
EhBASIC reference manual page 1

Enhanced 6502 BASIC reference manual

Preface

This manual has been compiled in October 2013 from a snapshot of Lee Davison’s website

http://mycorner.no-ip.org/6502/ehbasic/index.html after it had been off air for quite a while.

In an effort to keep reference material available for and to preserve usability of EhBASIC, I

have undertaken the task to collect all available information in a PDF format manual. Please

contact me, if you find errors in the manual: K@2m5.de

The content of this manual is the sole intellectual property of the original author Lee Davison.

See the copyright notice in the introduction, for what you can and what you cannot do with

the source code and with the documentation.

Content

Enhanced 6502 BASIC By Lee Davison .. 2

Introduction.. 2

Enhanced BASIC requirements .. 2

Enhanced BASIC on your system ... 3

Starting Enhanced BASIC .. 4

Enhanced BASIC language reference ... 6

BASIC Keywords .. 7

BASIC Commands .. 8

BASIC Operators ... 15

BASIC Functions .. 15

BASIC Error Messages ..19

Enhanced BASIC, advanced examples ..21

Enhanced BASIC, extending CALL .. 27

Enhanced BASIC, using USR() ... 29

Enhanced BASIC internals ... 33

Enhanced BASIC, useful routines .. 37

EhBASIC reference manual page 2

Enhanced 6502 BASIC By Lee Davison

Introduction

Enhanced BASIC is a BASIC interpreter

for the 6502 and compatible

microprocessors. It is constructed to be

quick and powerful and easily ported to

most 6502 systems. It requires few

resources to run and includes instructions

to facilitate easy low level handling of

hardware devices. It also retains most of

the powerful high level instructions from

similar BASICs.

EhBASIC represents hundreds of hours work over nearly three years, lots of frustration, lots

of joy and the occasional twinge from RSI induced tendonitis.

EhBASIC is free but not copyright free. For non commercial use there is only one restriction,

any derivative work should include, in any binary image distributed, the string "Derived from

EhBASIC" and in any distribution that includes human readable files a file that includes the

above string in a human readable form e.g. not as a comment in an HTML file.

For commercial use please e-mail Lee for conditions.

Enhanced BASIC requirements

Minimum requirements
 6502 processor.

 10k ROM or RAM for the interpreter code.

 1k of RAM from $0000.

 RS232 I/O.

Preferred requirements
 6502 or better processor (65c02, CCU3000, M38xx).

 10k ROM or RAM for the interpreter code.

 RAM from $0000 to $BFFF (more with changes).

 Any character based I/O (e.g. RS232, LCD/keyboard etc).

EhBASIC reference manual page 3

Enhanced BASIC on your system

Hardware.

EhBASIC can be made to work on nearly any 6502 system, it requires very little. The system

it was developed on is a combination of my SBC and 6551 projects.

Memory.

EhBASIC makes extensive use of page zero and some use of page 2. Some areas may be re-

used as long as care is taken. Program and variable space is from $0300 up to whatever is

available, the more the better. The interpreter can be ROM or RAM based and can be

assembled to reside almost anywhere in memory, only minor changes need to be made.

Software.

For minimal functionality the interpreter needs only two external routines, a character get

routine and a character send routine.

For full functionality two other external routines, load and save, along with two interrupt

service routines are needed.

Minimal set-up is required, most of the set-up is performed by the interpreter cold start

routine.

How to.

The interpreter calls the system routines via RAM based vectors and, as long as the

requirements for each routine are met, these can be changed on the fly if needs be.

All the routines exit via an RTS.

The routines are ..

Input This is a non halting scan of the input device. If a character is ready it should be

placed in A and the carry flag set, if there is no character then A, and the carry

flag, should be cleared.

Output The character to be sent is in A and should not be changed by the routine. Also

on return, the N and Z flags should reflect the character in A.

Load This is entirely system dependant.

Save This is entirely system dependant.

Also if you wish to use the ON {IRQ|NMI} commands ..

Irq If no other valid interrupt has happened then this routine should, after checking

that the interrupt is set-up, set the IRQ interrupt happened flag.

Nmi If no other valid interrupt has happened then this routine should, after checking

that the interrupt is set-up, set the NMI interrupt happened flag.

EhBASIC reference manual page 4

Example code.

Example code for all the above is provided if the file min_mon.asm that is included in the

main source code archive.

Starting Enhanced BASIC

Starting EhBASIC

Starting EhBASIC will mostly depend on how you set up your system to start it. The

following assumes you are trying to run EhBASIC using the example monitor and Michal

Kowalski's 6502 simulator, though this should not differ too much from the startup of

EhBASIC on a real system.

 Unpack the .zip source to a directory and run the 6502 simulator.

 Open min_mon.asm from the directory where you unzipped it.

 Select assemble [F7].

 Run the debugger [F6].

 Make sure the I/O window is open.

 Press [CTRL], [SHIFT] and R to reset the simulated processor.

You should then be presented with the

[C]old/[W]arm prompt as seen here. As

the simulator has just been started you

should now press C for a cold start.

This should present you with the Memory

size ? prompt. Now type either carriage

return, in which case EhBASIC calculates

available memory space automatically, or

enter the total size of the memory in either

decimal, hex or binary followed by a

carriage return.

E.g. to set the physical memory size to 8k bytes.

In decimal ..
 Memory size ? 8192

.. or in hex ..
 Memory size ? $2000

.. or in binary.
 Memory size ? %10000000000000

EhBASICs program memory is then allocated from Ram_base, which is usually $0300, up to

the limit specified. Any remaining RAM, or any RAM not continuous from EhBASICs

memory, may be used to contain user subroutines or data.

If you did not enter a number greater than the minimum required to run EhBASIC, or there is

not the minimum memory present, then EhBASIC will return to the Memory size ? prompt.

EhBASIC reference manual page 5

Do not type a number larger than the physical memory present. EhBASIC assumes you know

what you are doing and does not check the specified memory size. Trying to use non existent

RAM will, at best, corrupt your string variables. This check can easily be implemented, the

code is already in place but is commented out. See the source for more details.

There is no Terminal width ? prompt as with some BASICs, the default is for no terminal

width limit to be set. However if you wish to set a terminal width, and a TAB step size, there

is a WIDTH command available, see

WIDTH in the EhBASIC language

reference.

If the memory sizing was successful then

EhBASIC will respond with the total

number of bytes available for both

programmes and variables and then the

Ready prompt.

The display should look something like

the image on the right.

You are now ready to start using

EhBASIC.

Restarting EhBASIC

To restart EhBASIC After a reset, assuming you have at some time performed a cold start, if

you have set up a Cold/Warm start request just press W.

If all is well, and sometimes if not,

EhBASIC will respond with the Ready

prompt like that shown here.

After a warn start, if the reset was not

caused by a program running amok, the

program and all the variables used, will be unchanged. You will not though be able to use

CONT to continue program execution.

So you are now ready to program in EhBASIC, check the language reference for details.

EhBASIC reference manual page 6

Enhanced BASIC language reference

Numbers

Numbers may range from zero to plus or minus 1.70141173x10^38 and will have an accuracy

of just under 1 part in 1.68 x 10^7.

Numbers can be preceded by a sign, + or -, and are written as a string of numeric digits with

or without a decimal point and can also have a positive or negative exponent as a power of 10

multiplier e.g.

-142 96.3 0.25 -136.42E-3 -1.3E7 1

.. are all valid numbers.

Integer numbers, i.e. with no decimal fraction or exponent, can also be in either hexadecimal

or binary. Hexadecimal numbers should be preceded by $ and binary numbers preceded by

%, e.g.

%101010 -$FFE0 $A0127BD -%10011001 %00001010 $0A

.. again are all valid numbers.

Strings

Strings are any string of printable characters enclosed in a pair of quotation marks. Non

printing characters may be converted to single character strings using the CHR$() functions.

