1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-12-11 15:49:38 +00:00
CLK/Machines/Apple/Macintosh/Macintosh.cpp

857 lines
28 KiB
C++
Raw Normal View History

//
// Macintosh.cpp
// Clock Signal
//
// Created by Thomas Harte on 03/05/2019.
// Copyright © 2019 Thomas Harte. All rights reserved.
//
#include "Macintosh.hpp"
#include <array>
#include "DeferredAudio.hpp"
#include "DriveSpeedAccumulator.hpp"
2019-05-08 16:34:26 +00:00
#include "Keyboard.hpp"
#include "Video.hpp"
#include "../../MachineTypes.hpp"
#include "../../../Activity/Source.hpp"
#include "../../../Configurable/Configurable.hpp"
#include "../../../Inputs/QuadratureMouse/QuadratureMouse.hpp"
2019-07-26 02:55:27 +00:00
#include "../../../Outputs/Log.hpp"
#include "../../../ClockReceiver/JustInTime.hpp"
#include "../../../ClockReceiver/ClockingHintSource.hpp"
#include "../../../Configurable/StandardOptions.hpp"
2019-07-11 02:39:56 +00:00
//#define LOG_TRACE
2019-05-28 19:17:03 +00:00
#include "../../../Components/5380/ncr5380.hpp"
#include "../../../Components/6522/6522.hpp"
#include "../../../Components/8530/z8530.hpp"
#include "../../../Components/AppleClock/AppleClock.hpp"
#include "../../../Components/DiskII/IWM.hpp"
#include "../../../Components/DiskII/MacintoshDoubleDensityDrive.hpp"
#include "../../../Processors/68000/68000.hpp"
2022-05-16 15:44:16 +00:00
#include "../../../Processors/68000Mk2/68000Mk2.hpp"
#include "../../../Storage/MassStorage/SCSI/SCSI.hpp"
#include "../../../Storage/MassStorage/SCSI/DirectAccessDevice.hpp"
#include "../../../Storage/MassStorage/Encodings/MacintoshVolume.hpp"
#include "../../../Analyser/Static/Macintosh/Target.hpp"
#include "../../Utility/MemoryPacker.hpp"
#include "../../Utility/MemoryFuzzer.hpp"
2019-05-08 04:12:19 +00:00
namespace {
constexpr int CLOCK_RATE = 7833600;
constexpr auto KEYBOARD_CLOCK_RATE = HalfCycles(CLOCK_RATE / 100000);
2019-05-08 04:12:19 +00:00
2021-09-10 23:56:20 +00:00
// Former default PRAM:
//
// 0xa8, 0x00, 0x00, 0x00,
// 0xcc, 0x0a, 0xcc, 0x0a,
// 0x00, 0x00, 0x00, 0x00,
// 0x00, 0x02, 0x63, 0x00,
// 0x03, 0x88, 0x00, 0x4c
2019-05-08 04:12:19 +00:00
}
namespace Apple {
namespace Macintosh {
template <Analyser::Static::Macintosh::Target::Model model> class ConcreteMachine:
public Machine,
public MachineTypes::TimedMachine,
public MachineTypes::ScanProducer,
public MachineTypes::AudioProducer,
public MachineTypes::MediaTarget,
public MachineTypes::MouseMachine,
public MachineTypes::MappedKeyboardMachine,
2022-05-24 16:35:36 +00:00
public CPU::MC68000Mk2::BusHandler,
public Zilog::SCC::z8530::Delegate,
public Activity::Source,
public Configurable::Device,
public DriveSpeedAccumulator::Delegate,
public ClockingHint::Observer {
public:
using Target = Analyser::Static::Macintosh::Target;
ConcreteMachine(const Target &target, const ROMMachine::ROMFetcher &rom_fetcher) :
MachineTypes::MappedKeyboardMachine({
Inputs::Keyboard::Key::LeftShift, Inputs::Keyboard::Key::RightShift,
Inputs::Keyboard::Key::LeftOption, Inputs::Keyboard::Key::RightOption,
Inputs::Keyboard::Key::LeftMeta, Inputs::Keyboard::Key::RightMeta,
}),
mc68000_(*this),
iwm_(CLOCK_RATE),
2019-08-12 01:41:12 +00:00
video_(audio_, drive_speed_accumulator_),
via_(via_port_handler_),
via_port_handler_(*this, clock_, keyboard_, audio_, iwm_, mouse_),
scsi_bus_(CLOCK_RATE * 2),
scsi_(scsi_bus_, CLOCK_RATE * 2),
hard_drive_(scsi_bus_, 6 /* SCSI ID */),
drives_{
{CLOCK_RATE, model >= Analyser::Static::Macintosh::Target::Model::Mac512ke},
{CLOCK_RATE, model >= Analyser::Static::Macintosh::Target::Model::Mac512ke}
},
mouse_(1) {
// Select a ROM name and determine the proper ROM and RAM sizes
// based on the machine model.
