1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-06-29 00:29:34 +00:00
CLK/Machines/Apple/AppleIIgs/MemoryMap.hpp

442 lines
15 KiB
C++
Raw Normal View History

//
// MemoryMap.hpp
// Clock Signal
//
// Created by Thomas Harte on 25/10/2020.
// Copyright © 2020 Thomas Harte. All rights reserved.
//
#ifndef Machines_Apple_AppleIIgs_MemoryMap_hpp
#define Machines_Apple_AppleIIgs_MemoryMap_hpp
#include <array>
#include <vector>
#include "../AppleII/LanguageCardSwitches.hpp"
#include "../AppleII/AuxiliaryMemorySwitches.hpp"
namespace Apple {
namespace IIgs {
class MemoryMap {
public:
// MARK: - Initial construction and configuration.
MemoryMap() : auxiliary_switches_(*this), language_card_(*this) {}
void set_storage(std::vector<uint8_t> &ram, std::vector<uint8_t> &rom) {
// Keep a pointer for later; also note the proper RAM offset.
ram_base = ram.data();
shadow_offset = ram.size() - (128*1024);
// Establish bank mapping.
uint8_t next_region = 0;
auto region = [&next_region, this]() -> uint8_t {
assert(next_region != regions.size());
return next_region++;
};
auto set_region = [this](uint8_t bank, uint16_t start, uint16_t end, uint8_t region) {
assert((end == 0xffff) || !(end&0xff));
assert(!(start&0xff));
// Fill in memory map.
size_t target = size_t((bank << 8) | (start >> 8));
for(int c = start; c < end; c += 0x100) {
region_map[target] = region;
++target;
}
};
auto set_regions = [this, set_region, region](uint8_t bank, std::initializer_list<uint16_t> addresses, std::vector<uint8_t> allocated_regions = {}) {
uint16_t previous = 0x0000;
auto next_region = allocated_regions.begin();
for(uint16_t address: addresses) {
set_region(bank, previous, address, next_region != allocated_regions.end() ? *next_region : region());
previous = address;
assert(next_region != allocated_regions.end() || allocated_regions.empty());
if(next_region != allocated_regions.end()) ++next_region;
}
assert(next_region == allocated_regions.end());
};
// Current beliefs about the IIgs memory map:
//
// * language card banking applies to banks $00, $01, $e0 and $e1;
// * auxiliary memory switches apply to banks $00 only;
// * shadowing may be enabled only on banks $00 and $01, or on all RAM pages.
//
// So banks $00 and $01 need their own divided spaces at the shadowing resolution,
// all the other fast RAM banks can share a set of divided spaces, $e0 and $e1 need
// to be able to deal with language card-level division but no further, and the pure
// ROM pages don't need to be subdivided at all.
// Reserve region 0 as that for unmapped memory.
region();
// Bank $00: all locations potentially affected by the auxiliary switches or the
// language switches. Which will naturally align with shadowable zones.
set_regions(0x00, {
0x0200, 0x0400, 0x0800, 0x0c00,
0x2000, 0x4000,
0xc000, 0xc100, 0xc300, 0xc400, 0xc800,
0xd000, 0xe000,
0xffff
});
// Bank $01: all locations potentially affected by the language switches, by shadowing,
// or marked for IO.
set_regions(0x01, {
0x0400, 0x0800, 0x0c00,
0x2000, 0x4000, 0x6000, 0xa000,
0xc000, 0xc100, 0xc300, 0xc400, 0xc800,
0xd000, 0xe000,
0xffff
});
// Banks $02[end of RAM]: all locations potentially affected by shadowing.
const uint8_t fast_ram_bank_count = uint8_t((ram.size() - 128*1024) / 65536);
if(fast_ram_bank_count > 2) {
const std::vector<uint8_t> evens = {
region(), // 0x0000 0x0400.
region(), // 0x0400 0x0800.
region(), // 0x0800 0x0c00.
region(), // 0x0c00 0x2000.
region(), // 0x2000 0x4000.
region(), // 0x4000 0x6000.
region(), // 0x6000 [end].
