8bitworkshop/src/machine/chips/pokey.ts

475 lines
17 KiB
TypeScript

/*
* pokey.c - POKEY sound chip emulation
*
* Copyright (C) 1995-1998 David Firth
* Copyright (C) 1998-2008 Atari800 development team (see DOC/CREDITS)
*
* This file is part of the Atari800 emulator project which emulates
* the Atari 400, 800, 800XL, 130XE, and 5200 8-bit computers.
*
* Atari800 is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Atari800 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Atari800; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
import { dumpRAM } from "../../common/emu"
import { hex, lpad, safe_extend } from "../../common/util"
const AUDF1 = 0x00
const AUDC1 = 0x01
const AUDF2 = 0x02
const AUDC2 = 0x03
const AUDF3 = 0x04
const AUDC3 = 0x05
const AUDF4 = 0x06
const AUDC4 = 0x07
const AUDCTL = 0x08
const STIMER = 0x09
const SKRES = 0x0a
const POTGO = 0x0b
const SEROUT = 0x0d
const IRQEN = 0x0e
const SKCTL = 0x0f
const POT0 = 0x00
const POT1 = 0x01
const POT2 = 0x02
const POT3 = 0x03
const POT4 = 0x04
const POT5 = 0x05
const POT6 = 0x06
const POT7 = 0x07
const ALLPOT = 0x08
const KBCODE = 0x09
const RANDOM = 0x0a
const SERIN = 0x0d
const IRQST = 0x0e
const SKSTAT = 0x0f
/* definitions for AUDCx (D201, D203, D205, D207) */
const NOTPOLY5 = 0x80 /* selects POLY5 or direct CLOCK */
const POLY4 = 0x40 /* selects POLY4 or POLY17 */
const PURETONE = 0x20 /* selects POLY4/17 or PURE tone */
const VOL_ONLY = 0x10 /* selects VOLUME OUTPUT ONLY */
const VOLUME_MASK = 0x0f /* volume mask */
/* definitions for AUDCTL (D208) */
const POLY9 = 0x80 /* selects POLY9 or POLY17 */
const CH1_179 = 0x40 /* selects 1.78979 MHz for Ch 1 */
const CH3_179 = 0x20 /* selects 1.78979 MHz for Ch 3 */
const CH1_CH2 = 0x10 /* clocks channel 1 w/channel 2 */
const CH3_CH4 = 0x08 /* clocks channel 3 w/channel 4 */
const CH1_FILTER = 0x04 /* selects channel 1 high pass filter */
const CH2_FILTER = 0x02 /* selects channel 2 high pass filter */
const CLOCK_15 = 0x01 /* selects 15.6999kHz or 63.9210kHz */
/* for accuracy, the 64kHz and 15kHz clocks are exact divisions of
the 1.79MHz clock */
const DIV_64 = 28 /* divisor for 1.79MHz clock to 64 kHz */
const DIV_15 = 114 /* divisor for 1.79MHz clock to 15 kHz */
/* the size (in entries) of the 4 polynomial tables */
const POLY4_SIZE = 0x000f
const POLY5_SIZE = 0x001f
const POLY9_SIZE = 0x01ff
const POLY17_SIZE = 0x0001ffff
const CHAN1 = 0
const CHAN2 = 1
const CHAN3 = 2
const CHAN4 = 3
const ANTIC_LINE_C = 114
/* Some defines about the serial I/O timing. Currently fixed! */
const SIO_XMTDONE_INTERVAL = 15
const SIO_SERIN_INTERVAL = 8
const SIO_SEROUT_INTERVAL = 8
const SIO_ACK_INTERVAL = 36
var poly9: Uint8Array;
var poly17: Uint8Array;
function initPolyTables() {
poly9 = new Uint8Array(511);
poly17 = new Uint8Array(16385);
/* initialise poly9_lookup */
let reg = 0x1ff;
for (let i = 0; i < 511; i++) {
reg = ((((reg >> 5) ^ reg) & 1) << 8) + (reg >> 1);
poly9[i] = reg;
}
/* initialise poly17_lookup */
reg = 0x1ffff;
for (let i = 0; i < 16385; i++) {
reg = ((((reg >> 5) ^ reg) & 0xff) << 9) + (reg >> 8);
poly17[i] = (reg >> 1);
