-------------------------------------------------------------------------------- -- Copyright (c) 2015 David Banks -- -------------------------------------------------------------------------------- -- ____ ____ -- / /\/ / -- /___/ \ / -- \ \ \/ -- \ \ -- / / Filename : AtomBusMon.vhd -- /___/ /\ Timestamp : 30/05/2015 -- \ \ / \ -- \___\/\___\ -- --Design Name: AtomBusMon --Device: XC3S250E library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.numeric_std.all; use work.OhoPack.all ; entity MOS6502CpuMonCore is generic ( UseT65Core : boolean; UseAlanDCore : boolean; avr_data_mem_size : integer := 1024 * 2; -- 2K is the mimimum avr_prog_mem_size : integer := 1024 * 8 -- 6502 fits in 8K, others need 9K ); port ( clock_avr : in std_logic; busmon_clk : in std_logic; busmon_clken : in std_logic; cpu_clk : in std_logic; cpu_clken : in std_logic; -- 6502 Signals IRQ_n : in std_logic; NMI_n : in std_logic; Sync : out std_logic; Addr : out std_logic_vector(15 downto 0); R_W_n : out std_logic; Din : in std_logic_vector(7 downto 0); Dout : out std_logic_vector(7 downto 0); SO_n : in std_logic; Res_n_in : in std_logic; Res_n_out : out std_logic; Rdy : in std_logic; -- External trigger inputs trig : in std_logic_vector(1 downto 0); -- Serial Console avr_RxD : in std_logic; avr_TxD : out std_logic; -- GODIL Switches sw1 : in std_logic; nsw2 : in std_logic; -- GODIL LEDs led3 : out std_logic; led6 : out std_logic; led8 : out std_logic; -- OHO_DY1 connected to test connector tmosi : out std_logic; tdin : out std_logic; tcclk : out std_logic ); end MOS6502CpuMonCore; architecture behavioral of MOS6502CpuMonCore is signal cpu_clken_ss : std_logic; signal Data : std_logic_vector(7 downto 0); signal Dout_int : std_logic_vector(7 downto 0); signal R_W_n_int : std_logic; signal Rd_n_int : std_logic; signal Wr_n_int : std_logic; signal Sync_int : std_logic; signal hold : std_logic; signal Addr_int : std_logic_vector(23 downto 0); signal IRQ_n_sync : std_logic; signal NMI_n_sync : std_logic; signal cpu_addr_us: unsigned (15 downto 0); signal cpu_dout_us: unsigned (7 downto 0); signal Regs : std_logic_vector(63 downto 0); signal Regs1 : std_logic_vector(255 downto 0); signal last_PC : std_logic_vector(15 downto 0); signal SS_Single : std_logic; signal SS_Step : std_logic; signal CountCycle : std_logic; signal memory_rd : std_logic; signal memory_rd1 : std_logic; signal memory_wr : std_logic; signal memory_wr1 : std_logic; signal memory_addr : std_logic_vector(15 downto 0); signal memory_addr1 : std_logic_vector(15 downto 0); signal memory_dout : std_logic_vector(7 downto 0); signal memory_din : std_logic_vector(7 downto 0); signal memory_done : std_logic; begin mon : entity work.BusMonCore generic map ( avr_data_mem_size => avr_data_mem_size, avr_prog_mem_size => avr_prog_mem_size ) port map ( clock_avr => clock_avr, busmon_clk => busmon_clk, busmon_clken => busmon_clken, cpu_clk => cpu_clk, cpu_clken => cpu_clken, Addr => Addr_int(15 downto 0), Data => Data, Rd_n => Rd_n_int, Wr_n => Wr_n_int, RdIO_n => '1', WrIO_n => '1', Sync => Sync_int, Rdy => open, nRSTin => Res_n_in, nRSTout => Res_n_out, CountCycle => CountCycle, trig => trig, lcd_rs => open, lcd_rw => open, lcd_e => open, lcd_db => open, avr_RxD => avr_RxD, avr_TxD => avr_TxD, sw1 => sw1, nsw2 => nsw2, led3 => led3, led6 => led6, led8 => led8, tmosi => tmosi, tdin => tdin, tcclk => tcclk, Regs => Regs1, RdMemOut => memory_rd, WrMemOut => memory_wr, RdIOOut => open, WrIOOut => open, AddrOut => memory_addr, DataOut => memory_dout, DataIn => memory_din, Done => memory_done, SS_Step => SS_Step, SS_Single => SS_Single ); Wr_n_int <= R_W_n_int; Rd_n_int <= not R_W_n_int; Data <= Din when R_W_n_int = '1' else Dout_int; -- The CPU is slightly pipelined and the register update of the last -- instruction overlaps with the opcode fetch of the next instruction. -- -- If the single stepping stopped on the opcode fetch cycle, then the registers -- valued would not accurately reflect the previous instruction. -- -- To work around this, when single stepping, we stop on the cycle after -- the opcode fetch, which means the program counter has advanced. -- -- To hide this from the user single stepping, all we need to do is to -- also pipeline the value of the program counter by one stage to compensate. last_pc_gen : process(cpu_clk) begin if rising_edge(cpu_clk) then if (cpu_clken = '1') then if (hold = '0') then last_PC <= Regs(63 downto 48); end if; end if; end if; end process; Regs1( 47 downto 0) <= Regs( 47 downto 0); Regs1( 63 downto 48) <= last_PC; Regs1(255 downto 64) <= (others => '0'); cpu_clken_ss <= (not hold) and cpu_clken; GenT65Core: if UseT65Core generate inst_t65: entity work.T65 port map ( mode => "00", Abort_n => '1', SO_n => SO_n, Res_n => Res_n_in, Enable => cpu_clken_ss, Clk => cpu_clk, Rdy => '1', IRQ_n => IRQ_n, NMI_n => NMI_n, R_W_n => R_W_n_int, Sync => Sync_int, A => Addr_int, DI => Din, DO => Dout_int, Regs => Regs ); end generate; GenAlanDCore: if UseAlanDCore generate inst_r65c02: entity work.r65c02 port map ( reset => Res_n_in, clk => cpu_clk, enable => cpu_clken_ss, nmi_n => NMI_n, irq_n => IRQ_n, di => unsigned(Din), do => cpu_dout_us, addr => cpu_addr_us, nwe => R_W_n_int, sync => Sync_int, sync_irq => open, Regs => Regs ); Dout_int <= std_logic_vector(cpu_dout_us); Addr_int(15 downto 0) <= std_logic_vector(cpu_addr_us); end generate; -- This block generates a hold signal that acts as the inverse of a clock enable -- for the CPU. See comments above for why this is a cycle delayed a cycle. hold_gen : process(cpu_clk) begin if rising_edge(cpu_clk) then if (cpu_clken = '1') then if (Sync_int = '1') then -- stop after the opcode has been fetched hold <= SS_Single; elsif (SS_Step = '1') then -- start again when the single step command is issues hold <= '0'; end if; end if; end if; end process; -- Only count cycles when the 6809 is actually running CountCycle <= not hold; -- this block delays memory_rd, memory_wr, memory_addr until the start of the next cpu clk cycle -- necessary because the cpu mon block is clocked of the opposite edge of the clock -- this allows a full cpu clk cycle for cpu mon reads and writes mem_gen : process(cpu_clk) begin if rising_edge(cpu_clk) then if (cpu_clken = '1') then memory_rd1 <= memory_rd; memory_wr1 <= memory_wr; memory_addr1 <= memory_addr; end if; end if; end process; R_W_n <= '1' when memory_rd1 = '1' else '0' when memory_wr1 = '1' else R_W_n_int; Addr <= memory_addr1 when (memory_rd1 = '1' or memory_wr1 = '1') else Addr_int(15 downto 0); Sync <= Sync_int; Dout <= memory_dout when memory_wr1 = '1' else Dout_int; memory_done <= memory_rd1 or memory_wr1; memory_din <= Din; end behavioral;