using Model = Analyser::Static::Macintosh::Target::Model;
const std::string machine_name = "Macintosh";
uint32_t ram_size, rom_size;
ROM::Name rom_name;
switch(model) {
default:
case Model::Mac128k:
ram_size = 128*1024;
rom_size = 64*1024;
rom_name = ROM::Name::Macintosh128k;
break;
case Model::Mac512k:
ram_size = 512*1024;
rom_size = 64*1024;
rom_name = ROM::Name::Macintosh512k;
break;
case Model::Mac512ke:
case Model::MacPlus: {
2019-08-12 01:41:12 +00:00
ram_size = ((model == Model::MacPlus) ? 4096 : 512)*1024;
rom_size = 128*1024;
rom_name = ROM::Name::MacintoshPlus;
} break;
}
ram_mask_ = ram_size - 1;
rom_mask_ = rom_size - 1;
ram_.resize(ram_size);
video_.set_ram(reinterpret_cast<uint16_t *>(ram_.data()), ram_mask_ >> 1);
// Grab a copy of the ROM and convert it into big-endian data.
ROM::Request request(rom_name);
auto roms = rom_fetcher(request);
if(!request.validate(roms)) {
throw ROMMachine::Error::MissingROMs;
}
Memory::PackBigEndian16(roms.find(rom_name)->second, rom_);
// Randomise memory contents.
2019-08-12 01:41:12 +00:00
Memory::Fuzz(ram_);
// Attach the drives to the IWM.
iwm_->set_drive(0, &drives_[0]);
iwm_->set_drive(1, &drives_[1]);
// If they are 400kb drives, also attach them to the drive-speed accumulator.
if(!drives_[0].is_800k() || !drives_[1].is_800k()) {
drive_speed_accumulator_.set_delegate(this);
}
// Make sure interrupt changes from the SCC are observed.
scc_.set_delegate(this);
// Also watch for changes in clocking requirement from the SCSI chip.
if constexpr (model == Analyser::Static::Macintosh::Target::Model::MacPlus) {
scsi_bus_.set_clocking_hint_observer(this);
}
// The Mac runs at 7.8336mHz.
2019-05-08 04:12:19 +00:00
set_clock_rate(double(CLOCK_RATE));
audio_.speaker.set_input_rate(float(CLOCK_RATE) / 2.0f);
// Insert any supplied media.
insert_media(target.media);
// Set the immutables of the memory map.
setup_memory_map();
}
2019-06-01 21:29:57 +00:00
~ConcreteMachine() {
audio_.queue.flush();
}
void set_scan_target(Outputs::Display::ScanTarget *scan_target) final {
video_.set_scan_target(scan_target);
}
Outputs::Display::ScanStatus get_scaled_scan_status() const final {
return video_.get_scaled_scan_status();
}
Outputs::Speaker::Speaker *get_speaker() final {
return &audio_.speaker;
}
void run_for(const Cycles cycles) final {
mc68000_.run_for(cycles);
2022-06-05 13:08:36 +00:00
flush();
}
2022-05-24 16:35:36 +00:00
using Microcycle = CPU::MC68000Mk2::Microcycle;
2022-05-24 16:35:36 +00:00
HalfCycles perform_bus_operation(const Microcycle &cycle, int) {
2019-08-03 02:12:34 +00:00
// Advance time.
advance_time(cycle.length);
2019-05-08 04:12:19 +00:00
// A null cycle leaves nothing else to do.
if(!(cycle.operation & (Microcycle::NewAddress | Microcycle::SameAddress))) return HalfCycles(0);
// Grab the address.
auto address = cycle.host_endian_byte_address();
// Everything above E0 0000 is signalled as being on the peripheral bus.