};
const std::vector<uint8_t> odds = {
region(), // 0x0000 0x0400.
region(), // 0x0400 0x0800.
region(), // 0x0800 0x0c00.
region(), // 0x0c00 0x2000.
region(), // 0x2000 0x4000.
region(), // 0x4000 0x6000.
region(), // 0x6000 0xa000.
region(), // 0xa000 [end].
};
for(uint8_t bank = 0x02; bank < fast_ram_bank_count; bank += 2) {
set_regions(bank, {0x0400, 0x0800, 0x0c00, 0x2000, 0x4000, 0x6000, 0xffff}, evens);
set_regions(bank+1, {0x0400, 0x0800, 0x0c00, 0x2000, 0x4000, 0x6000, 0xa000, 0xffff}, odds);
}
}
// [Banks $80$e0: empty].
// Banks $e0, $e1: all locations potentially affected by the language switches or marked for IO.
// Alas, separate regions are needed due to the same ROM appearing on both pages.
for(uint8_t c = 0; c < 2; c++) {
set_regions(0xe0 + c, {0xc000, 0xc100, 0xc300, 0xc400, 0xc800, 0xd000, 0xe000, 0xffff});
}
// [Banks $e2[ROM start]: empty].
// ROM banks: directly mapped to ROM.
const uint8_t rom_bank_count = uint8_t(rom.size() >> 16);
const uint8_t first_rom_bank = uint8_t(0x100 - rom_bank_count);
const uint8_t rom_region = region();
for(uint8_t c = 0; c < rom_bank_count; ++c) {
set_region(first_rom_bank + c, 0x0000, 0xffff, rom_region);
}
// Apply proper storage to those banks.
auto set_storage = [this](uint32_t address, const uint8_t *read, uint8_t *write) {
// Don't allow the reserved null region to be modified.
assert(region_map[address >> 8]);
// Either set or apply a quick bit of testing as to the logic at play.
auto &region = regions[region_map[address >> 8]];
if(read) read -= address;
if(write) write -= address;
if(!region.read) {
region.read = read;
region.write = write;
} else {
assert(region.read == read);
assert(region.write == write);
}
};
// This is highly redundant, but decouples this step from the above.
for(size_t c = 0; c < 0x800000; c += 0x100) {
if(c < ram.size() - 128*1024) {
set_storage(uint32_t(c), &ram[c], &ram[c]);
}
}
uint8_t *const slow_ram = &ram[ram.size() - 0x20000];
for(size_t c = 0xe00000; c < 0xe20000; c += 0x100) {
set_storage(uint32_t(c), &slow_ram[c - 0xe00000], &slow_ram[c - 0xe00000]);
}
for(uint32_t c = 0; c < uint32_t(rom_bank_count); c++) {
set_storage((first_rom_bank + c) << 16, &rom[c << 16], nullptr);
}
// TODO: set 1Mhz flags.
// Apply initial language/auxiliary state.
set_card_paging();
set_zero_page_paging();
set_main_paging();
set_shadowing();
}
// MARK: - Live bus access notifications.
void set_shadow_register(uint8_t value) {
const uint8_t diff = value ^ shadow_register_;
shadow_register_ = value;
if(diff & 0x40) { // IO/language-card inhibit
set_language_card_paging();
set_card_paging();
}
if(diff & 0x3f) {
set_shadowing();
}
}
void set_speed_register(uint8_t value) {
const uint8_t diff = value ^ speed_register_;
speed_register_ = value;
if(diff & 0x10) {
set_shadowing();
}
}
private:
Apple::II::AuxiliaryMemorySwitches<MemoryMap> auxiliary_switches_;
Apple::II::LanguageCardSwitches<MemoryMap> language_card_;
friend Apple::II::AuxiliaryMemorySwitches<MemoryMap>;
friend Apple::II::LanguageCardSwitches<MemoryMap>;
uint8_t shadow_register_ = 0x08;
uint8_t speed_register_ = 0x00;
// MARK: - Memory banking.
void set_language_card_paging() {
const auto language_state = language_card_.state();
const auto zero_state = auxiliary_switches_.zero_state();
const bool inhibit_banks0001 = shadow_register_ & 0x40;
auto apply = [&language_state, &zero_state, this](uint32_t bank_base, uint8_t *ram) {
// All references below are to 0xc000, 0xd000 and 0xe000 but should
// work regardless of bank.