}
}
export class POKEY {
regs = new Uint8Array(16);
readregs = new Uint8Array(16);
divnirq = new Uint32Array(4);
divnmax = new Uint32Array(4);
pot_inputs = new Uint8Array(8);
basemult = 0;
pot_scanline = 0;
random_scanline_counter = 0;
kbcode = 0;
DELAYED_SERIN_IRQ = 0;
DELAYED_SEROUT_IRQ = 0;
DELAYED_XMTDONE_IRQ = 0;
constructor(
public irq: () => void,
public antic_xpos: () => number,
) {
this.init();
}
saveState() {
return safe_extend(0, {}, this);
}
loadState(s) {
safe_extend(0, this, s);
}
init() {
/* Initialise Serial Port Interrupts */
//DELAYED_SERIN_IRQ = 0;
//DELAYED_SEROUT_IRQ = 0;
//DELAYED_XMTDONE_IRQ = 0;
this.readregs.fill(0xff);
this.readregs[SKSTAT] = 0xef;
//SERIN = 0x00; /* or 0xff ? */
//IRQEN = 0x00;
//SKCTL = 0x00;
this.basemult = DIV_64;
this.pot_inputs.fill(128);
initPolyTables();
}
read(addr: number): number {
let byte = this.readregs[addr];
addr &= 0xf;
switch (addr) {
case 0: case 1: case 2: case 3:
case 4: case 5: case 6: case 7:
byte = this.pot_inputs[addr];
return (byte < this.pot_scanline) ? byte : this.pot_scanline;
case ALLPOT:
for (let i = 0; i < 8; i++) {
if (this.pot_inputs[i] <= this.pot_scanline)
byte &= ~(1 << i); // reset bit if pot value known
}
break;
case KBCODE:
return this.kbcode;
case SKSTAT:
byte = SKSTAT + (this.CASSETTE_IOLineStatus() << 4);
break;
case RANDOM:
if ((this.regs[SKCTL] & 0x03) != 0) {
let i = this.random_scanline_counter + this.antic_xpos();
if (this.regs[AUDCTL] & POLY9)
byte = poly9[i % POLY9_SIZE];
else {
i %= POLY17_SIZE;
let ptr = i >> 3;
i &= 7;
byte = (poly17[ptr] >> i) + (poly17[ptr + 1] << (8 - i));
}
}
break;
}
return byte & 0xff;
}
write(addr: number, byte: number): void {
addr &= 0x0f;
this.regs[addr] = byte;
switch (addr) {
case AUDCTL:
/* determine the base multiplier for the 'div by n' calculations */
if (byte & CLOCK_15)
this.basemult = DIV_15;
else
this.basemult = DIV_64;
this.update_counter((1 << CHAN1) | (1 << CHAN2) | (1 << CHAN3) | (1 << CHAN4));
break;
case AUDF1:
this.update_counter((this.regs[AUDCTL] & CH1_CH2) ? ((1 << CHAN2) | (1 << CHAN1)) : (1 << CHAN1));
break;
case AUDF2:
this.update_counter(1 << CHAN2);
break;
case AUDF3:
this.update_counter((this.regs[AUDCTL] & CH3_CH4) ? ((1 << CHAN4) | (1 << CHAN3)) : (1 << CHAN3));
break;
case AUDF4:
this.update_counter(1 << CHAN4);
break;
case IRQEN:
this.readregs[IRQST] |= ~byte & 0xf7; /* Reset disabled IRQs except XMTDONE */
let mask = ~this.readregs[IRQST] & this.regs[IRQEN];
if (mask) {
this.generateIRQ(this.readregs[IRQST]);
}
break;
case SKRES:
this.readregs[SKSTAT] |= 0xe0;
break;
case POTGO:
if (!(this.regs[SKCTL] & 4))
this.pot_scanline = 0; /* slow pot mode */
break;
case SEROUT:
if ((this.regs[SKCTL] & 0x70) == 0x20 && this.siocheck()) {
this.SIO_PutByte(byte);
}
// check if cassette 2-tone mode has been enabled
if ((this.regs[SKCTL] & 0x08) == 0x00) {
// intelligent device
this.DELAYED_SEROUT_IRQ = SIO_SEROUT_INTERVAL;
this.readregs[IRQST] |= 0x08;
this.DELAYED_XMTDONE_IRQ = SIO_XMTDONE_INTERVAL;
}
else {
// cassette
// some savers patch the cassette baud rate, so we evaluate it here