//
// This will also act to autovector interrupts, since an interrupt acknowledge
// cycle posts an address with all the higher-order bits set, and VPA doubles
// as the input to request an autovector.
mc68000_.set_is_peripheral_address(address >= 0xe0'0000);
// All code below deals only with reads and writes — cycles in which a
// data select is active. So quit now if this is not the active part of
// a read or write.
//
// The 68000 uses 6800-style autovectored interrupts, so the mere act of
// having set VPA above deals with those given that the generated address
// for interrupt acknowledge cycles always has all bits set except the
// lowest explicit address lines.
if(!cycle.data_select_active() || (cycle.operation & Microcycle::InterruptAcknowledge)) return HalfCycles(0);
// Grab the word-precision address being accessed.
uint8_t *memory_base = nullptr;
HalfCycles delay;
switch(memory_map_[address >> 17]) {
2019-08-03 02:12:34 +00:00
default: assert(false);
case BusDevice::Unassigned:
fill_unmapped(cycle);
return delay;
case BusDevice::VIA: {
if(*cycle.address & 1) {
fill_unmapped(cycle);
} else {
const int register_address = address >> 9;
// VIA accesses are via address 0xefe1fe + register*512,
// which at word precision is 0x77f0ff + register*256.
if(cycle.operation & Microcycle::Read) {
cycle.set_value8_high(via_.read(register_address));
} else {
via_.write(register_address, cycle.value8_high());
}
}
} return delay;
case BusDevice::PhaseRead: {
if(cycle.operation & Microcycle::Read) {
cycle.set_value8_low(phase_ & 7);
}
} return delay;
case BusDevice::IWM: {
if(*cycle.address & 1) {
const int register_address = address >> 9;
// The IWM; this is a purely polled device, so can be run on demand.
if(cycle.operation & Microcycle::Read) {
cycle.set_value8_low(iwm_->read(register_address));
} else {
iwm_->write(register_address, cycle.value8_low());
}
} else {
fill_unmapped(cycle);
}
} return delay;
case BusDevice::SCSI: {
const int register_address = address >> 4;
const bool dma_acknowledge = address & 0x200;
// Even accesses = read; odd = write.
if(*cycle.address & 1) {
// Odd access => this is a write. Data will be in the upper byte.
if(cycle.operation & Microcycle::Read) {
2019-09-14 17:48:33 +00:00
scsi_.write(register_address, 0xff, dma_acknowledge);
} else {
scsi_.write(register_address, cycle.value8_high());
}
} else {
// Even access => this is a read.
if(cycle.operation & Microcycle::Read) {
cycle.set_value8_high(scsi_.read(register_address, dma_acknowledge));
}
}
} return delay;
case BusDevice::SCCReadResetPhase: {
// Any word access here adjusts phase.
if(cycle.operation & Microcycle::SelectWord) {
adjust_phase();
} else {
// A0 = 1 => reset; A0 = 0 => read.
if(*cycle.address & 1) {
scc_.reset();
if(cycle.operation & Microcycle::Read) {
cycle.set_value16(0xffff);
}
} else {
const auto read = scc_.read(int(address >> 1));
if(cycle.operation & Microcycle::Read) {
cycle.set_value8_high(read);
}
}
}
} return delay;
case BusDevice::SCCWrite: {
// Any word access here adjusts phase.
if(cycle.operation & Microcycle::SelectWord) {
adjust_phase();
} else {
// This is definitely a byte access; either it's to an odd address, in which
// case it will reach the SCC, or it isn't, in which case it won't.
if(*cycle.address & 1) {
if(cycle.operation & Microcycle::Read) {
scc_.write(int(address >> 1), 0xff);
2022-05-24 16:35:36 +00:00
cycle.value->b = 0xff;
} else {
2022-05-24 16:35:36 +00:00
scc_.write(int(address >> 1), cycle.value->b);
}
} else {
fill_unmapped(cycle);
}
}
} return delay;
case BusDevice::RAM: {
// This is coupled with the Macintosh implementation of video; the magic
// constant should probably be factored into the Video class.