// TODO: verify order of ternary here — on the plain Apple II it was arbitrary.
uint8_t *const lower_ram_bank = ram - (language_state.bank1 ? 0x0000 : 0x1000);
// Crib the ROM pointer from a page it's always visible on.
const uint8_t *const rom = &regions[region_map[0xffd0]].read[0xffd000] - ((bank_base << 8) + 0xd000);
auto &d0_region = regions[region_map[bank_base | 0xd0]];
d0_region.read = language_state.read ? lower_ram_bank : rom;
d0_region.write = language_state.write ? nullptr : lower_ram_bank;
auto &e0_region = regions[region_map[bank_base | 0xe0]];
e0_region.read = language_state.read ? ram : rom;
e0_region.write = language_state.write ? nullptr : ram;
// Assert assumptions made above re: memory layout.
assert(region_map[bank_base | 0xd0] + 1 == region_map[bank_base | 0xe0]);
assert(region_map[bank_base | 0xe0] == region_map[bank_base | 0xff]);
};
auto set_no_card = [this](uint32_t bank_base) {
auto &d0_region = regions[region_map[bank_base | 0xd0]];
d0_region.read = ram_base;
d0_region.write = ram_base;
auto &e0_region = regions[region_map[bank_base | 0xe0]];
e0_region.read = ram_base;
e0_region.write = ram_base;
};
if(inhibit_banks0001) {
set_no_card(0x0000);
set_no_card(0x0100);
} else {
apply(0x0000, zero_state ? &ram_base[0x10000] : ram_base);
apply(0x0100, ram_base);
}
uint8_t *const e0_ram = regions[region_map[0xe000]].write;
apply(0xe000, e0_ram);
apply(0xe100, e0_ram);
}
void set_card_paging() {
const bool inhibit_banks0001 = shadow_register_ & 0x40;
const auto state = auxiliary_switches_.card_state();
auto apply = [&state, this](uint32_t bank_base) {
auto &c0_region = regions[region_map[bank_base | 0xc0]];
auto &c1_region = regions[region_map[bank_base | 0xc1]];
auto &c3_region = regions[region_map[bank_base | 0xc3]];
auto &c4_region = regions[region_map[bank_base | 0xc4]];
auto &c8_region = regions[region_map[bank_base | 0xc8]];
const uint8_t *const rom = &regions[region_map[0xffd0]].read[0xffc100] - ((bank_base << 8) + 0xc100);
// This is applied dynamically as it may be added or lost in banks $00 and $01.
c0_region.flags |= Region::IsIO;
#define apply_region(flag, region) \
if(flag) { \
region.read = rom; \
region.flags &= ~Region::IsIO; \
} else { \
region.flags |= Region::IsIO; \
}
apply_region(state.region_C1_C3, c1_region);
apply_region(state.region_C3, c3_region);
apply_region(state.region_C4_C8, c4_region);
apply_region(state.region_C8_D0, c8_region);
#undef apply_region
// Sanity checks.
assert(region_map[bank_base | 0xc1] == region_map[bank_base | 0xc0]+1);
assert(region_map[bank_base | 0xc3] == region_map[bank_base | 0xc1]+1);
assert(region_map[bank_base | 0xc4] == region_map[bank_base | 0xc3]+1);
assert(region_map[bank_base | 0xc8] == region_map[bank_base | 0xc4]+1);
};
if(inhibit_banks0001) {
// Set no IO in the Cx00 range for banks $00 and $01, just
// regular RAM (or possibly auxiliary).
const auto auxiliary_state = auxiliary_switches_.main_state();
for(uint8_t region = region_map[0x00c0]; region < region_map[0x00d0]; region++) {
regions[region].read = auxiliary_state.base.read ? &ram_base[0x10000] : ram_base;
regions[region].write = auxiliary_state.base.write ? &ram_base[0x10000] : ram_base;
regions[region].flags &= ~Region::IsIO;
}
for(uint8_t region = region_map[0x01c0]; region < region_map[0x01d0]; region++) {
regions[region].read = regions[region].write = ram_base;
regions[region].flags &= ~Region::IsIO;
}
} else {
// Obey the card state for banks $00 and $01.
apply(0x0000);
apply(0x0100);
}
// Obey the card state for banks $e0 and $e1.
apply(0xe000);
apply(0xe100);
}
void set_zero_page_paging() {
// Affects bank $00 only, and should be a single region.
auto &region = regions[region_map[0]];
region.read = region.write = auxiliary_switches_.zero_state() ? &ram_base[0x10000] : ram_base;
// Switching to or from auxiliary RAM potentially affects the language
// and regular card areas.
set_card_paging();
set_language_card_paging();
}
void set_shadowing() {
// TODO: check speed register bit to determine potential effect
// on all pages beyond $00 and $01.
