added thoughts on register allocation

This commit is contained in:
Mark Canlas 2022-11-29 10:35:28 -05:00
parent 72bb685e23
commit cd17e7cef7

12
TODO.md
View File

@ -17,3 +17,15 @@
- a method that offers up a lease maybe has a return type completely inherited from its body (doesn't know N shape, other than that the register should participate somewhere)
- maybe the AXY registers don't offer up leases and are always consumed in predictable, prepackaged ways
- there needs to be another abstraction. just because reads and writes are tracked, doesn't mean they tie to exactly single addresses (think of a mechanism with many independent switches, all producing separate write actions)
- automatic address assignment; if you stack them in a list, you can at "compile" time just assign registers from 0 to n
- have an easy combinator to switch between byte and word length
- and another combinator to switch between zero and global (maybe global is the default and zero is opt-in)
- stack register assignment
- helper functions like multiplication (?) probably need a temp working area
- if always used like a well bounded resource, maybe you can keep reusing this temp area with different functions
- but if some one subroutine or "context" uses a function twice (e.g. 3 * 4 * 5) then the stack depth for that context is at least two now, which can be known at interpretation time by going through the call graph
- imagine the multiplier operation providing context/a lease and every operation on that lease actually pushes onto a stack
- 99% of the time the stack size would just be one but it could be for nested calls something else
- and then very late into register assignment (above) it would occupy N registers
- what if you model all functions using the same "bounce" area and then just use this as the canonical way to calculate stack depth
- this would maybe be "optimal" register allocation?