1
0
mirror of https://github.com/fadden/6502bench.git synced 2024-12-02 13:51:36 +00:00
6502bench/SourceGen/RuntimeData/Help/analysis.html
2018-09-28 10:05:11 -07:00

201 lines
10 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta content="text/html; charset=utf-8" http-equiv="Content-Type" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="main.css" rel="stylesheet" type="text/css" />
<title>Instruction and Data Analysis - 6502bench SourceGen</title>
</head>
<body>
<div id=content>
<h1>6502bench SourceGen: Instruction and Data Analysis</h1>
<p><a href="index.html">Back to index</a></p>
<h2><a name="analysis-process">Analysis Process</a></h2>
<p>Analysis of the file data is a complex multi-step process. Some
changes to the project, such as adding a code entry point hint or
changing the CPU selection, require a full re-analysis of instructions
and data. Other changes, such as adding or removing a label, don't
affect the code tracing and only require a re-analysis of the data areas.
And some changes, such as editing a comment, only require a refresh
of the displayed lines.</p>
<p>It should be noted that none of the analysis results are stored in
the project file. Only user-supplied data, such as the locations of
code entry points and label definitions, is written to the file. This
does create the possibility that two different users might get different
results when opening the same project file with different versions of
SourceGen, but these effects are expected to be minor.</p>
<p>The analyzer has the following steps (see the <code>Analyze</code>
method in <code>DisasmProject.cs</code>):</p>
<ul>
<li>Reset the symbol table.</li>
<li>Merge platform symbols into the symbol table, loading the files
in order.</li>
<li>Merge project symbols into the symbol table, stomping on any
platform symbols that conflict.</li>
<li>Merge user label symbols into the table, stomping any previous
entries.</li>
<li>Run the code analyzer. The outcome of this is an array of analysis
attributes, or "anattribs", with one entry per byte in the file.
The Anattrib array tracks most of the state from here on. If we're
doing a partial re-analysis, this step will just clone a copy of the
Anattrib array that was made at this point in a previous run. (This
step is described in more detail <a href="code-analysis">below</a>.)</li>
<li>Apply user-specified labels to Anattribs.</li>
<li>Apply user-specified format descriptors. These are the instruction
and data operand formats.</li>
<li>Run the data analyzer. This looks for patterns in uncategorized
data, and connects instruction and data operands to target offsets.
The "nearby label" stuff is handled here. All of the results are
stored in the Anattribs array. (This step is described in more
detail <a href="data-analysis">below</a>.)</li>
<li>Remove hidden labels from the symbol table. These are user-specified
labels that have been placed on offsets that are in the middle of an
instruction or multi-byte data item. They can't be referenced, so we
want to pull them out of the symbol table. (Remember, symbolic
operands use "weak references", so a missing symbol just means the
operand is shown as a hex value.)</li>
<li>Resolve references to platform and project external symbols>
This sets the operand symbol in Anattrib, and adds the symbol to
the list that is displayed in .EQ directives.</li>
<li>Generate cross-reference lists. This is done for file data and
for any platform/project symbols that are referenced.</li>
<li>In a debug build, some validity checks are performed.</li>
</ul>
<p>Once analysis is complete, a line-by-line display list is generated
by walking through the annotated file data. Most of the actual strings
aren't rendered until they're needed.</p>
<h2><a name="code-analysis">Code Analysis</a></h2>
<p>The code tracer walks through the instructions, examining them to
determine where execution will proceed next. There are five possibilities
for every instruction:</p>
<ol>
<li>Continue. Execution always continues at the next instruction.
Examples: <code>LDA</code>, <code>STA</code>, <code>AND</code>,
<code>NOP</code>.
<li>Don't continue. The next instruction to be executed can't be
determined from the file data, unless you're disassembling the
system ROM. Examples: <code>RTS</code>, <code>BRK</code>.
<li>Branch always. The operand specifies the next instruction address.
Examples: <code>JMP</code>, <code>BRA</code>, <code>BRL</code>.
<li>Branch sometimes. Execution may continue at the operand address,
or may execute the following instruction. If we know the value of
the flags in the processor status register, we can eliminate one
possibility. Examples: <code>BCC</code>, <code>BEQ</code>,
<code>BVS</code>.
<li>Call subroutine. Execution will continue at the operand address,
and is expected to also continue at the following instruction.
Examples: <code>JSR</code>, <code>JSL</code>.
