1
0
mirror of https://github.com/fadden/6502bench.git synced 2025-01-08 12:30:36 +00:00
6502bench/SourceGen/SGTestData/Expected/10001-allops-value-65C02_Merlin32.S
Andy McFadden 3ff0fbae34 Regression test rework, part 1
The regression tests were written with the assumption that all cross
assemblers would support 6502, 65C02, and 65816 code.  There are a
few that support 65816 partially (e.g. ACME) or not at all.  To best
support these, we need to split some of the tests into pieces, so
that important 6502 tests aren't skipped simply because parts of the
test also exercise 65816 code.

The first step is to change the regression test naming scheme.  The
old system used 1xxx for tests without project files, and 2xxx for
tests with project files.  The new system uses 1xxxN / 2xxxN, where
N indicates the CPU type: 0 for 6502, 1 for 65C02, and 2 for 65816.
For the 1xxxN tests the new value determines which CPU is used,
which allows us to move the "allops" 6502/65C02 tests into the
no-project category.  For 2xxxN it just allows the 6502 and 65816
versions to have the same base name and number.

This change updates the first batch of tests.  It involves minor
changes to the test harness and a whole bunch of renaming.
2020-06-06 14:47:19 -07:00

275 lines
5.1 KiB
ArmAsm

org $1000
jsr L1014
jsr L108A
jsr L10C4
jsr L10D8
jsr L10F6
nop
nop
nop
brk
dfb $ff
L1014 ora ($ff,x)
dfb $02,$ff
dfb $03
tsb $ff
ora $ff
asl $ff
dfb $07
php
ora #$ff
asl A
dfb $0b
tsb $feff
ora $feff
asl $feff
dfb $0f
bpl :L1031
:L1031 ora ($ff),y
ora ($ff)
dfb $13
trb $ff
ora $ff,x
asl $ff,x
dfb $17
clc
ora $feff,y
inc A
dfb $1b
trb $feff
ora $feff,x
asl $feff,x
dfb $1f
jsr $feff
and ($ff,x)
dfb $22,$ff
dfb $23
bit $ff
and $ff
rol $ff
dfb $27
plp
and #$ff
rol A
dfb $2b
bit $feff
and $feff
rol $feff
dfb $2f
bmi :L106D
:L106D and ($ff),y
and ($ff)
dfb $33
bit $ff,x
and $ff,x
rol $ff,x
dfb $37
sec
and $feff,y
dec A
dfb $3b
bit $feff,x
and $feff,x
rol $feff,x
dfb $3f
rti
L108A eor ($ff,x)
dfb $42,$ff
dfb $43
dfb $44,$ff
eor $ff
lsr $ff
dfb $47
pha
eor #$ff
lsr A
dfb $4b
jmp :L109E
:L109E eor $feff
lsr $feff
dfb $4f
bvc :L10A7
:L10A7 eor ($ff),y
eor ($ff)
dfb $53
dfb $54,$ff
eor $ff,x
lsr $ff,x
dfb $57
cli
eor $feff,y
phy
dfb $5b
dfb $5c,$ff,$fe
eor $feff,x
lsr $feff,x
dfb $5f
rts
L10C4 adc ($ff,x)
dfb $62,$ff
dfb $63
stz $ff
adc $ff
ror $ff
dfb $67
pla
adc #$ff
ror A
dfb $6b
jmp ($feff)
L10D8 adc $feff
ror $feff
dfb $6f
bvs :L10E1
:L10E1 adc ($ff),y
adc ($ff)
dfb $73
stz $ff,x
adc $ff,x
ror $ff,x
dfb $77
sei
adc $feff,y
ply
dfb $7b
jmp ($feff,x)
L10F6 adc $feff,x
ror $feff,x
dfb $7f
bra :L10FF
:L10FF sta ($ff,x)
dfb $82,$ff
dfb $83
sty $ff
sta $ff
stx $ff
dfb $87
dey
bit #$ff
txa
dfb $8b
sty $feff
sta $feff
stx $feff
dfb $8f
bcc :L111C
:L111C sta ($ff),y
sta ($ff)
dfb $93
sty $ff,x
sta $ff,x
stx $ff,y
dfb $97
tya
sta $feff,y
txs
dfb $9b
stz $feff
sta $feff,x
stz $feff,x
dfb $9f
ldy #$ff
lda ($ff,x)
ldx #$ff
dfb $a3
ldy $ff
lda $ff
ldx $ff
dfb $a7
tay
lda #$ff
tax
dfb $ab
ldy $feff
lda $feff
ldx $feff
dfb $af
bcs :L1157
:L1157 lda ($ff),y
lda ($ff)
dfb $b3
ldy $ff,x
lda $ff,x
ldx $ff,y
dfb $b7
clv
lda $feff,y
tsx
dfb $bb
ldy $feff,x
lda $feff,x
ldx $feff,y
dfb $bf
cpy #$ff
cmp ($ff,x)
dfb $c2,$ff
dfb $c3
cpy $ff
cmp $ff
dec $ff
dfb $c7
iny
cmp #$ff
dex
dfb $cb
cpy $feff
cmp $feff
dec $feff
dfb $cf
bne :L1192
:L1192 cmp ($ff),y
cmp ($ff)
dfb $d3
dfb $d4,$ff
cmp $ff,x
dec $ff,x
dfb $d7
cld
cmp $feff,y
phx
dfb $db
dfb $dc,$ff,$fe
cmp $feff,x
dec $feff,x
dfb $df
cpx #$ff
sbc ($ff,x)
dfb $e2,$ff
dfb $e3
cpx $ff
sbc $ff
inc $ff
dfb $e7
inx
sbc #$ff
nop
dfb $eb
cpx $feff
sbc $feff
inc $feff
dfb $ef
beq :L11CD
:L11CD sbc ($ff),y
sbc ($ff)
dfb $f3
dfb $f4,$ff
sbc $ff,x
inc $ff,x
dfb $f7
sed
sbc $feff,y
plx
dfb $fb
dfb $fc,$ff,$fe
sbc $feff,x
inc $feff,x
dfb $ff