"Hello world" "-136.42E-3" "+----+----+" "[Y/n]" "Y"

Are all valid strings.

Variables

Variables of both numeric and string type are available. String variables are distinguished by

the $ suffix. As well as simple variables arrays are also available and these may be either

numeric or string and are distinguished by their bracketed indices after the variable name.

Variable names may be any length but only the first two name characters are significant so

BL and BLANK will refer to the same variable. The first character must be one of "A" to "Z"

or "a" to "z", following characters may also include numbers. E.g.

A A$ NAME$ x2LIM y colour s1 s2

Variable names are case sensitive so AB, Ab, aB and ab are all separate variables.

Variable names may not contain BASIC keywords. Keywords are only valid in upper case so

'PRINTER' is not allowed (it would be interpreted as PRINT ER) but 'printer' is.

EhBASIC reference manual page 7

Note that spaces in variable names are ignored so 'print e r', 'print er' and 'pri nter' will all be

interpreted the same way.

BASIC Keywords

Here is a list of BASIC keywords. They are only valid when entered in upper case as shown

and spaces may not be included in them. So GOTO is a valid BASIC keyword but GO TO is

not. Click  to return to keyword index.

ABS AND ASC ATN BIN$ BITCLR BITSET

BITTST CALL CHR$ CLEAR CONT COS DATA

DEC DEEK DEF DIM DO DOKE ELSE

END EOR EXP FN FOR FRE GET

GOSUB GOTO HEX$ IF INC INPUT INT

IRQ LCASE$ LEFT$ LEN LET LIST LOAD

LOG LOOP MAX MID$ MIN NEW NEXT

NMI NOT NULL OFF ON OR PEEK

PI POKE POS PRINT READ REM RESTORE

RETIRQ RETNMI RETURN RIGHT$ RND RUN SADD

SAVE SGN SIN SPC(SQR STEP STOP

STR$ SWAP TAB(TAN THEN TO TWOPI

UCASE$ UNTIL USR VAL VARPTR WAIT WHILE

WIDTH + - * / ^ <<

>> > = <

 Anything in upper case is part of the command/function structure and must be present

 Anything in lower case enclosed in < > is to be supplied by the user

 Anything enclosed in [] is optional

 Anything enclosed in { } and separated by | characters are multi choice options

 Any items followed by an ellipsis, ... , may be repeated any number of times

 Any punctuation and symbols, except those above, are part of the structure and must

be included

var is a valid variable name

var$ is a valid string variable name

var() is a valid array name

var$() is a valid string array name

expression is any expression returning a result

expression$ is any expression returning a string result

addr is an integer in the range +/- 16777215 that will be wrapped to the range 0 to 65535

b is a byte value 0 to 255

n is an integer in the range 0 to 63999

w is an integer in the range -32768 to 32767

i is a positive integer value

EhBASIC reference manual page 8

r is real number

+r is a positive value real number (0 is considered positive)

$ is a string literal

BASIC Commands

BITCLR <addr>,

Clears bit b of address addr. Valid bit numbers are 0, the least significant bit, to 7, the most

significant bit. Values outside this range will cause a function call error. 

BITSET <addr>,

Sets bit b of address addr. Valid bit numbers are 0, the least significant bit, to 7, the most

significant bit. Values outside this range will cause a function call error. 

CALL <addr>

CALLs a user subroutine at address addr. No values are passed or returned and so this is

much faster than using USR(). See extending CALL for details. 

CLEAR

Erases all variables and functions and resets FOR .. NEXT, GOSUB .. RETURN and DO

..LOOP states. 

CONT

Continues program execution after CTRL-C has been typed, a STOP has been encountered

during program execution or a null input was given to an INPUT request. 

DATA [{r|$}[,{r|$}]...]

Defines a constant or series of constants. Real constants are held as strings in program

memory and can be read as numeric values or string values. String constants may contain

spaces but if they need to contain commas then they must be enclosed in quotes. 

DEC <var>[,var]...

Decrement variables. The variables listed will have their values decremented by one. Trying

to decrement a string variable will give a type mismatch error. DEC A is much faster than

doing A=A-1 and DEC A,A is slightly faster than doing A=A-2. 

DEF FN <name>(<var>) = <statement>

Defines <statement> as function <name>. <name> can be any valid numeric variable name of

one or more characters. <var> must be a simple variable and is used to pass a numeric

argument into the function.

Note that the value of <var> will be unchanged if it is used in the function so <var> should be

considered to be a local variable name. 

EhBASIC reference manual page 9

DIM <var[$](i1[,i2[,in]...])>[,var[$](i1[,i2[,in]...])]...

Dimension arrays. Creates arrays of either string or numeric variables. The arrays can have

one or more dimensions. The lower limit of any dimension is always zero and the upper limit

is i. If you do not explicitly dimension an array then it's number of dimensions will be set

when you first access it and the upper bound will be set to 10 for each dimension. 

DO

Marks the beginning of a DO .. LOOP loop (See LOOP). No parameters. This command can

be nested like FOR .. NEXT or GOSUB .. RETURN. 

DOKE <addr,w>

Writes the word value w into the addresses addr and addr+1, the lower byte of w is in addr.

Note if addr = 65535 ($FFFF) then the high byte will be written to address zero. 

ELSE

See IF. 

END

Terminates program execution and returns control to the command line (direct mode). END

may be placed anywhere in a program, it does not have to be on the last line, and there may be

any number, including none, of ENDs in total.

Note. CONT may be used after and END to resume execution from the next statement. 

FN<name>(<expression>)

See DEF. 

FOR <var> = <expression> TO <expression> [STEP expression]

Assigns a variable to a loop counter and optionally sets the start value, the end value and the

step size. If STEP expression is omitted then a default step size of +1 will be assumed. 

GET <var[$]>

Gets a key, if there is one, from the input device. If there is no key waiting then var will be set

to 0 and var$ will return a null string "". GET does not halt and execution will continue. 

GOSUB <n>

Call a subroutine at line n. Program execution is diverted to line n but the calling point is

remembered. Upon encountering a RETURN statement program execution will continue with

the next statement (line) after the GOSUB. 

EhBASIC reference manual page 10

GOTO <n>

Continue execution from line number n. 

IF <expression> {GOTO<n>|THEN<{n|statement}>}[ELSE<{n|statement}>]

Evaluates expression. If the result of expression is non zero then the GOTO or the statement

after the THEN is executed. If the result of expression is zero then execution continues with

the next line.

If the result of expression is zero and the optional ELSE clause is included then the statement

after the ELSE is executed.

IF .. THEN .. ELSE .. behaves as a single statement so in the line ..

IF <expression> THEN <statement one> ELSE <statement two> :

<statement three>

.. statement three will always be executed regardless of the outcome of the IF as long as the

executed statement was not a GOTO. 

INC <var>[,var]...

Increment variables. The variables listed will have their values incremented by one. Trying to

increment a string variable will give a type mismatch error. INC A is much faster than doing

A=A+1 and INC A,A is slightly faster than doing A=A+2. 

INPUT ["$";] <var>[,var]...

Get a variable, or list of variables from the input stream. A question mark, "?", is always

output, after the string if there is one, and if further input is required, i.e. there are more

variables in the list than the user entered values, then a double question mark, "??", will be

output until enough values have been entered.

There are two possible messages that may appear during the execution of an input statement:

Extra ignored

The user has attempted to enter more values than are required. Program execution will

continue but the extraneous data entered has been discarded.

Redo from start

The user has attempted to enter a string where a number was expected. The reverse never

causes an error as numbers are also valid strings. 