// It embodies knowledge of the fact that video (and audio) will always
// be fetched from the final $d900 bytes of memory.
// (And that ram_mask_ = ram size - 1).
if(address > ram_mask_ - 0xd900)
update_video();
2019-08-12 01:41:12 +00:00
memory_base = ram_.data();
address &= ram_mask_;
// Apply a delay due to video contention if applicable; scheme applied:
// only every other access slot is available during the period of video
// output. I believe this to be correct for the 128k, 512k and Plus.
// More research to do on other models.
if(video_is_outputting() && ram_subcycle_ < 8) {
delay = HalfCycles(8 - ram_subcycle_);
advance_time(delay);
}
} break;
case BusDevice::ROM: {
if(!(cycle.operation & Microcycle::Read)) return delay;
memory_base = rom_;
address &= rom_mask_;
} break;
}
// If control has fallen through to here, the access is either a read from ROM, or a read or write to RAM.
// Potential writes to ROM and all hardware accesses have already been weeded out.
cycle.apply(&memory_base[address]);
return delay;
}
void flush() {
// Flush the video before the audio queue; in a Mac the
// video is responsible for providing part of the
// audio signal, so the two aren't as distinct as in
// most machines.
update_video();
// As above: flush audio after video.
2019-06-01 21:29:57 +00:00
via_.flush();
audio_.queue.perform();
2020-01-26 16:36:06 +00:00
// This avoids deferring IWM costs indefinitely, until
// they become artbitrarily large.
iwm_.flush();
}
void set_rom_is_overlay(bool rom_is_overlay) {
ROM_is_overlay_ = rom_is_overlay;
using Model = Analyser::Static::Macintosh::Target::Model;
switch(model) {
case Model::Mac128k:
case Model::Mac512k:
case Model::Mac512ke:
populate_memory_map(0, [rom_is_overlay] (std::function<void(int target, BusDevice device)> map_to) {
// Addresses up to $80 0000 aren't affected by this bit.
if(rom_is_overlay) {
// Up to $60 0000 mirrors of the ROM alternate with unassigned areas every $10 0000 byes.
for(int c = 0; c < 0x600000; c += 0x100000) {
map_to(c + 0x100000, (c & 0x100000) ? BusDevice::Unassigned : BusDevice::ROM);
}
map_to(0x800000, BusDevice::RAM);
} else {
map_to(0x400000, BusDevice::RAM);
map_to(0x500000, BusDevice::ROM);
map_to(0x800000, BusDevice::Unassigned);
}
});
break;
case Model::MacPlus:
populate_memory_map(0, [rom_is_overlay] (std::function<void(int target, BusDevice device)> map_to) {
// Addresses up to $80 0000 aren't affected by this bit.
if(rom_is_overlay) {
for(int c = 0; c < 0x580000; c += 0x20000) {
map_to(c + 0x20000, ((c & 0x100000) || (c & 0x20000)) ? BusDevice::Unassigned : BusDevice::ROM);
}
map_to(0x600000, BusDevice::SCSI);
map_to(0x800000, BusDevice::RAM);
} else {
map_to(0x400000, BusDevice::RAM);
for(int c = 0x400000; c < 0x580000; c += 0x20000) {
map_to(c + 0x20000, ((c & 0x100000) || (c & 0x20000)) ? BusDevice::Unassigned : BusDevice::ROM);
}
map_to(0x600000, BusDevice::SCSI);
map_to(0x800000, BusDevice::Unassigned);
}
});
break;
}
}
bool video_is_outputting() {
return video_.is_outputting(time_since_video_update_);
}
void set_use_alternate_buffers(bool use_alternate_screen_buffer, bool use_alternate_audio_buffer) {
update_video();
video_.set_use_alternate_buffers(use_alternate_screen_buffer, use_alternate_audio_buffer);
}
bool insert_media(const Analyser::Static::Media &media) final {
if(media.disks.empty() && media.mass_storage_devices.empty())
return false;
// TODO: shouldn't allow disks to be replaced like this, as the Mac
// uses software eject. Will need to expand messaging ability of
// insert_media.
