The DCI string format uses character values where the high bit of the
last byte differs from the rest of the string. Usually all the high
bits are clear except on the last byte, but SourceGen generally allows
either polarity.
This gets a little uncertain with single-character strings, because
SourceGen can't auto-detect DCI very effectively. A series of bytes
with the high bit set could be a single high-ASCII string or a series
of single-byte DCI strings.
The motivation for allowing them is C64 PETSCII. While ASCII allows
"high ASCII" as an escape hatch, PETSCII doesn't have that option, so
there's no way to mark the data as a character or a string. We still
want to do a bit of screening, but if the user specifies a non-ASCII
character set and the selected bytes have their high bits set, we
want to just treat the whole set as 1-byte DCI.
Some minor adjustments were needed for a couple of validity checks
that expected longer strings.
This adds some short DCI strings in different character sets to the
char-encoding regression tests.
(for issue #102)
The code for formatting an address table allows you to specify that
code start tags should be placed on all targets. However, unnecessary
tags are undesirable, and it's not necessary to add a tag if the
target is already treated as executable code. So the implementation
tested to see if the target address was already an instruction.
The code was incorrectly testing for "is instruction", rather than "is
instruction start", which meant that if the table entry pointed at an
instruction embedded inside another instruction we would conclude that
the tag wasn't necessary, when in fact it was. Not only weren't we
getting a useful table entry, we were adding a symbolic reference to a
hidden label.
(issue #103)
When formatting one or more strings with the Edit Data Operand dialog,
the code must determine which options to present. If the selected
bytes appear to represent one or more null-terminated strings, that
option is enabled in the UI.
The "format recognizers" enforce some strict rules, e.g. null-
terminated strings must end in $00, and also try to confirm that the
data looks like a printable string. The algorithm rejects strings
with "illegal" characters in them. This is simpler on some systems
than others. For example, C64 PETSCII defines quite a few control
characters in ways that make them useful for embedding in printable
strings.
The "recognizers" are only used by the operand edit feature, not as
part of an automated string detector, so there's no real upside in
overriding the user's desire to form a string with arbitrary bytes.
This removes the quick rejection from the four recognizers (null-term,
len8, len16, dci). It does not alter the high-level code, which
still insists on a certain percentage of the string being printable;
that may be worth revisiting as well.
(issue #100)
64tass wants to place its output into a 64KB region of memory,
starting at the address "*" is set to, and continuing without
wrapping around the end of the bank. Some files aren't meant to be
handled that way, so we need to generate the output differently.
If the file's output fits nicely, it's considered "loadable", and
is generated in the usual way. If it doesn't, it's treated as
"streamable", and the initial "* = addr" directive is omitted
(leaving "*" at zero), and we go straight to ".logical" directives.
65816 code with an initial address outside bank 0 is treated as
"streamable" whether or not the contents fit nicely in the designated
64K area. This caused a minor change to a few of the 65816 tests.
A new test, 20240-large-overlay, exercises "streamable" by creating
a file with eight overlapping 8KB segments that load at $8000.
While the file as a whole fits in 64KB, it wouldn't if loaded at
the desired start address.
Also, updated the regression test harness to report assembler
failure independently of overall test failure. This makes it easier
to confirm that (say) ACME v0.96.4 still works with the code we
generate, even though it doesn't match the expected output (which
was generated for v0.97).
(problem was raised in issue #98)
The initial implementation was testing the byte value rather than
the converted value, so backslashes were getting through in high
ASCII strings. PETSCII and C64 screen codes don't really have a
backslash so it's not really an issue there.
The new implementation handles high ASCII correctly. The various
201n0-char-encoding-x regression tests have been updated to verify
this.
The code generator outputs an optional comment specifying which
version of which assembler the code was generated for. This was
handled inconsistently and, for the most part, incorrectly. We now
report the correct version.
Two things changed: (1) string literals can now hold backslash
escapes like "\n"; (2) MVN/MVP operands can now be prefixed with '#'.
The former was a breaking change because any string with "\" must
be changed to "\\". This is now handled by the string operand
formatter.
Also, improved test harness output. Show the assembler versions at
the end, and include assembler failure messages in the collected
output.
If you have multiple overlapping segments (say, four 8KB chunks
that all load at $8000), and you use the "goto" command to jump
to address $8100, it should try to jump to that address within
whichever segment you happen to be working (based on the current
line selection). If that address doesn't exist in the current
segment, it's okay to punt and jump to the first occurrence of that
address in the file.
The existing code was always jumping to the first instance.
(related to issue #98)
Code generated by one of the C compilers sets up the stack frame and
then maps the direct page on top of it. If the value at the top of
the stack is 16 bits, it will be referenced via address $ff. The
local variable editor was regarding this as illegal, because lvars are
currently only defined for direct page data, and the value doesn't
entirely fit there (unless you're doing an indirect JMP on an NMOS
6502, in which case it wraps around to $00... but let's ignore that).
The actual max width of a local variable is 257 because of the
possibility of a 16-bit access at $ff.
Older versions of SourceGen don't seem to have an issue when they
encounter this situation, as worrying about (start+width) is really
just an editor affectation. The access itself is still a direct-page
operation. You won't be able to edit the entry without reducing the
length, but otherwise everything works. I don't think there's a need
to bump the file version.
Added a compiled C implementation of strlen(). The most interesting
part about this is that it references a 16-bit value via direct-page
address $ff, which means you'd want a local variable with
address=$ff and width=2. The current UI prevents this.
We were using a very simple regex pattern for the label part, and
not performing additional validation checks later. This allowed
a symbol that started with a number (e.g. "4ALL") to get much farther
than it should have.