IRQ {ON|OFF|CLEAR}

Enables or disables the IRQ handling subroutine. Note that turning the handler off does not

suppress the interrupt detection and if an interrupt occurs while handling is off it will be

EhBASIC reference manual page 11

actioned as soon as handling is turned back on. Using CLEAR clears the interrupt assignment

and it can only be restarted with an ON IRQ command. 

LET <var> = <expression>

Assign the value of expression to var. Both var and expression bust be of the same type. The

LET command word is optional and just <var> = <expression> will give exactly the same

result. It is only maintained for historical reasons. 

LIST [n1][-n2]

Lists the entire program held in memory. If n1 is specified then the listing will start from line

n1 and run to the end of the program. If -n2 is specified then the listing will terminate after

line n2 has been listed. If n1 and -n2 are specified then all the lines from n1 to n2 inclusive

will be listed.

Note. If n1 does not exist then the list will start from the next line numbered after n1. If n2

does not exist then the listing will stop with the last line numbered before n2.

Also note. LIST can be executed from within a program, first a [CR][LF] is printed and then

the specified lines, if any, each terminated with another [CR][LF]. Program execution then

continues as normal. 

LOAD

Does nothing in this version but does it via a vector in RAM so is easily patched. 

LOOP [{UNTIL|WHILE} expression]

Marks the end of a DO .. LOOP loop. There are three possible variations on the LOOP

command ..

LOOP

This loop repeats forever. With just this command control is passed back to the next

command after the corresponding DO.

LOOP UNTIL expression

This loop will repeat until the value of expression is non zero. Once that occurs

execution will continue with the next command after the LOOP UNTIL.

LOOP WHILE expression

This loop will repeat while the value of expression is non zero. When the value of

expression is zero execution will continue with the next command after the LOOP

WHILE. 

NEW

Deletes the current program and all variables from memory. 

EhBASIC reference manual page 12

NEXT [var[,var]...]

Increments or decrements a loop variable and checks for the terminating condition. If the

terminating condition has been reached then execution continues with the next command, else

execution continues with the command after the FOR assignment. See FOR. 

NMI {ON|OFF|CLEAR}

Enables or disables the NMI handling subroutine. Note that turning the handler off does not

suppress the interrupt detection and if an interrupt occurs while handling is off it will be

actioned as soon as handling is turned back on. Using CLEAR clears the interrupt assignment

and it can only be restarted with an ON NMI command. 

NOT <expression>

Generates the bitwise NOT of then signed integer value of <expression>. 

NULL <n>

Sets the number of null characters printed by BASIC after every carriage return. n may be

specified in the range 0 to 255. 

OFF

See IRQ or NMI. 

ON <expression> {GOTO|GOSUB} <n>[,n]...

The integer value of expression is calculated and then the nth number after the GOTO or

GOSUB is taken (where n is the result of expression). Note that valid results for expression

range only from zero to 255. Any result outside this range will cause a Function call error. 

ON {IRQ|NMI} <n>

Set up the IRQ or NMI routine pointers. This sets up the effective GOSUB line that is taken

when an interrupt happens. When the effective GOSUB is taken the interrupt, IRQ or NMI, is

turned off. This can be turned back on with the interrupt on command or by using the

matching special return. The normal program flow is resumed by any of RETIRQ, RETNMI

or RETURN. 

POKE <addr,b>

Writes the byte value b into the address addr. 

PRINT [expression][{;|,}expression]...[{;|,}]

Outputs the value of each expressions. If the list of expressions to be output does not end with

a comma or a semi-colon, then a carriage return and linefeed is output after the values.

EhBASIC reference manual page 13

Expressions on the line can be separated with either a semi-colon, causing the next expression

to follow immediately, or a comma which will advance the output to the next tab stop before

continuing to print. If there are no expressions and no comma or semi-colon after the PRINT

statement then a carriage return and linefeed is output.

When entering a program line, or immediate statement, PRINT can be abbreviated to ? 

READ <var>[,var]...

Reads values from DATA statements and assigns them to variables. Trying to read a string

literal into a numeric variable will cause a syntax error. 

REM

Everything following this statement on this program line will be ignored, even colons. 

RESTORE [n]

Reset the DATA pointer. If n is specified then the pointer will be reset to the beginning of line

n else it will be reset to the start of the program. If n is specified but doesn't exist an error will

be generated. 

RETIRQ

Returns program execution to the next statement after an interrupt, automatically restores the

IRQ enabled flag. See ON IRQ. 

RETNMI

Returns program execution to the next statement after an interrupt, automatically restores the

NMI enabled flag. See ON NMI. 

RETURN

Returns program execution to the next statement (line) after the last GOSUB encountered. See

GOSUB. Also returns program execution to the next statement after an interrupt but does not

restore the enabled flags. 

RUN [n]

Begins execution of the program currently in memory at the lowest numbered line. RUN

erases all variables and functions, resets FOR .. NEXT, GOSUB .. RETURN and DO ..LOOP

states and sets the data pointer to the program start.

If n is specified then programme execution will start at the specified line number. 

SAVE

Does nothing in this version but does it via a vector in RAM so is easily patched. 

EhBASIC reference manual page 14

SPC(<expression>)

Prints <expression> spaces. This command is only valid in a PRINT statement. 

STEP

Sets the step size in a FOR .. NEXT loop. See FOR. 

STOP

Halts program execution and generates a "Break in line n" message where n is the line in

which the STOP was encountered. 

SWAP <var[$]>,<var[$]>

Swap two variables. The variables listed will have their values exchanged. Both must be of

the same type, numeric or string, and either, or both, may be array elements. Trying to swap a

numeric and string variable will give a type mismatch error. 

TAB(<expression>)

Sets the cursor position to <expression>. If the cursor is already beyond that point then the

cursor will be left where it is. This command is only valid in a PRINT statement. 

THEN

See IF. 

TO

Sets the range in a FOR .. NEXT loop. See FOR. 

UNTIL

See DO and LOOP. 

WAIT <addr,b1>[,b2]

Program execution will wait at this point until the value of the location addr exclusive ORed

with b2 then ANDed with b1 is non zero. If b2 is not defined then it is assumed to be zero.

Note b1 and b2 must both be byte values. 

WHILE

See DO and LOOP. 

WIDTH {b1|,b2|b1,b2}

Sets the terminal width and TAB spacing. b1 is the terminal width and b2 is the tab spacing,

default is 80 and 14. Width can be zero, for "infinite" terminal width, or from 16 to 255. The

tab size is from 2 to width-1 or 127, whichever is smaller. 

EhBASIC reference manual page 15

BASIC Operators

Operators perform mathematical or logical operations on values and return the result. The

operation is usually preceded by a variable name and equality sign or is part of an IF .. THEN

statement.

+ Add. c = a + b will assign the sum of a and b to c.

- Subtract. c = a - b will assign the result of a minus b to c.

* Multiply. c = a * b will assign the product of a and b to c.

/ Divide. c = a / b will assign the result of a divided by b to c.

^ Raise to the power of. c = a ^ b will assign the result of a raised to the power of b to c.

AND Logical AND. c = a AND b will assign the logical AND of a and b to c

EOR Logical Exclusive OR. c = a EOR b will assign the logical exclusive OR of a and b to c.

OR Logical OR. c = a OR b will assign the logical inclusive OR of a and b to c.

<< Shift left. c = a << b will assign the result of a shifted left by b bits to c.

>> Shift right. c = a >> b will assign the result of a shifted right by b bits to c.

= Equals. c = a = b will assign the result of the comparison a = b to c.

> Greater than. c = a < b will assign the result of the comparison a > b to c.

< Less than. c = a < b will assign the result of the comparison of a < b to c.

The three comparison operators can be mixed to provide further operators ..

>= or => Greater than or equal to.

<= or =< Less than or equal to.

<> or >< Not equal to (greater than or less than).

<=> any order Always true (greater than or equal to or less than). 