#define apply(flag, zone) \
if(flag) { \
regions[region_map[zone]].flags &= ~Region::IsShadowed; \
} else { \
regions[region_map[zone]].flags |= Region::IsShadowed; \
}
// Text Page 1, main and auxiliary.
apply(shadow_register_ & 0x01, 0x0004);
apply(shadow_register_ & 0x01, 0x0104);
// Text Page 2, main and auxiliary.
// TODO: on a ROM03 machine only.
apply(shadow_register_ & 0x20, 0x0008);
apply(shadow_register_ & 0x20, 0x0108);
// Hi-res graphics Page 1, main and auxiliary.
apply(shadow_register_ & 0x02, 0x0020);
apply(shadow_register_ & 0x12, 0x0120);
// Hi-res graphics Page 2, main and auxiliary.
apply(shadow_register_ & 0x04, 0x0040);
apply(shadow_register_ & 0x14, 0x0140);
// Residue of Super Hi-Res.
apply(shadow_register_ & 0x08, 0x0160);
// TODO: does inhibiting Super Hi-Res also affect the regular hi-res pages?
#undef apply
}
void set_main_paging() {
const auto state = auxiliary_switches_.main_state();
#define set(page, flags) {\
auto &region = regions[region_map[page]]; \
region.read = flags.read ? &ram_base[0x10000] : ram_base; \
region.write = flags.write ? &ram_base[0x10000] : ram_base; \
}
set(0x02, state.base);
set(0x08, state.base);
set(0x40, state.base);
set(0x04, state.region_04_08);
set(0x20, state.region_20_40);
#undef set
// This also affects shadowing flags, if shadowing is enabled at all,
// and might affect RAM in the IO area of bank $00 because the language
// card can be inhibited on a IIgs.
set_shadowing();
set_card_paging();
}
public:
// Memory layout here is done via double indirection; the main loop should:
// (i) use the top two bytes of the address to get an index from memory_map_; and
// (ii) use that to index the memory_regions table.
//
// Pointers are eight bytes at the time of writing, so the extra level of indirection
// reduces what would otherwise be a 1.25mb table down to not a great deal more than 64kb.
std::array<uint8_t, 65536> region_map;
uint8_t *ram_base = nullptr;
size_t shadow_offset;
struct Region {
uint8_t *write = nullptr;
const uint8_t *read = nullptr;
uint8_t flags = 0;
enum Flag: uint8_t {
IsShadowed = 1 << 0, // Writes should be shadowed to [end of RAM - 128kb + base offset].
Is1Mhz = 1 << 1, // Both reads and writes should be synchronised with the 1Mhz clock.
IsIO = 1 << 2, // Indicates that this region should be checked for soft switches, registers, etc;
// usurps the shadowed flags.
};
};
std::array<Region, 64> regions; // The assert above ensures that this is large enough; there's no
// doctrinal reason for it to be whatever size it is now, just
// adjust as required.
};
#define MemoryMapRegion(map, address) map.regions[map.region_map[address >> 8]]
2020-10-26 01:40:50 +00:00
#define MemoryMapRead(region, address, value) *value = region.read ? region.read[address] : 0xff
#define MemoryMapWrite(map, region, address, value) \
2020-10-26 01:40:50 +00:00
if(region.write) { \
region.write[address] = *value; \
if(region.flags & MemoryMap::Region::IsShadowed) { \
map.ram_base[(&region.write[address] - map.ram_base) % (128 * 1024) + map.shadow_offset] = *value; \
2020-10-26 01:40:50 +00:00
} \
}
}
}
#endif /* MemoryMap_h */