1
0
mirror of https://github.com/sehugg/8bitworkshop.git synced 2025-01-10 16:29:48 +00:00
8bitworkshop/presets/vcs/vcs-ca65.h

269 lines
8.6 KiB
C

.setcpu "6502X"
; TIA write registers
VSYNC := $00 ; ---- --1- This address controls vertical sync time by writing D1 into the VSYNC latch.
VBLANK := $01 ; 76-- --1- 1=Start VBLANK, 6=Enable INPT4, INPT5 latches, 7=Dump INPT1,2,3,6 to ground
WSYNC := $02 ; ---- ---- This address halts microprocessor by clearing RDY latch to zero. RDY is set true again by the leading edge of horizontal blank.
RSYNC := $03 ; ---- ---- This address resets the horizontal sync counter to define the beginning of horizontal blank time, and is used in chip testing.
NUSIZ0 := $04 ; --54 -210 \ 0,1,2: player copys'n'size, 4,5: missile size: 2^x pixels
NUSIZ1 := $05 ; --54 -210 /
COLUP0 := $06 ; 7654 321- color player 0
COLUP1 := $07 ; 7654 321- color player 1
COLUPF := $08 ; 7654 321- color playfield
COLUBK := $09 ; 7654 321- color background
CTRLPF := $0A ; --54 -210 0=reflect playfield, 1=pf uses player colors, 2=playfield over sprites 4,5=ballsize:2^x
REFP0 := $0B ; ---- 3--- reflect player 0
REFP1 := $0C ; ---- 3--- reflect player 1
PF0 := $0D ; DCBA ---- \ Playfield bits: ABCDEFGHIJKLMNOPQRST
PF1 := $0E ; EFGH IJKL > normal: ABCDEFGHIJKLMNOPQRSTABCDEFGHIJKLMNOPQRST
PF2 := $0F ; TSRQ PONM / reflect: ABCDEFGHIJKLMNOPQRSTTSRQPONMLKJIHGFEDCBA
RESP0 := $10 ; ---- ---- \
RESP1 := $11 ; ---- ---- \
RESM0 := $12 ; ---- ---- > reset players, missiles and the ball. The object will begin its serial graphics at the time of a horizontal line at which the reset address occurs.
RESM1 := $13 ; ---- ---- /
RESBL := $14 ; ---- ---- /
AUDC0 := $15 ; ---- 3210 audio control voice 0
AUDC1 := $16 ; ---- 3210 audio control voice 1
AUDF0 := $17 ; ---4 3210 frequency divider voice 0
AUDF1 := $18 ; ---4 3210 frequency divider voice 1
AUDV0 := $19 ; ---- 3210 audio volume voice 0
AUDV1 := $1A ; ---- 3210 audio volume voice 1
GRP0 := $1B ; 7654 3210 graphics player 0
GRP1 := $1C ; 7654 3210 graphics player 1
ENAM0 := $1D ; ---- --1- enable missile 0
ENAM1 := $1E ; ---- --1- enable missile 1
ENABL := $1F ; ---- --1- enable ball
HMP0 := $20 ; 7654 ---- write data (horizontal motion values) into the horizontal motion registers
HMP1 := $21 ; 7654 ---- write data (horizontal motion values) into the horizontal motion registers
HMM0 := $22 ; 7654 ---- write data (horizontal motion values) into the horizontal motion registers
HMM1 := $23 ; 7654 ---- write data (horizontal motion values) into the horizontal motion registers
HMBL := $24 ; 7654 ---- write data (horizontal motion values) into the horizontal motion registers
VDELP0 := $25 ; ---- ---0 delay player 0 by one vertical line
VDELP1 := $26 ; ---- ---0 delay player 1 by one vertical line
VDELBL := $27 ; ---- ---0 delay ball by one vertical line
RESMP0 := $28 ; ---- --1- keep missile 0 aligned with player 0
RESMP1 := $29 ; ---- --1- keep missile 1 aligned with player 1
HMOVE := $2A ; ---- ---- This address causes the horizontal motion register values to be acted upon during the horizontal blank time in which it occurs.
HMCLR := $2B ; ---- ---- This address clears all horizontal motion registers to zero (no motion).
CXCLR := $2C ; ---- ---- clears all collision latches
; TIA read registers
CXM0P := $00 ; xx00 0000 Read Collision M0-P1 M0-P0
CXM1P := $01 ; xx00 0000 M1-P0 M1-P1
CXP0FB := $02 ; xx00 0000 P0-PF P0-BL
CXP1FB := $03 ; xx00 0000 P1-PF P1-BL
CXM0FB := $04 ; xx00 0000 M0-PF M0-BL
CXM1FB := $05 ; xx00 0000 M1-PF M1-BL
CXBLPF := $06 ; x000 0000 BL-PF -----
CXPPMM := $07 ; xx00 0000 P0-P1 M0-M1
INPT0 := $08 ; x000 0000 Read Pot Port 0
INPT1 := $09 ; x000 0000 Read Pot Port 1
INPT2 := $0A ; x000 0000 Read Pot Port 2
INPT3 := $0B ; x000 0000 Read Pot Port 3
INPT4 := $0C ; x000 0000 Read Input (Trigger) 0
INPT5 := $0D ; x000 0000 Read Input (Trigger) 1
; RIOT
SWCHA := $0280
SWACNT := $0281
SWCHB := $0282
SWBCNT := $0283
INTIM := $0284 ; Timer output
TIMINT := $0285
TIM1T := $0294
TIM8T := $0295
TIM64T := $0296
TIM1024T := $0297
;-------------------------------------------------------------------------------
; SLEEP duration
; Original author: Thomas Jentzsch
; Inserts code which takes the specified number of cycles to execute. This is
; useful for code where precise timing is required.