BASIC Functions

Functions always return a value, be it numeric or string, so are used on the right hand side of

the = sign in assignments, on either side of operators and in commands requiring an

expression e.g. after PRINT, within expressions, or in other functions.

ABS(<expression>)

Returns the absolute value of <expression>. 

ASC(<expression$>)

Returns the ASCII value of the first character of <expression$>. 

ATN(<expression>)

Returns, in radians, the arctangent of <expression>. 

EhBASIC reference manual page 16

BIN$(<expression>[,b])

Returns <expression> as a binary string. If b is omitted, or if b = 0, then the string is returned

with all leading zeroes removed and is of variable length. If b is set, permissible values range

from 1 to 24, then a string of length b will be returned. The result is always unsigned and

calling this function with expression > 2^24-1 or b > 24 will cause a function call error. 

BITTST(<addr>,)

Tests bit b of address addr. Valid bit numbers are 0, the least significant bit, to 7, the most

significant bit. Values outside this range will cause a function call error. Returns zero if the bit

was zero, returns -1 if the bit was 1. 

COS(<expression>)

Returns the cosine of the angle <expression> radians. 

DEEK(<addr>)

Returns the word value of <addr> and addr+1 as an integer in the range -32768 to 32767.

Addr holds the word low byte. 

EXP(<expression>)

Returns e^<expression>. Natural antilog. 

FRE(<expression>)

Returns the amount of free program memory. The value of expression is ignored and can be

numeric or string. 

HEX$(<expression>[,b])

Returns <expression> as a hex string. If b is omitted, or if b = 0, then the string is returned

with all leading zeroes removed and is of variable length. If b is set, permissible values range

from 1 to 6, then a string of length b will be returned. The result is always unsigned and

calling this function with expression > 2^24-1 or b > 6 will cause a function call error. 

INT(<expression>)

Returns the integer of <expression>. 

LCASE$(<expression$>)

Returns <expression$> with all the alpha characters in lower case. 

LEFT$(<expression$,b>)

Returns the leftmost b characters of <expression$>. 

EhBASIC reference manual page 17

LEN(<expression$>)

Returns the length of <expression$>. 

LOG(<expression>)

Returns the natural logarithm (base e) of <expression>. 

MAX(<expression>[,<expression>]...)

Returns the maximum value from a list of numeric expressions. There must be at least one

expression but the upper limit is dictated by the line length. Each expression is evaluated in

turn and the largest of them returned. 

MID$(<expression$,b1>[,b2])

Returns the substring string from character b1 of expression$ of length b2. The characters of

expression$ are numbered from 1 starting with the leftmost. If b2 is omitted then all the

characters from b1 to the end of the string are returned. 

MIN(<expression>[,<expression>]...)

Returns the minimum value from a list of numeric expressions. There must be at least one

expression but the upper limit is dictated by the line length. Each expression is evaluated in

turn and the smallest of them returned. 

PEEK(<addr>)

Returns the byte value of <addr>. 

PI

Returns the value of pi as 3.14159274 (closest floating value). 

POS(<expression>)

Returns the POSition of the cursor on the terminal line. The value of expression is ignored. 

RIGHT$(<expression$,b>)

Returns the rightmost b characters of <expression$>. 

RND(<expression>)

Returns a random number in the range 0 to 1. If the value of <expression> is non zero then it

will be used as the seed for the returned pseudo random number otherwise the next number in

the sequence will be returned. 

EhBASIC reference manual page 18

SADD(<{var$|var$()}>)

Returns the address of var$ or var$(). This returns a pointer to the actual string in memory not

the descriptor. If you want the pointer to the descriptor use VARPTR instead. 

SGN(<expression>)

Returns the sign of <expression>. If the value is positive SGN returns +1, if the value is

negative then SGN returns -1. If expression=0 then SGN returns 0. 

SIN(<expression>)

Returns the sine of the angle <expression> radians. 

SQR(<expression>)

Returns the square root of <expression>. 

STR$(<expression>)

Returns the result of <expression> as a string. 

TAN(<expression>)

Returns the tangent of the angle <expression> radians. 

TWOPI

Returns the value of 2*pi as 6.28318548 (closest floating value). 

UCASE$(<expression$>)

Returns <expression$> with all the alpha characters in upper case. 

CHR$(b)

Returns single character string of character . 

USR(<expression>)

Takes the value of <expression> and places it in FAC1 and then calls the USeR routine

pointed to by the vector at $0B,$0C. What the routine does with this value is entirely up to the

user, it can even be safely ignored if it isn't needed. The routine, after the user code has done

an RTS, takes whatever is in FAC1 and returns that. Note it can be either a numeric or string

value. See using USR() for details.

If no value needs to be passed or returned then CALL is a better option. 

VAL(<expression$>)

Returns the value of <expression$>. 

EhBASIC reference manual page 19

VARPTR(<var[$]>)

Returns a pointer to the variable memory space. If the variable is numeric, or a numeric array

element, then VARPTR returns the pointer to the packed value of that variable in memory. If

the variable is a string, or a string array element, then VARPTR returns a pointer to the

descriptor for that string. If you want the pointer to the string itself use SADD instead. 

BASIC Error Messages

These all occur from time to time and, if the error occurred while executing a program, will be

followed by "in line " where is the number of the line in which the error occurred.

Array bounds Error

An attempt was made to access an element of an array that was outside it's bounding

dimensions.

Can't continue Error

Execution can't be continued because either the program execution ended because an error

occurred, NEW or CLEAR have been executed since the program was interrupted or the

program has been edited.

Divide by zero Error

The right hand side of an A/B expression was zero.

Double dimension Error

An attempt has been made to dimension an already dimensioned array. This could be because

the array was accessed previously causing it to be dimensioned by default.

Function call Error

Some parameter of a function was outside it's limits. E.g. Trying to POKE a value of less than

0 or greater than 255.

Illegal direct Error

An attempt was made to execute a command or function in direct mode which is disallowed

in that mode e.g. INPUT or DEF.

LOOP without DO Error

LOOP has been encountered and no matching DO could be found.

NEXT without FOR Error

NEXT has been encountered and no matching FOR could be found.

EhBASIC reference manual page 20

Out of DATA Error

A READ has tried to read data beyond the last item. Usually because you either mistyped the

DATA lines, miscounted the DATA, RESTOREd to the wrong place or just plain forgot to

restore.

Overflow Error

The result of a calculation has exceeded the numerical range of BASIC. This is plus or minus

1.7014117+E38

Out of memory Error

Anything that uses memory can cause this but mostly it's writing and running programmes

that does it.

RETURN without GOSUB Error

RETURN has been encountered and no matching GOSUB could be found.

String too complex Error

A string expression caused an overflow on the descriptor stack. Try splitting the expression

into smaller pieces.

String too long Error

String lengths can be from zero to 255 characters, more than that and you will see this.

Syntax Error

Just generally wrong. 8^)=

Type mismatch Error

An attempt was made to assign a numeric value to a string variable, a string value to a

numeric variable or a value of one type was returned when a value of the other type was

expected or an attempt at a relational operation between a string and a number was made.

Undefined function Error

FN <var> was called but not found.

Undefined statement Error

Either a GOTO, GOSUB, RUN or RESTORE was attempted to a line that doesn't exist or the

line referred to in an ON <expression> {GOTO|GOSUB} or ON {IRQ|NMI} doesn't exist.

EhBASIC reference manual page 21

Enhanced BASIC, advanced examples

Creating buffer space.

Sometimes there is a need for a byte oriented buffer space. This can be achieved by lowering

the top of BASIC memory and using the "protected" space created thus. The main problem

with this is that there may not be the same RAM configuration in all the systems this code is

to run on.

One way round this is to allocate the space from BASIC's array memory by dimensioning an

array big enough to hold your data. As arrays always start from zero then to work out the

array size needed you do ..

