/* do_put_mem_word(862 + ROM, 0x4E71); */ /* shorten set memory */
|
||||
|
||||
Sony_Install();
|
||||
//Sony_Install();
|
||||
//ScreenHack_Install(); in above fcn temporarily
|
||||
|
||||
#ifdef ln2mtb
|
||||
|
@ -472,6 +472,11 @@ LOCALPROC m68k_go_nCycles_1(uint32_t n)
|
||||
{
|
||||
uint32_t n2;
|
||||
uint32_t StopiCount = NextiCount + n;
|
||||
|
||||
if (m68k_on_breakpoint && !m68k_need_singlestep) {
|
||||
return;
|
||||
}
|
||||
|
||||
do {
|
||||
ICT_DoCurrentTasks();
|
||||
n2 = ICT_DoGetNext(n);
|
||||
@ -479,12 +484,19 @@ LOCALPROC m68k_go_nCycles_1(uint32_t n)
|
||||
m68k_execute(n2 / 64); // TODO: verify scaler here
|
||||
n = StopiCount - NextiCount;
|
||||
} while (n != 0);
|
||||
|
||||
if (m68k_on_breakpoint && m68k_need_singlestep) {
|
||||
m68k_need_singlestep = false;
|
||||
}
|
||||
}
|
||||
|
||||
LOCALVAR uint32_t ExtraSubTicksToDo = 0;
|
||||
|
||||
LOCALPROC DoEmulateOneTick(void)
|
||||
{
|
||||
// GDB stub query
|
||||
//gdbstub_reconnect();
|
||||
|
||||
// AutoSlow
|
||||
uint32_t NewQuietTime = QuietTime + 1;
|
||||
uint32_t NewQuietSubTicks = QuietSubTicks + kNumSubTicks;
|
||||
|
Loading…
x
Reference in New Issue
Block a user