</ol>
<p>Branch targets are added to a list. When the current run of instructions
is exhausted (i.e. a "don't continue" instruction is reached), the next
target is pulled off of the list.</p>
<p>The state of the processor status flags is recorded for every
instruction. When execution proceeds to the next instruction or branches
to a new address, the flags are merged with the flags at the new
location. If one execution path through a given address has the flags
in one state (say, the carry is clear), while another execution path
sees a different state (carry is set), the merged flag is
"indeterminate". Indeterminate values cannot become determinate through
a merge, but can be set by an instruction.</p>
<p>There can be multiple paths to a single address. If the analyzer
sees that an instruction has been visited before, with an identical set
of status flags, the analyzer stops pursuing that path.</p>
<p>The analyzer must always know the width of immediate load instructions
when examining 65816 code, but it's possible for the status flag values
to be indeterminate. In such a situation, short registers are assumed.
Similarly, if the carry flag is unknown when an <code>XCE</code> is
performed, we assume a transition to emulation mode.</p>
<p>There are three ways to set a definite value in a status flags:</p>
<ol>
<li>By specific instructions, like <code>SEC</code> or
<code>CLD</code>.</li>
<li>By immediate instructions. <code>LDA #$00</code> sets Z=1 and N=0.
<code>ORA #$80</code> sets Z=0 and N=1.</li>
<li>By inference. For example, if we see a <code>BCC</code> instruction,
we know that the carry will be clear at the branch target address, and
set at the following instruction. The instruction doesn't affect the
value of the flag, but we know what the value is at either address.</li>
</ol>
<p>Self-modifying code can render spoil any of these, possibly requiring a
status flag override to get correct disassembly.</p>
<p>The instruction that is most likely to cause problems is <code>PLP</code>,
which pulls the processor status flags off of the stack. SourceGen
doesn't try to track stack contents, so it can't know what values may
be pulled. In many cases the PLP appears not long after a PHP, so
SourceGen will scan backward through the file to find the nearest PHP,
and use the status flags from that. If no PHP can be found, then all
flags are set to "indeterminate". (The boot loader in the Apple II 5.25"
floppy disk controller is an example where SourceGen gets it wrong. The
code does <code>CLC</code>/<code>PHP</code>, followed a bit later by the
<code>PLP</code>, but it's actually using the stack to pass the carry
flag around. Flagging the carry bit as indeterminate with a status flag
override on the instruction following the PLP fixes things.)</p>
<p>Some other things that the code analyzer can't handle:</p>
<ul>
<li>Jumping indirectly through an address outside the file, e.g.
storing an address in zero-page memory and jumping through it.
<li>Jumping to an address by pushing the location onto the stack,
then executing an <code>RTS</code>.
<li>Self-modifying code, e.g. overwriting a <code>JMP</code> instruction.
</ul>
<p>Sometimes the indirect jump targets are coming from a table of
addresses in the file. If so, these can be formatted as addresses,
and then the target locations hinted as code entry points.</p>
<p>The 65816 adds an additional twist: 16-bit data access instructions
use the data bank register ("B") to determine which bank to load from.
SourceGen can't determine what the value is, so it currently assumes
that it's equal to the program bank register ("K"). Handling this
correctly will require improvements to the user interface.</p>
<h2><a name="data-analysis">Data Analysis</a></h2>
<p>The data analyzer performs two tasks. It matches operands with
offsets, and it analyzes uncategorized data. Either or both of
these can be disabled from the
<a href="settings.html#project-props">project properties</a></p>
<p>The data target analyzer examines every instruction and data operand
to see if it's referring to an offset within the data file. If the
target is within the file, and has a label, a weak symbolic reference
to that label is added to the Anattrib array. If the target doesn't
have a label, the analyzer will either use a nearby label, or generate
a unique label and use that.</p>
<p>While most of the "nearby label" logic can be disabled, targets that
land in the middle of an instruction are always adjusted backward to
the instruction start. This is necessary because labels are only visible
if they're associated with the first (opcode) byte of an instruction.</p>
<p>The uncategorized data analyzer tries to find ASCII strings and
opportunities to use the ".FILL" instruction. It breaks the file into
pieces, where contiguous regions hold nothing but data, are not split
across a ".ORG" directive, are not interrupted by data, and do not
contain anything that the user has chosen to format. Each region is
scanned for matching patterns. If a match is found, a format entry
is added to the Anattrib array. Otherwise, data is added as independent
byte values.</p>
</div>
<div id=footer>
<p><a href="index.html">Back to index</a></p>
</div>
</body>
<!-- Copyright 2018 faddenSoft -->
</html>