if(!media.disks.empty()) {
if(drives_[0].has_disk())
drives_[1].set_disk(media.disks[0]);
else
drives_[0].set_disk(media.disks[0]);
}
// TODO: allow this only at machine startup?
if(!media.mass_storage_devices.empty()) {
const auto volume = dynamic_cast<Storage::MassStorage::Encodings::Macintosh::Volume *>(media.mass_storage_devices.front().get());
if(volume) {
volume->set_drive_type(Storage::MassStorage::Encodings::Macintosh::DriveType::SCSI);
}
hard_drive_->set_storage(media.mass_storage_devices.front());
}
return true;
}
// MARK: Keyboard input.
KeyboardMapper *get_keyboard_mapper() final {
return &keyboard_mapper_;
}
void set_key_state(uint16_t key, bool is_pressed) final {
keyboard_.enqueue_key_state(key, is_pressed);
}
// TODO: clear all keys.
// MARK: Interrupt updates.
void did_change_interrupt_status(Zilog::SCC::z8530 *, bool) final {
update_interrupt_input();
}
void update_interrupt_input() {
// Update interrupt input.
// TODO: does this really cascade like this?
if(scc_.get_interrupt_line()) {
mc68000_.set_interrupt_level(2);
} else if(via_.get_interrupt_line()) {
mc68000_.set_interrupt_level(1);
} else {
mc68000_.set_interrupt_level(0);
}
}
// MARK: - Activity Source
void set_activity_observer(Activity::Observer *observer) final {
iwm_->set_activity_observer(observer);
if constexpr (model == Analyser::Static::Macintosh::Target::Model::MacPlus) {
scsi_bus_.set_activity_observer(observer);
}
}
// MARK: - Configuration options.
std::unique_ptr<Reflection::Struct> get_options() final {
auto options = std::make_unique<Options>(Configurable::OptionsType::UserFriendly);
options->quickboot = quickboot_;
return options;
}
void set_options(const std::unique_ptr<Reflection::Struct> &str) final {
// TODO: should this really be a runtime option?
// It should probably be a construction option.
const auto options = dynamic_cast<Options *>(str.get());
quickboot_ = options->quickboot;
using Model = Analyser::Static::Macintosh::Target::Model;
const bool is_plus_rom = model == Model::Mac512ke || model == Model::MacPlus;
if(quickboot_ && is_plus_rom) {
// Cf. Big Mess o' Wires' disassembly of the Mac Plus ROM, and the
// test at $E00. TODO: adapt as(/if?) necessary for other Macs.
ram_[0x02ae] = 0x40;
ram_[0x02af] = 0x00;
ram_[0x02b0] = 0x00;
ram_[0x02b1] = 0x00;
}
}
private:
bool quickboot_ = false;
void set_component_prefers_clocking(ClockingHint::Source *, ClockingHint::Preference) final {
scsi_bus_is_clocked_ = scsi_bus_.preferred_clocking() != ClockingHint::Preference::None;
}
void drive_speed_accumulator_set_drive_speed(DriveSpeedAccumulator *, float speed) final {
iwm_.flush();
drives_[0].set_rotation_speed(speed);
drives_[1].set_rotation_speed(speed);
}
forceinline void adjust_phase() {
++phase_;
}
forceinline void fill_unmapped(const Microcycle &cycle) {
if(!(cycle.operation & Microcycle::Read)) return;
cycle.set_value16(0xffff);
}
/// Advances all non-CPU components by @c duration half cycles.