; ILLEGAL-OPCODE VERSION DOES NOT AFFECT FLAGS OR REGISTERS.
; LEGAL OPCODE VERSION MAY AFFECT FLAGS
; Uses illegal opcode (DASM 2.20.01 onwards).
.macro SLEEP cycles
.if cycles < 0 || cycles = 1
.error "MACRO ERROR: 'SLEEP': Duration must be >= 2"
.endif
.if cycles & 1
.ifndef NO_ILLEGAL_OPCODES
nop 0
.else
bit VSYNC
.endif
.repeat (cycles-3)/2
nop
.endrep
.else
.repeat cycles/2
nop
.endrep
.endif
.endmacro
;-------------------------------------------------------------------------------
; VERTICAL_SYNC
; revised version by Edwin Blink -- saves bytes!
; Inserts the code required for a proper 3 scanline vertical sync sequence
; Note: Alters the accumulator
; OUT: A = 0
.macro VERTICAL_SYNC
lda #%1110 ; each '1' bits generate a VSYNC ON line (bits 1..3)
.local VSLP1
VSLP1: sta WSYNC ; 1st '0' bit resets Vsync, 2nd '0' bit exit loop
sta VSYNC
lsr
bne VSLP1 ; branch until VYSNC has been reset
.endmacro
;-------------------------------------------------------
; Usage: TIMER_SETUP lines
; where lines is the number of scanlines to skip (> 2).
; The timer will be set so that it expires before this number
; of scanlines. A WSYNC will be done first.
.macro TIMER_SETUP lines
.local cycles
cycles = ((lines * 76) - 13)
; special case for when we have two timer events in a line
; and our 2nd event straddles the WSYNC boundary
.if (cycles .mod 64) < 12
lda #(cycles / 64) - 1
sta WSYNC
.else
lda #(cycles / 64)
sta WSYNC
.endif
sta TIM64T
.endmacro
;-------------------------------------------------------
; Use with TIMER_SETUP to wait for timer to complete.
; Performs a WSYNC afterwards.
.macro TIMER_WAIT
.local waittimer
waittimer:
lda INTIM
bne waittimer
sta WSYNC
.endmacro
;-------------------------------------------------------------------------------
; CLEAN_START
; Original author: Andrew Davie
; Standardised start-up code, clears stack, all TIA registers and RAM to 0
; Sets stack pointer to $FF, and all registers to 0
; Sets decimal mode off, sets interrupt flag (kind of un-necessary)
; Use as very first section of code on boot (ie: at reset)
; Code written to minimise total ROM usage - uses weird 6502 knowledge :)
.macro CLEAN_START
.local CLEAR_STACK
sei
cld
ldx #0
txa
tay
CLEAR_STACK: dex
txs
pha
bne CLEAR_STACK ; SP=$FF, X = A = Y = 0
.endmacro
;-------------------------------------------------------
; SET_POINTER
; Original author: Manuel Rotschkar
;
; Sets a 2 byte RAM pointer to an absolute address.
;
; Usage: SET_POINTER pointer, address
; Example: SET_POINTER SpritePTR, SpriteData
;
; Note: Alters the accumulator, NZ flags
; IN 1: 2 byte RAM location reserved for pointer
; IN 2: absolute address
.macro SET_POINTER ptr, addr
lda #<addr
sta ptr
lda #>addr
sta ptr+1
.endmacro
; assume NTSC unless PAL defined
.ifndef PAL
PAL = 0
.endif
; 192 visible scanlines for NTSC, 228 for PAL
.if PAL
SCANLINES = 228
LINESD12 = 19
.else
SCANLINES = 192
LINESD12 = 16
.endif
; start of frame -- vsync and set back porch timer
.macro FRAME_START
VERTICAL_SYNC
.if PAL
TIMER_SETUP 44
.else
TIMER_SETUP 36
.endif
.endmacro
; end of back porch -- start kernel
.macro KERNEL_START
TIMER_WAIT
lda #0
sta VBLANK
.if !PAL
TIMER_SETUP 194
.endif
.endmacro
; end of kernel -- start front porch timer
.macro KERNEL_END
.if !PAL
TIMER_WAIT
.endif
lda #2
sta VBLANK
.if PAL
TIMER_SETUP 36
.else
TIMER_SETUP 28
.endif
.endmacro
; end of frame -- jump to frame start
.macro FRAME_END
TIMER_WAIT
.endmacro
;-----------------------------------------------------------
; SLEEPR - sleep macro that uses JSR/RTS for 12 cycle delays
; Requires a lone RTS instruction with the label "Return"
; (note: may fool 8bitworkshop's Anaylze CPU Timing feature)
.macro SLEEPR cycles
.if cycles >= 14 || cycles = 12
jsr Return
SLEEPR (cycles-12)
.else
SLEEP cycles
.endif
.endmacro