Array dimension = (bytes needed/4)-1.

E.g.

10 DIM b1(19) : REM need 80 bytes for input buffer

20 DIM b2($100) : REM need $0400 bytes for screen buffer

So you've allocated the buffer but where is it? This is one use of the VARPTR function, it is

used in this case to return the start of the array's data space.

E.g.

100 a1 = VARPTR(b1(0)) : REM get the address of the buffer space

But wait, there is another problem here. Because variables are created when they are first

assigned a value any new variable created after the array is dimensioned will move the array

in memory. So the following will not work..

10 DIM b1(19) : REM 80 bytes for buffer

20 a1 = VARPTR(b1(0)) : REM get the address of the buffer space

40 FOR x = 0 to 79

50 POKE a1+x,ASC(" ")

60 NEXT

.

.

When we get to line 40, a1, the pointer to the array data space, is wrong because the variable

x has been created and moved all the arrays up by six bytes. The way round this is to ensure

that all variables that you will use have been created prior to getting the pointer. This also

means you start with known values in all your variables.

10 DIM b1(19) : REM 80 bytes for buffer

20 x = 0 : REM loop counter

30 a1 = VARPTR(b1(0)) : REM get the address of the buffer space

40 FOR x = 0 to 79

50 POKE a1+x,ASC(" ")

60 NEXT

.

.

EhBASIC reference manual page 22

Another way is to get the pointer every time you use it. This has the advantage of always

being correct but is somewhat slower.

10 DIM b1(19) : REM 80 bytes for buffer

40 FOR x = 0 to 79

50 POKE VARPTR(b1(0))+x,ASC(" ")

60 NEXT

.

.

One thing to remember, never try to use a string array as a buffer. Everything will seem to

work until you run out of string space and the garbage collection routine is called. Once this

happens it's likely that your buffer will get trashed and you may even find that the program

freezes because the garbage collection routine now thinks that there are more string bytes than

there are memory.

Creating short code space.

While the techniques explained above can also be used to create space for machine code

routines there is a simpler way for position independent routines up to 255 bytes long to be

held in memory.

Assemble the code and use the hex output from your assembler to create a set of BASIC data

statements.

E.g.

1000 DATA $A5,$11,$C9,$3A,$B0,$08,$38,$E9

1010 DATA $30,$38,$E9,$D0,$90,$0D,$09,$20

1020 DATA $38,$E9,$61,$90,$0B,$C9,$06,$B0

1030 DATA $07,$69,$3A,$E9,$2F,$85,$11,$60

1040 DATA $18,$60

1050 DATA -1

Now we just use a loop like this to load this hex code into a string.

10 RESTORE 1000

20 READ by : REM assume at least one byte

30 DO

40 co$ = co$+CHR$(by)

50 READ by

60 LOOP UNTIL by=-1

The code can now be called by doing ..

140 CALL(SADD(co$))

Note that you must always use the SADD() function to get the address for the CALL as the

garbage collection routine may move the string in memory and this is the best way to ensure

that the address is always correct.

EhBASIC reference manual page 23

Coding for speed

Spaces

Remove spaces from your code. Spaces, while they don't affect the program flow, do take a

finite time to skip over. The only space you don't need to worry about is the one between the

line number and the code as this is stripped during input parsing and the apparent space is

generated by the LIST command output.

E.g. the following ..

10 REM line 10

20 REM line 20

30 REM line 30

.. reads as follows when LISTed

10 REM line 10

20 REM line 20

30 REM line 30

Removing REM.

Remove remarks from your code. Remarks like spaces don't do anything, program wise, but

take time to skip. Removing remarks, especially from time critical code, can make a big

difference.

Variables.

Use variables. One place where time is wasted, especially in loops, is repeatedly interpreting

numeric values or unchanging functions.

E.g.

.

140 FOR x = 0 to 79

150 POKE $F400+x,ASC(" ")

160 NEXT

.

This loop can be improved in a number of ways. First assign a variable the value $F400 and

use that. Doing this is faster after only three uses.

E.g.

10 a1 = $F400

.

140 FOR x = 0 to 79

150 POKE a1+x,ASC(" ")

160 NEXT

.

EhBASIC reference manual page 24

The other way to make this loop faster is to assign the value of the (unchanging) function to a

variable, then move the function outside the loop.

E.g.

10 a1 = $F400

.

130 sp = ASC(" ")

140 FOR x = 0 to 79

150 POKE a1+x,sp

160 NEXT

.

Now the ASC(" ") is only evaluated once and the loop is executed faster.

GOTO and GOSUB

When EhBASIC encounters a GOTO or GOSUB it has to search through memory for the

target line. If the target line follows the command then it searches from the next line, if the

target line precedes the command then the search starts from the beginning of program

memory. So keeping this distance, in lines, as short as possible will make the program run

faster.

One place that this is difficult is in a conditional loop. In calculating points in the Mandelbrot

set, for example, code like this is used ..

.

230 INC it

235 tp = mx*mx-my*my+x

240 my = 2*mx*my+y

245 mx = tp

250 co = (mx*mx + my*my)

255 IF (it<128) AND (co<4.0) THEN 230

.

Each time the condition in line 255 is met the interpreter has to search from the start of

memory for line 230. While this may not take long if the program is short it can slow longer

programs considerably.

This can easily be resolved though by using a DO .. LOOP instead. So our example code

becomes..

.

220 DO

230 INC it

235 tp = mx*mx-my*my+x

240 my = 2*mx*my+y

245 mx = tp

250 co = (mx*mx + my*my)

255 LOOP WHILE (it<128) AND (co<4.0)

.

This is quicker because the location of the start of the loop, the DO, is placed on the stack and

the interpreter doesn't have to search for it.

EhBASIC reference manual page 25

Packing them in.

Another way to speed up time critical code is to place as many commands as possible on each

line, this can make a noticeable speed gain.

E.g.

10 a1 = $F400

.

130 sp = ASC(" ")

140 FOR x = 0 to 79 : POKE a1+x,sp : NEXT

.

INC and DEC.

INCrement and DECrement are quick and clear ways of altering a numeric value by plus or

minus one and are faster than using add or subtract.

E.g.

100 INC a

.. is quicker than ..

100 a = a+1

.. and ..

100 INC a,a

.. is still quicker than ..

100 a = a+2

Also combine increments or decrements if you can.

E.g.

100 INC so,d

.. is quicker than ..

100 INC so : INC de

>> and <<

Using >> and << can be quicker than using / or * where integer math and a power of two is

involved.

EhBASIC reference manual page 26

E.g. you want to find the byte that holds the pixel at x,y in a 256 x 32 display

100 ad = y*32 + INT(x/8) : REM pixel address

.. is done quicker with.

100 ad = y<<5 + x>>3 : REM pixel address

Coding for space

Most of the techniques used to improve the speed of a program can also reduce the number of

bytes used by that program.

Spaces.

Remove spaces from your code. The only space you don't need to worry about is the one

between the line number and the code as this is stripped during input parsing and the apparent

space is generated by the LIST command output.

Removing REM.

Remove remarks from your code. Remarks like spaces don't do anything, removing remarks,

can save a lot of space.

Variables.

Use variables. Often you will find yourself using the same numeric value again and again. If

this value has many digits, such as the value for e (2.718282), then assigning that value at the

beginning of the program can start to save space with the third use.

Re-use variables. Every time you assign a new variable a value it takes up six more bytes of

the available memory. If you have a variable that is only used as a loop counter then try to use

it for temporary values or GET values elsewhere in the program.

Constants.

There are two constants defined in EhBASIC, PI and TWOPI. They are the closest floating

values to pi and 2*pi and will save you seven bytes each time you can use them.

Packing them in.

Another way to save space is to place as many commands as possible on each line, this will

save you five bytes every time you put another command on an existing line compared to

using a new line.