2019-08-03 02:12:34 +00:00
forceinline void advance_time(HalfCycles duration) {
time_since_video_update_ += duration;
iwm_ += duration;
ram_subcycle_ = (ram_subcycle_ + duration.as_integral()) & 15;
// The VIA runs at one-tenth of the 68000's clock speed, in sync with the E clock.
// See: Guide to the Macintosh Hardware Family p149 (PDF p188). Some extra division
// may occur here in order to provide VSYNC at a proper moment.
// Possibly route vsync.
if(time_since_video_update_ < time_until_video_event_) {
via_clock_ += duration;
via_.run_for(via_clock_.divide(HalfCycles(10)));
} else {
auto via_time_base = time_since_video_update_ - duration;
auto via_cycles_outstanding = duration;
while(time_until_video_event_ < time_since_video_update_) {
const auto via_cycles = time_until_video_event_ - via_time_base;
via_time_base = HalfCycles(0);
via_cycles_outstanding -= via_cycles;
via_clock_ += via_cycles;
via_.run_for(via_clock_.divide(HalfCycles(10)));
video_.run_for(time_until_video_event_);
time_since_video_update_ -= time_until_video_event_;
time_until_video_event_ = video_.get_next_sequence_point();
via_.set_control_line_input(MOS::MOS6522::Port::A, MOS::MOS6522::Line::One, !video_.vsync());
}
via_clock_ += via_cycles_outstanding;
via_.run_for(via_clock_.divide(HalfCycles(10)));
}
// The keyboard also has a clock, albeit a very slow one — 100,000 cycles/second.
// Its clock and data lines are connected to the VIA.
keyboard_clock_ += duration;
if(keyboard_clock_ >= KEYBOARD_CLOCK_RATE) {
const auto keyboard_ticks = keyboard_clock_.divide(KEYBOARD_CLOCK_RATE);
keyboard_.run_for(keyboard_ticks);
via_.set_control_line_input(MOS::MOS6522::Port::B, MOS::MOS6522::Line::Two, keyboard_.get_data());
via_.set_control_line_input(MOS::MOS6522::Port::B, MOS::MOS6522::Line::One, keyboard_.get_clock());
}
// Feed mouse inputs within at most 1250 cycles of each other.
if(mouse_.has_steps()) {
time_since_mouse_update_ += duration;
const auto mouse_ticks = time_since_mouse_update_.divide(HalfCycles(2500));
if(mouse_ticks > HalfCycles(0)) {
mouse_.prepare_step();
scc_.set_dcd(0, mouse_.get_channel(1) & 1);
scc_.set_dcd(1, mouse_.get_channel(0) & 1);
}
}
// TODO: SCC should be clocked at a divide-by-two, if and when it actually has
// anything connected.
// Consider updating the real-time clock.
real_time_clock_ += duration;
auto ticks = real_time_clock_.divide_cycles(Cycles(CLOCK_RATE)).as_integral();
while(ticks--) {
clock_.update();
// TODO: leave a delay between toggling the input rather than using this coupled hack.
via_.set_control_line_input(MOS::MOS6522::Port::A, MOS::MOS6522::Line::Two, true);
via_.set_control_line_input(MOS::MOS6522::Port::A, MOS::MOS6522::Line::Two, false);
}
// Update the SCSI if currently active.
if constexpr (model == Analyser::Static::Macintosh::Target::Model::MacPlus) {
if(scsi_bus_is_clocked_) scsi_bus_.run_for(duration);
}
}
forceinline void update_video() {
video_.run_for(time_since_video_update_.flush<HalfCycles>());
time_until_video_event_ = video_.get_next_sequence_point();
}
Inputs::Mouse &get_mouse() final {
return mouse_;
}
using IWMActor = JustInTimeActor<IWM>;
class VIAPortHandler: public MOS::MOS6522::PortHandler {
public:
VIAPortHandler(ConcreteMachine &machine, Apple::Clock::SerialClock &clock, Keyboard &keyboard, DeferredAudio &audio, IWMActor &iwm, Inputs::QuadratureMouse &mouse) :
machine_(machine), clock_(clock), keyboard_(keyboard), audio_(audio), iwm_(iwm), mouse_(mouse) {}
using Port = MOS::MOS6522::Port;
using Line = MOS::MOS6522::Line;
void set_port_output(Port port, uint8_t value, uint8_t) {
/*
Peripheral lines: keyboard data, interrupt configuration.