// scanlines per second*10 bit*audiofrequency/(1.79 MHz/2)
this.DELAYED_SEROUT_IRQ = 312 * 50 * 10 * (this.regs[AUDF3] + this.regs[AUDF4] * 0x100) / 895000;
// safety check
if (this.DELAYED_SEROUT_IRQ >= 3) {
this.readregs[IRQST] |= 0x08;
this.DELAYED_XMTDONE_IRQ = 2 * this.DELAYED_SEROUT_IRQ - 2;
}
else {
this.DELAYED_SEROUT_IRQ = 0;
this.DELAYED_XMTDONE_IRQ = 0;
}
};
break;
case STIMER:
this.divnirq[CHAN1] = this.divnmax[CHAN1];
this.divnirq[CHAN2] = this.divnmax[CHAN2];
this.divnirq[CHAN3] = this.divnmax[CHAN3];
this.divnirq[CHAN4] = this.divnmax[CHAN4];
//POKEYSND_Update(STIMER, byte, 0, SOUND_GAIN);
break;
case SKCTL:
//VOICEBOX_SKCTLPutByte(byte);
//POKEYSND_Update(SKCTL, byte, 0, SOUND_GAIN);
if (byte & 4)
this.pot_scanline = 228; /* fast pot mode - return results immediately */
if ((byte & 0x03) == 0) {
/* POKEY reset. */
/* Stop serial IO. */
this.DELAYED_SERIN_IRQ = 0;
this.DELAYED_SEROUT_IRQ = 0;
this.DELAYED_XMTDONE_IRQ = 0;
// TODO: CASSETTE_ResetPOKEY();
/* TODO other registers should also be reset. */
}
break;
}
this.snd_update(addr);
//POKEYSND_Update(AUDC1, byte, 0, SOUND_GAIN);
}
/*****************************************************************************/
/* Module: Update_Counter() */
/* Purpose: To process the latest control values stored in the AUDF, AUDC, */
/* and AUDCTL registers. It pre-calculates as much information as */
/* possible for better performance. This routine has been added */
/* here again as I need the precise frequency for the pokey timers */
/* again. The pokey emulation is therefore somewhat sub-optimal */
/* since the actual pokey emulation should grab the frequency values */
/* directly from here instead of calculating them again. */
/* */
/* Author: Ron Fries,Thomas Richter */
/* Date: March 27, 1998 */
/* */
/* Inputs: chan_mask: Channel mask, one bit per channel. */
/* The channels that need to be updated */
/* */
/* Outputs: Adjusts local globals - no return value */
/* */
/*****************************************************************************/
update_counter(chan_mask: number): void {
/************************************************************/
/* As defined in the manual, the exact Div_n_cnt values are */
/* different depending on the frequency and resolution: */
/* 64 kHz or 15 kHz - AUDF + 1 */
/* 1 MHz, 8-bit - AUDF + 4 */
/* 1 MHz, 16-bit - AUDF[CHAN1]+256*AUDF[CHAN2] + 7 */
/************************************************************/
/* only reset the channels that have changed */
if (chan_mask & (1 << CHAN1)) {
/* process channel 1 frequency */
if (this.regs[AUDCTL] & CH1_179)
this.divnmax[CHAN1] = this.regs[AUDF1 + CHAN1] + 4;
else
this.divnmax[CHAN1] = (this.regs[AUDF1 + CHAN1] + 1) * this.basemult;
if (this.divnmax[CHAN1] < ANTIC_LINE_C)
this.divnmax[CHAN1] = ANTIC_LINE_C;
}
if (chan_mask & (1 << CHAN2)) {
/* process channel 2 frequency */
if (this.regs[AUDCTL] & CH1_CH2) {
if (this.regs[AUDCTL] & CH1_179)
this.divnmax[CHAN2] = this.regs[AUDF1 + CHAN2] * 256 + this.regs[AUDF1 + CHAN1] + 7;
else
this.divnmax[CHAN2] = (this.regs[AUDF1 + CHAN2] * 256 + this.regs[AUDF1 + CHAN1] + 1) * this.basemult;