INC and DEC.

INCrement and DECrement also save space. Either will save you three bytes for each variable

INCremented or DECremented.

EhBASIC reference manual page 27

Derived functions

The following functions, while not part of BASIC, can be calculated using the existing

BASIC functions.

Secant SEC(X)=1/COS(X)

Cosecant CSC(X)=1/SIN(X)

Cotangent COT(X)=1/TAN(X)

Inverse sine ARCSIN(X)=ATN(X/SQR(X*X+1))

Inverse cosine ARCCOS(X)=-ATN(X/SQR(X*X+1))+PI/2

Inverse secant ARCSEC(X)=ATN(SQR(X*X-1))+(SGN(X)-1)*PI/2

Inverse cosecant
ARCCSC(X)=ATN(1/SQR(X*X-1))+(SGN(X)-

1)*PI/2

Inverse cotangent ARCCOT(X)=-ATN(X)+PI/2

Hyperbolic sine SINH(X)=(EXP(X)-EXP(-X))/2

Hyperbolic cosine COSH(X)=(EXP(X)+EXP(-X))/2

Hyperbolic tangent TANH(X)=-EXP(-X)/(EXP(X)+EXP(-X))*2+1

Hyperbolic secant SECH(X)=2/(EXP(X)+EXP(-X))

Hyperbolic cosecant CSCH(X)=2/(EXP(X)-EXP(-X))

Hyperbolic cotangent COTH(X)=EXP(-X)/(EXP(X)-EXP(-X))*2+1

Inverse hyperbolic sine ARCSINH(X)=LOG(X+SQR(X*X+1))

Inverse hyperbolic

cosine
ARCCOSH(X)=LOG(X+SQR(X*X-1))

Inverse hyperbolic

tangent
ARCTANH(X)=LOG((1+X)/(X))/2

Inverse hyperbolic

secant
ARCSECH(X)=LOG((SQR(X*X+1)+1)/X)

Inverse hyperbolic

cosecant
ARCCSCH(X)=LOG((SGN(X)*SQR(X*X+1)+1)/X)

Inverse hyperbolic

cotangent
ARCCOTH(X)=LOG((X+1)/(X-1))/2

Enhanced BASIC, extending CALL

Introduction.

CALL <address> calls a machine code routine at location address. While this in itself is

useful it can be extended by adding parameters to the CALL and parsing them from within the

routine.

This technique can also be used to pass extra parameters to the USR() function.

EhBASIC reference manual page 28

How to.

First you need to define the parameters for your CALL. This example is for an imaginary

bitmapped graphic device.

CALL PLOT,x,y Set the pixel at x,y

 PLOT routine address

 x x axis value, range 0 to 255

 y y axis value, range 0 to 64

This will then be the form that the call will always take.

Now you need to write the code.

.include BASIC.DIS ; include the BASIC labels file. this allows you

 ; easy access to the internal routines you need

 ; to parse the command stream and access some of

 ; the internals of BASIC. It is usually output

 ; by the assembler as part of the listing or as a

 ; separate, optional, file.

; for now we'll put this in the spare RAM @ $F400

 *= $F400

PLOT

 JSR LAB_SCGB ; scan for "," and get byte

 STX PLOT_XBYT ; save plot x

 JSR LAB_SCGB ; scan for "," and get byte

 CPX #$40 ; compare with max+1

 BCS PLOT_FCER ; if 64d or greater do function call error

 STX PLOT_YBYT ; save plot y

; now would be your code to perform the plot command

;.

;.

;.

;.

;.

 RTS ; return to BASIC

; does BASIC function call error

PLOT_FCER

 JMP LAB_FCER ; do function call error, then warm start

; now we just need the variable storage

PLOT_XBYT

 .byte $00 ; set default

PLOT_YBYT

 .byte $00 ; set default

 END

EhBASIC reference manual page 29

Finally you need to set the value of PLOT in your BASIC program and use that to call it.

E.g.

.

10 PLOT = $F400

.

.

145 CALL PLOT,25,14 : REM set pixel

.

Enhanced BASIC, using USR()

Introduction.

USR(<expression[$]>) calls the machine code function pointed to by the user jump vector

after evaluating <expression[$]> and placing the result in the first floating accumulator. Once

the user function exits, via an RTS, the value in the floating accumulator is passed back to

EhBASIC.

Either a numeric value or a string can be passed, and either type can be returned depending on

the setting of the data type flag at the end of the user code and the return point (see code

examples for details).

It can also be extended by adding parameters to USR() and parsing them from within the

routine in the same way that CALL can be extended, just remember to get the value from

FAC1 first.

How to - numeric source, numeric result.

First you need to write the code.

; this code demonstrates the use of USR() to quickly calculate the square of a

; byte value. Compare this with doing SQ=A*A or even SQ=A^2.

 .include BASIC.DIS ; include the BASIC labels file. this allows

 ; you easy access to the internal routines you

 ; need to parse the command stream and access

 ; some of the internals of BASIC. It is usually

 ; output by the assembler as part of the listing

 ; or as a separate, optional, file.

; for now we'll put this in the spare RAM @ $F400

 *= $F400

Square

 JSR LAB_EVBY ; evaluate byte expression, result in X and FAC1_3

 LDA #$00 ; clear A

 STA FAC1_2 ; clear square low byte (use FAC1 as the workspace)

 ; (no need to clear the high byte, it gets shifted out)

 TXA ; copy byte to A

 LDX #$08 ; set bit count

Nextr2bit

 ASL FAC1_2 ; low byte *2

 ROL FAC1_1 ; high byte *2+carry from low

EhBASIC reference manual page 30

 ASL A ; shift byte

 BCC NoSqadd ; don't do add if C = 0

 TAY ; save A

 CLC ; clear carry for add

 LDA FAC1_3 ; get number

 ADC FAC1_2 ; add number^2 low byte

 STA FAC1_2 ; save number^2 low byte

 LDA #$00 ; clear A

 ADC FAC1_1 ; add number^2 high byte

 STA FAC1_1 ; save number^2 high byte

 TYA ; get A back

NoSqadd

 DEX ; decrement bit count

 BNE Nextr2bit ; go do next bit

 LDX #$90 ; set exponent=2^16 (integer)

 SEC ; set carry for positive result

 JMP LAB_STFA ; set exp=X, clearFAC1 mantissa3, normalise & return

Now you need to set up the address for your function. This is done by DOKEing an address

into the USR() vector e.g.

DOKE $0B,$F400 ; set the user function address to addr

 ; $0B - user function vector address

 ; $F400 - routine address

Finally you need to set the vector in your BASIC program and use that to call the function

.

10 DOKE $0B,$F400

.

.

.

145 SQ=USR(A)

.

How to - numeric source, string result.

AS before, first you need to write the code.

; this code demonstrates the use of USR() to generate a string of # characters.

; the length of the required string is the parameter passed.

 .include BASIC.DIS ; include the BASIC labels file. this allows

 ; you easy access to the internal routines you

 ; need to parse the command stream and access

 ; some of the internals of BASIC. It is usually

 ; output by the assembler as part of the listing

 ; or as a separate, optional, file.

; for now we'll put this in the spare RAM @ $F400

 *= $F400

STRING

 JSR LAB_EVBY ; evaluate byte expression, result in X and FAC1_3

 TXA ; string is byte length

EhBASIC reference manual page 31

 BEQ NUL_STRN ; branch if null string

 JSR LAB_MSSP ; make string space A bytes long A=$AC=length,

 ; X=$AD=Sutill=ptr low byte,

 ; Y=$AE=Sutilh=ptr high byte

 LDA #"#" ; set character

 LDY FAC1_3 ; get length

SAV_HASH

 DEY ; decrement bytes to do

 STA (str_pl),Y ; save byte in string

 BNE SAV_HASH ; loop if not all done

NUL_STRN

 PLA ; dump return address (return via get value

 PLA ; from line, this skips the type checking and

 ; so allows a string result to be returned)

 JMP LAB_RTST ; check for space on descriptor stack then put

 ; string address and length on descriptor stack

 ; & update stack pointers

Now you need to set up the address for your function. This is done by DOKEing an address

into the USR() vector e.g.