(See p176 [/215])
*/
switch(port) {
case Port::A:
/*
Port A:
b7: [input] SCC wait/request (/W/REQA and /W/REQB wired together for a logical OR)
b6: 0 = alternate screen buffer, 1 = main screen buffer
b5: floppy disk SEL state control (upper/lower head "among other things")
b4: 1 = use ROM overlay memory map, 0 = use ordinary memory map
b3: 0 = use alternate sound buffer, 1 = use ordinary sound buffer
b2b0: audio output volume
*/
iwm_->set_select(!!(value & 0x20));
machine_.set_use_alternate_buffers(!(value & 0x40), !(value&0x08));
2019-05-08 16:34:26 +00:00
machine_.set_rom_is_overlay(!!(value & 0x10));
audio_.flush();
audio_.audio.set_volume(value & 7);
break;
case Port::B:
/*
Port B:
b7: 0 = sound enabled, 1 = sound disabled
b6: [input] 0 = video beam in visible portion of line, 1 = outside
b5: [input] mouse y2
b4: [input] mouse x2
b3: [input] 0 = mouse button down, 1 = up
b2: 0 = real-time clock enabled, 1 = disabled
b1: clock's data-clock line
b0: clock's serial data line
*/
2019-05-08 04:12:19 +00:00
if(value & 0x4) clock_.abort();
else clock_.set_input(!!(value & 0x2), !!(value & 0x1));
audio_.flush();
audio_.audio.set_enabled(!(value & 0x80));
break;
}
}
uint8_t get_port_input(Port port) {
switch(port) {
case Port::A:
// printf("6522 r A\n");
return 0x00; // TODO: b7 = SCC wait/request
case Port::B:
return uint8_t(
((mouse_.get_button_mask() & 1) ? 0x00 : 0x08) |
((mouse_.get_channel(0) & 2) << 3) |
((mouse_.get_channel(1) & 2) << 4) |
(clock_.get_data() ? 0x02 : 0x00) |
(machine_.video_is_outputting() ? 0x00 : 0x40)
);
}
// Should be unreachable.
return 0xff;
}
void set_control_line_output(Port port, Line line, bool value) {
2019-05-08 04:12:19 +00:00
/*
Keyboard wiring (I believe):
2019-05-08 19:07:03 +00:00
CB2 = data (input/output)
2019-05-08 16:34:26 +00:00
CB1 = clock (input)
2019-05-08 04:12:19 +00:00
CA2 is used for receiving RTC interrupts.
CA1 is used for receiving vsync.
2019-05-08 04:12:19 +00:00
*/
if(port == Port::B && line == Line::Two) {
keyboard_.set_input(value);
}
2019-07-26 02:55:27 +00:00
else LOG("Unhandled control line output: " << (port ? 'B' : 'A') << int(line));
}
void run_for(HalfCycles duration) {
// The 6522 enjoys a divide-by-ten, so multiply back up here to make the
// divided-by-two clock the audio works on.