}
else
this.divnmax[CHAN2] = (this.regs[AUDF1 + CHAN2] + 1) * this.basemult;
if (this.divnmax[CHAN2] < ANTIC_LINE_C)
this.divnmax[CHAN2] = ANTIC_LINE_C;
}
if (chan_mask & (1 << CHAN4)) {
/* process channel 4 frequency */
if (this.regs[AUDCTL] & CH3_CH4) {
if (this.regs[AUDCTL] & CH3_179)
this.divnmax[CHAN4] = this.regs[AUDF1 + CHAN4] * 256 + this.regs[AUDF1 + CHAN3] + 7;
else
this.divnmax[CHAN4] = (this.regs[AUDF1 + CHAN4] * 256 + this.regs[AUDF1 + CHAN3] + 1) * this.basemult;
}
else
this.divnmax[CHAN4] = (this.regs[AUDF1 + CHAN4] + 1) * this.basemult;
if (this.divnmax[CHAN4] < ANTIC_LINE_C)
this.divnmax[CHAN4] = ANTIC_LINE_C;
}
//console.log(chan_mask, this.divnmax);
}
snd_update(addr: number) {
}
advanceScanline() {
/***************************************************************************
** Generate POKEY Timer IRQs if required **
** called on a per-scanline basis, not very precise, but good enough **
** for most applications **
***************************************************************************/
/* on nonpatched i/o-operation, enable the cassette timing */
/*
if (!ESC_enable_sio_patch) {
if (CASSETTE_AddScanLine())
DELAYED_SERIN_IRQ = 1;
}
*/
if ((this.regs[SKCTL] & 0x03) == 0)
/* Don't process timers when POKEY is in reset mode. */
return;
if (this.pot_scanline < 228)
this.pot_scanline++;
this.random_scanline_counter += ANTIC_LINE_C;
this.random_scanline_counter %= (this.regs[AUDCTL] & POLY9) ? POLY9_SIZE : POLY17_SIZE;
if (this.DELAYED_SERIN_IRQ > 0) {
if (--this.DELAYED_SERIN_IRQ == 0) {
// Load a byte to SERIN - even when the IRQ is disabled.
this.readregs[SERIN] = this.SIO_GetByte();
this.generateIRQ(0x20);
}
}
if (this.DELAYED_SEROUT_IRQ > 0) {
if (--this.DELAYED_SEROUT_IRQ == 0) {
this.generateIRQ(0x10);
}
}
if (this.DELAYED_XMTDONE_IRQ > 0)
if (--this.DELAYED_XMTDONE_IRQ == 0) {
this.generateIRQ(0x08);
}
this.advanceIRQTimer(CHAN1, 0x1);
this.advanceIRQTimer(CHAN2, 0x2);
this.advanceIRQTimer(CHAN4, 0x4);
}
advanceIRQTimer(chan: number, mask: number) {
if ((this.divnirq[chan] -= ANTIC_LINE_C) < 0) {
this.divnirq[chan] += this.divnmax[chan];
this.generateIRQ(mask);
//console.log('irq', chan, this.divnirq[chan], this.divnmax[chan])
}
}
generateIRQ(mask: number) {
if (this.regs[IRQEN] & mask) {
this.irq();
this.readregs[IRQST] &= ~mask;
}
}
static stateToLongString(state): string {
let s = ''
s += "Write Registers:\n";
s += dumpRAM(state.regs, 0, 16);
s += "Read Registers:\n";
s += dumpRAM(state.readregs, 0, 16);
return s;
}
CASSETTE_IOLineStatus() {
return 0;
}
siocheck() {
return (((this.regs[AUDF1 + CHAN3] == 0x28 || this.regs[AUDF1 + CHAN3] == 0x10
|| this.regs[AUDF1 + CHAN3] == 0x08 || this.regs[AUDF1 + CHAN3] == 0x0a)
&& this.regs[AUDF1 + CHAN4] == 0x00) // intelligent peripherals speeds
|| (this.regs[SKCTL] & 0x78) == 0x28) // cassette save mode
&& (this.regs[AUDCTL] & 0x28) == 0x28;
}
SIO_PutByte(byte: number) {
// TODO
console.log("SIO put byte", byte);
}
SIO_GetByte() {
return 0; // TODO
}
}
//const SOUND_GAIN 4
/*
void Frame(void)
{
random_scanline_counter %= (this.regs[AUDCTL] & POLY9) ? POLY9_SIZE : POLY17_SIZE;
}
*/