DOKE $0B,$F400 ; set the user function address to addr

 ; $0B - user function vector address

 ; $F400 - routine address

Finally you need to set the vector in your BASIC program and use that to call the function

.

10 DOKE $0B,$F400

.

.

.

145 HA$=USR(A)

.

How to - string source, numeric result.

AS before, first you need to write the code.

; this code demonstrates the use of USR() to test a string of characters.

; if all the string is alpha -1 is returned, else 0 is returned.

 .include BASIC.DIS ; include the BASIC labels file. this allows

 ; you easy access to the internal routines you

 ; need to parse the command stream and access

 ; some of the internals of BASIC. It is usually

 ; output by the assembler as part of the listing

 ; or as a separate, optional, file.

; for now we'll put this in the spare RAM @ $F400

 *= $F400

ALPHA

 JSR LAB_EVST ; evaluate string

EhBASIC reference manual page 32

 TAX ; copy length to X

 BEQ NOT_ALPH ; branch if null string

 LDY #$00 ; clear index

ALP_LOOP

 LDA (ut1_pl),Y ; get byte from string

 JSR LAB_CASC ; is character "a" to "z" (or "A" to "Z")

 BCC NOT_ALPH ; branch if not alpha

 INY ; increment index

 DEX ; decrement count

 BNE ALP_LOOP ; loop if not all done

 LDA #$FF ; set for -1

 BNE IS_ALPHA ; branch always

NOT_ALPH

 LDA #$00 ; set for 0

IS_ALPHA

 TAY ; copy byte

 LDX #$00 ; clear byte

 STX Dtypef ; clear data type flag, $00=numeric

 JMP LAB_AYFC ; save & convert integer AY to FAC1 & return

Now you need to set up the address for your function. This is done by DOKEing an address

into the USR() vector e.g.

DOKE $0B,$F400 ; set the user function address to addr

 ; $0B - user function vector address

 ; $F400 - routine address

Finally you need to set the vector in your BASIC program and use that to call the function

.

10 DOKE $0B,$F400

.

.

.

145 AL=USR(A$)

.

How to - string source, string result.

AS before, first you need to write the code.

; this code demonstrates the use of USR() invert the case of a string of

; characters. only alpha characters will be affected.

 .include BASIC.DIS ; include the BASIC labels file. this allows

 ; you easy access to the internal routines you

 ; need to parse the command stream and access

 ; some of the internals of BASIC. It is usually

 ; output by the assembler as part of the listing

 ; or as a separate, optional, file.

; for now we'll put this in the spare RAM @ $F400

 *= $F400

EhBASIC reference manual page 33

ALPHA

 JSR LAB_EVST ; evaluate string

 STA str_ln ; set string length

 STX str_pl ; set string pointer low byte

 STY str_ph ; set string pointer high byte

 TAX ; copy length to X

 BEQ NO_STRNG ; branch if null string

 LDY #$00 ; clear index

ALP_LOOP

 LDA (ut1_pl),Y ; get byte from string

 JSR LAB_CASC ; is character "a" to "z" (or "A" to "Z")

 BCC NOT_ALPH ; branch if not alpha

 EOR #$20 ; toggle case

 STA (ut1_pl),Y ; save byte back to string

NOT_ALPH

 INY ; increment index

 DEX ; decrement count

 BNE ALP_LOOP ; loop if not all done

NO_STRNG

 PLA ; dump return address (return via get value

 PLA ; from line, this skips the type checking and

 ; so allows a string result to be returned)

 JMP LAB_RTST ; check for space on descriptor stack then put

 ; string address and length on descriptor stack

 ; & update stack pointers

Now you need to set up the address for your function. This is done by DOKEing an address

into the USR() vector e.g.

DOKE $0B,$F400 ; set the user function address to addr

 ; $0B - user function vector address

 ; $F400 - routine address

Finally you need to set the vector in your BASIC program and use that to call the function

.

10 DOKE $0B,$F400

.

.

.

145 A$=USR(A$)

.

Enhanced BASIC internals

Floating point numbers.

Floating point numbers are stored in memory in four bytes. The format of the numbers is as

follows.

Exponent S Mantissa 1 Mantissa 2 Mantissa 3

EhBASIC reference manual page 34

Exponent

This is the power of two to which the mantissa is to be raised. This number is biased to

+$80 i.e. 2^0 is represented by $80, 2^1 by $81 etc. Zero is a special case and is used

to represent the value zero for the whole of the number.

S

Sign bit. This bit (b7 of mantissa 1) is one if the number is negative.

Mantissa 1/2/3

This is the 24 bit mantissa of the number and is normalised to make the highest bit (b7

of mantissa 1) always one. So the absolute value of the mantissa varies between 0.5

and 0.9999999403954 . As we know that the highest bit is always one it is replaced by

the sign bit in memory.

Example.

$82,$49,$0F,$DB = +3.14159274 nearest floating equivalent to pi

 | || | |

 | |\--+---+- = 0.785398185 absolute value of mantissa

 | |

 | \--------- = + b7 of mantissa 1 is zero

 |

 \------------- = x 2^2 = 4 mantissa to be multiplied by 4

Values represented in this way range between + and - 1.70141173x10^38

BASIC program memory use.

A BASIC program is stored in memory from Ram_base upwards. It's format is ..

$00 Start of program marker byte

.. then each BASIC program line which is stored as ..

start of next line pointer low byte

start of next line pointer high byte

line number low byte

line number high byte

code byte(s)

$00 End of line marker byte

.. and finally ..

$00 End of program marker byte 1

$00 End of program marker byte 2

If there is no program in memory only the start and end marker bytes are present.

EhBASIC reference manual page 35

BASIC variables memory use.

After the program come the variables and function references, all six bytes long, which are

stored as ..

1st character of variable or function name (+$80 if FN name)

2nd character of variable or function name (+$80 if string)

.. then for each type ..

Numeric String Function

Exponent String length BASIC execute pointer low byte

Sign (bit 7) + mantissa 1 String pointer low byte BASIC execute pointer high byte

Mantissa 2 String pointer high byte Function variable name 1st character

Mantissa 3 $00 Function variable name 2nd character

After the variables come the arrays, which are stored as ..

1st character of variable name

2nd character of variable name (+$80 if string)

array size in bytes low byte (size includes this header)

array size in bytes high byte

number of dimensions

[dimension 3 size high byte] (lowest element is zero)

[dimension 3 size low byte]

[dimension 2 size high byte] (lowest element is zero)

[dimension 2 size low byte]

dimension 1 size high byte (lowest element is zero)

dimension 1 size low byte

.. and then each element ..

Numeric String

Exponent String length

Sign (bit 7) + mantissa 1 String pointer low byte

Mantissa 2 String pointer high byte

Mantissa 3 $00

The elements of every array are stored in the order ..

index1 [0-n], index2 [0-n], index3 [0-n]

i.e. element (1,2,3) in an array of (3,4,5) would be the ..

1 + 1 + 2*(3+1) + 3*(3+1)*(4+1) = 70th element

(As array dimensions range from 0 to n element n will always be the (n+1)th element in

memory.)

EhBASIC reference manual page 36

String placement in memory.

Strings are generally stored from the top of available RAM, Ram_top, working down,

however if the interpreter encounters a line such as ..

 100 A$ = "This is a string"

.. then the high/low pointer in the A$ descriptor will point to the string in program memory

and will not make a copy of the string in the string memory.

String descriptors in BASIC.