This change modifies the regex pattern to match only valid label
syntax.
Replaced the link at the top of the manual. Remove reference to
old tutorial doc. Added an obsolescence notice to the top of the
old tutorial. Updated tutorial message and link in README.
Also, fixed sidenav style.
If you changed the width of a column, and then clicked the "toggle
display of cycle counts" button in the toolbar, the column width
would revert. The problem appears unique to that toolbar button,
so for now the fix is localized there. The more general fix is to
ensure that column width changes don't get stomped, but that's a
larger change.
There's no need to use XHTML Transitional. The only change outside
the template was to use "id" for anchors instead of "name", as the
latter is deprecated.
The calculations were wrong for certain situations, generating
answers that were useless or that caused a false-positive overflow
error.
This adds a couple of simple regression tests, modeled after layout
of the Lode Runner sprite sheet (which worked fine before) and the
Empire II EWS3 font (which failed).
This also bumps up some of the arbitrary limits in the visualizer.
(issue #94)
The $Cxxx I/O locations are mapped into banks $E0/E1, and are usually
configured to appear in banks $00/01 as well. Direct access to
locations in banks $E0/E1 is common in 16-bit code, but we only had
definitions for $E0.
This adds a clone of definitions for $E1, and renames the symbols
to be _E0/_E1 instead of _GS.
This can also be solved with MULTI_MASK, but that will always use
$E0 as the base address, so references to $E1/Cxxx will have a large
adjustment added ("+$10000"), which is kind of ugly.
Note we still don't have definitions for $01/Cxxx. I'll add those
if I run into them in 16-bit code. (That might be a reasonable use
of MULTI_MASK; feels less ugly somehow.)
The test for max allowed value was assuming 16-bit addresses.
We had no tests for 24-bit values, so this adds a 65816-specific
version of 20170-external-symbols.
Generate a 6502 test from the 65816 version by substituting the
16-bit instructions with 8-bit no-ops. There's a lot of project
edits and weird stuff in the test, so this was much easier than
starting over.
The 65816 variant is largely unchanged, though it could now be
stripped down to the stack-offset instructions.
Split into 6502/65816 portions. The 6502 version is the original
with a few in-place substitutions (e.g. JMP for BRL). The 65816
version is only needed to exercise special handling of PEA/PER.
We have a single character-encoding test that is cloned 3x so we can
exercise the different values for the project's default character
set. It was a 65816 test because it tested 16-bit immediate char
operands, but that's a very small part of it.
The 65816-specific portion is now 20122-char-encoding. The rest is
now 201{2,3,4}0-char-encoding-X.
Tests 10022-embedded-instructions and 10032-flags-and-branches were
a mix of 6502 and 65816 code. The 6502 code has been separated into
its own file, so that the tests can be run on 8-bit-only assemblers.
We append an assembler identifier to generated code. For Merlin 32,
this was "_Merlin32". All of the other assemblers use a lower-case
string, which makes Merlin look a little weird, so it has been
changed to "_merlin32".
Windows filesystems are generally case-insensitive, so this won't
likely affect anything.
A few tweaks:
- Test now requires an ORG on offset +000002, not just a correct
address.
- Suppress on-screen display of the initial ORG directive when
a PRG file is detected. Subtle, but helpful.
- In new project setup, fix initial address for PRG projects that
load at $0000.
- In new project setup, add a "load address" comment to the first line.
Also, fix some out-of-date documentation.
(issue #90)
The 10042-data-recognition test has no 65816-specific content, so it
should be named 10040-data-recognition.
Also, remove header comment from 20102-label-dp.
C64 PRG files are pretty common. Their salient feature is that they
start with a 16-bit value that is used as the load address. The
value is commonly generated by the assembler itself, rather than
explicitly added to the source file.
Not all assemblers know what a PRG file is, and some of them handle
it in ways that are difficult to guarantee in SourceGen. ACME adds
the 16-bit header when the output file name ends in ".prg", cc65
uses a modified config file, 64tass uses a different command-line
option, and Merlin 32 has no idea what they are.
This change adds PRG file detection and handling to the 64tass code
generator. Doing so required making a few changes to the gen/asm
interfaces, because we now need to have the generator pass additional
flags to the assembler, and sometimes we need code generation to
start somewhere other than offset zero. Overall the changes were
pretty minor.
The 20042-address-changes test needed a 6502-only variant. A new test
(20040-address-changes) has been added and given a PRG header. As
part of this change the 65816 variant was changed to use addresses
in bank 2, which uncovered a code generation bug that this change
also fixes.
The 64tass --long-address flag doesn't appear to be necessary for
files <= 65536 bytes long, so we no longer emit it for those.
(issue #90)
One of the most confusing things you can do is select a bunch of
lines and apply a code start tag (nee "code hint"). We now ask for
confirmation when applying start/stop hints to multiple lines.
(issue #89)
Variables, types, and comments have been updated to reflect the new
naming scheme.
The project file serialization code is untouched, because the data
is output as serialized enumerated values. Adding a string conversion
layer didn't seem worthwhile.
No changes in behavior.
(issue #89)
Before:
Hint As Code Entry Point
Hint As Data Start
Hint As Inline Data
Remove Hints
After:
Tag Address As Code Start Point
Tag Address As Code Stop Point
Tag Bytes As Inline Data
Remove Analyzer Tags
The goal is to reduce confusion. The old nomenclature was causing
problems because it's inaccurate -- they're directives, not hints --
and made it look like you need to mark data items explicitly. The
new action names emphasize the idea that you should be tagging a
single address for start/stop, not blanketing a region.
This change updates the user interface, manual, and tutorials, but
does not change how the items are referred to in code, and does not
change how the program works.
(issue #89)