audio_.time_since_update += HalfCycles(duration.as_integral() * 5);
}
2019-06-01 21:29:57 +00:00
void flush() {
audio_.flush();
}
void set_interrupt_status(bool) {
machine_.update_interrupt_input();
}
private:
ConcreteMachine &machine_;
Apple::Clock::SerialClock &clock_;
2019-05-08 16:34:26 +00:00
Keyboard &keyboard_;
DeferredAudio &audio_;
IWMActor &iwm_;
Inputs::QuadratureMouse &mouse_;
};
2022-05-24 16:35:36 +00:00
CPU::MC68000Mk2::Processor<ConcreteMachine, true, true> mc68000_;
DriveSpeedAccumulator drive_speed_accumulator_;
IWMActor iwm_;
DeferredAudio audio_;
Video video_;
Apple::Clock::SerialClock clock_;
2019-05-08 16:34:26 +00:00
Keyboard keyboard_;
2019-05-08 04:12:19 +00:00
MOS::MOS6522::MOS6522<VIAPortHandler> via_;
VIAPortHandler via_port_handler_;
Zilog::SCC::z8530 scc_;
SCSI::Bus scsi_bus_;
NCR::NCR5380::NCR5380 scsi_;
SCSI::Target::Target<SCSI::DirectAccessDevice> hard_drive_;
bool scsi_bus_is_clocked_ = false;
HalfCycles via_clock_;
HalfCycles real_time_clock_;
HalfCycles keyboard_clock_;
HalfCycles time_since_video_update_;
HalfCycles time_until_video_event_;
HalfCycles time_since_mouse_update_;
bool ROM_is_overlay_ = true;
int phase_ = 1;
2019-08-03 02:12:34 +00:00
int ram_subcycle_ = 0;
DoubleDensityDrive drives_[2];
Inputs::QuadratureMouse mouse_;
Apple::Macintosh::KeyboardMapper keyboard_mapper_;
enum class BusDevice {
RAM, ROM, VIA, IWM, SCCWrite, SCCReadResetPhase, SCSI, PhaseRead, Unassigned
};
/// Divides the 24-bit address space up into $20000 (i.e. 128kb) segments, recording
/// which device is current mapped in each area. Keeping it in a table is a bit faster
/// than the multi-level address inspection that is otherwise required, as well as
/// simplifying slightly the handling of different models.
///
/// So: index with the top 7 bits of the 24-bit address.
BusDevice memory_map_[128];
void setup_memory_map() {
// Apply the power-up memory map, i.e. assume that ROM_is_overlay_ = true;
// start by calling into set_rom_is_overlay to seed everything up to $800000.
set_rom_is_overlay(true);
populate_memory_map(0x800000, [] (std::function<void(int target, BusDevice device)> map_to) {
map_to(0x900000, BusDevice::Unassigned);
map_to(0xa00000, BusDevice::SCCReadResetPhase);
map_to(0xb00000, BusDevice::Unassigned);
map_to(0xc00000, BusDevice::SCCWrite);
map_to(0xd00000, BusDevice::Unassigned);
map_to(0xe00000, BusDevice::IWM);
map_to(0xe80000, BusDevice::Unassigned);
map_to(0xf00000, BusDevice::VIA);
map_to(0xf80000, BusDevice::PhaseRead);
map_to(0x1000000, BusDevice::Unassigned);
});
}
void populate_memory_map(int start_address, std::function<void(std::function<void(int, BusDevice)>)> populator) {
// Define semantics for below; map_to will write from the current cursor position
// to the supplied 24-bit address, setting a particular mapped device.
int segment = start_address >> 17;
auto map_to = [&segment, this](int address, BusDevice device) {
for(; segment < address >> 17; ++segment) {
this->memory_map_[segment] = device;
}
};
populator(map_to);
}
uint32_t ram_mask_ = 0;
uint32_t rom_mask_ = 0;
uint8_t rom_[128*1024];
std::vector<uint8_t> ram_;
};
}
}
using namespace Apple::Macintosh;
Machine *Machine::Macintosh(const Analyser::Static::Target *target, const ROMMachine::ROMFetcher &rom_fetcher) {
auto *const mac_target = dynamic_cast<const Analyser::Static::Macintosh::Target *>(target);
using Model = Analyser::Static::Macintosh::Target::Model;
switch(mac_target->model) {
default:
case Model::Mac128k: return new ConcreteMachine<Model::Mac128k>(*mac_target, rom_fetcher);
case Model::Mac512k: return new ConcreteMachine<Model::Mac512k>(*mac_target, rom_fetcher);
case Model::Mac512ke: return new ConcreteMachine<Model::Mac512ke>(*mac_target, rom_fetcher);
case Model::MacPlus: return new ConcreteMachine<Model::MacPlus>(*mac_target, rom_fetcher);
}
}
Machine::~Machine() {}