A string descriptor is a three byte table that describes a string, it is of the format ..

base = string length

base+1 = string pointer low byte

base+2 = string pointer high byte

Stack use in BASIC.

GOSUB and DO both push on the stack ..

BASIC execute pointer high byte

BASIC execute pointer low byte

current line high byte

current line low byte

command token (TK_GOSUB or TK_DO)

FOR pushes on the stack ..

BASIC execute pointer low byte

BASIC execute pointer high byte

FOR line high byte

FOR line low byte

TO value mantissa3

TO value mantissa2

TO value mantissa1

TO value exponent

STEP sign

STEP value mantissa3

STEP value mantissa2

STEP value mantissa1

STEP value exponent

var pointer for FOR/NEXT high byte

var pointer for FOR/NEXT low byte

token for FOR (TK_FOR)

EhBASIC reference manual page 37

Enhanced BASIC, useful routines

Introduction.

There are many subroutines within BASIC that can be useful if you wish to use your own

assembly routines with it. Here are some of them with a brief description of their function.

For full details see the source code.

Note that most, if not all, of these routines need EhBASIC to be initialised before they will

work properly and can not be used in isolation from EhBASIC.

The routines.

LAB_IGBY
BASIC increment and get byte routine. gets the next byte from the BASIC command stream.

If the byte is a numeric character then the carry flag will be set, if the byte is a termination

byte, either null or a statement separator, then the zero flag will be set. Spaces in the

command stream will automatically be ignored.

LAB_GBYT
BASIC get byte routine. Gets the current byte from the BASIC command stream but does not

change the pointer. Otherwise the same as above.

LAB_COLD
Performs a cold start. BASIC is reset and all BASIC memory is cleared.

LAB_WARM
Performs a warm start. Execution is stopped and BASIC returns to immediate mode.

LAB_OMER
Do "Out of memory" error, then warm start. The same as error $0C below.

LAB_XERR
With X set, do error #X, then warm start.

X Error X Error

$00 NEXT without FOR $02 syntax

$04 RETURN without GOSUB $06 out of data

$08 function call $0A overflow

$0C out of memory $0E undefined statement

$10 array bounds $12 double dimension array

$14 divide by 0 $16 illegal direct

$18 type mismatch $1A long string

$1C string too complex $1E continue error

$20 undefined function $22 LOOP without DO

EhBASIC reference manual page 38

LAB_INLN
Print "? " and get BASIC input. Returns XY (low/high) as a pointer to the start of the input

line. The input is null terminated.

LAB_SSLN
Search Basic for a line, the line number required is held in the temporary integer, from start of

program memory. Returns carry set and a pointer to the line in Baslnl/Baslnh if found, if not it

returns carry and a pointer to the next numbered line in Baslnl/Baslnh.

LAB_SHLN
Search Basic for temporary integer line number from AX. Same as above but starts the search

from AX (low/high).

LAB_SNBS
Scan for next BASIC statement (: or [EOL]). Returns Y as index to : or [EOL] from (Bpntrl).

LAB_SNBL
Scan for next BASIC line. Same as above but only returns on [EOL].

LAB_REM
Perform REM, skip (rest of) line.

LAB_GFPN
Get fixed-point number into temporary integer.

LAB_CRLF
Print [CR]/[LF] to output device.

LAB_PRNA
Print character in A to output device.

LAB_GVAR
Get variable address. Returns a pointer to the variable in Lvarpl/h and sets the data type flag,

$FF=string, $00=numeric.

LAB_EVNM
Evaluates an expression and checks the result is numeric, if not it does a type mismatch. The

result of the expression is returned in FAC1.

LAB_CTNM
Check if source is numeric, else do type mismatch.

LAB_CTST
Check if source is string, else do type mismatch.

LAB_CKTM
Type match check, set carry for string, clear carry for numeric.

EhBASIC reference manual page 39

LAB_EVEX
Evaluate expression.

LAB_GVAL
Get numeric value from line. Returns the result in FAC1.

LAB_SCCA
Scan for the byte in A as the next byte. If so return here, else do syntax error then warm start.

LAB_SNER
Do syntax error, then warm start.

LAB_CASC
Check byte is alpha ("A" to "Z" or "a" to "z"), return carry clear if so.

LAB_EVIN
Evaluate integer expression. Return integer in FAC1_3/FAC1_2 (low/high).

LAB_EVPI
Evaluate positive integer expression.

LAB_EVIR
Evaluate integer expression, check is in range -32786 to 32767

LAB_FCER
Do function call error, then warm start.

LAB_CKRN
Check that the interpreter is not in immediate mode. If not then return, if so do illegal direct

error.

LAB_GARB
Perform garbage collection routine.

LAB_EVST
Evaluate string.

LAB_ESGL
Evaluate string, return string length in Y.

LAB_SGBY
Scan and get byte parameter, return the byte in X.

LAB_GTBY
Get byte parameter and ensure numeric type, else do type mismatch error. Return the byte in

X.

LAB_EVBY
Evaluate byte expression, return the byte in X.

EhBASIC reference manual page 40

LAB_GADB
Get two parameters as in POKE or WAIT. Return the byte (second parameter) in X and the

integer (first parameter) in the temporary integer pair, Itempl/Itemph.

LAB_SCGB
Scan for "," and get byte, else do Syntax error then warm start. Return the byte in X.

LAB_F2FX
New convert float to fixed routine. accepts any value that fits into 24 bits, positive or negative

and converts it into a right truncated integer in the temporary integer pair, Itempl/Itemph.

LAB_UFAC
Unpack the four bytes starting (AY) into FAC1 as a floating point number.

LAB_PFAC
Pack the floating point number in FAC1 into the current variable (Lvarpl).

LAB_STFA
Stores a 16 bit number in FAC1. Set X to the exponent required (usually $90) and the carry

set for positive numbers and clear for negative numbers. The routine will clear FAC1

mantissa3 and then normalise it.

LAB_AYFC
Save integer AY (A = high byte, Y = low byte) in FAC1 and convert to float. The result will

be -32768 to +32767.

LAB_MSSP
Make string space A bytes long. This returns the following. str_ln = A = string length str_pl =

Sutill = string pointer low byte str_ph = Sutilh = string pointer high byte

LAB_RTST
Return string. Takes the string described instr_ln, str_pl and str_ph and puts it on the string

stack. This is how you return a string to BASIC.

	Preface
	Content
	Introduction
	Requirements
	On_your_system
	Starting
	Numbers
	Strings
	Variables
	Keywords
	Commands
	BITCLR
	BITSET
	CALL
	CLEAR
	CONT
	DATA
	DEC
	DEF
	DIM
	DO
	DOKE
	END
	FN
	FOR
	TO
	STEP
	GET
	GOSUB
	GOTO
	IF
	THEN
	ELSE
	INC
	INPUT
	IRQ
	LET
	LIST
	LOAD
	LOOP
	UNTIL
	WHILE
	NEW
	NEXT
	NMI
	OFF
	NOT
	NULL
	ON
	POKE
	PRINT
	READ
	REM
	RESTORE
	RETIRQ
	RETNMI
	RETURN
	RUN
	SAVE
	SPC
	STOP
	SWAP
	TAB
	WAIT
	WIDTH
	Operators
	Functions
	ABS
	ASC
	ATN
	BIN
	BITTST
	COS
	DEEK
	EXP
	FRE
	HEX
	INT
	LCASE
	LEFT
	LEN
	LOG
	MAX
	MID
	MIN
	PEEK
	PI
	POS
	RIGHT
	RND
	SADD
	SGN
	SIN
	SQR
	STR
	TAN
	TWOPI
	UCASE
	CHR
	USR
	VAL
	VARPTR
	Messages
	Advanced_examples
	Extending_CALL
	Using_USR
	Internals
	Useful_routines

