1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-23 03:32:32 +00:00
CLK/Processors/68000/Implementation/68000Storage.hpp

234 lines
8.4 KiB
C++
Raw Normal View History

2022-05-16 15:44:16 +00:00
//
2023-05-10 22:13:01 +00:00
// 68000Storage.hpp
2022-05-16 15:44:16 +00:00
// Clock Signal
//
// Created by Thomas Harte on 16/05/2022.
// Copyright © 2022 Thomas Harte. All rights reserved.
//
#pragma once
2022-05-16 15:44:16 +00:00
#include "../../../InstructionSets/M68k/Decoder.hpp"
#include "../../../InstructionSets/M68k/Perform.hpp"
#include "../../../InstructionSets/M68k/Status.hpp"
#include <limits>
2023-05-10 22:13:01 +00:00
namespace CPU::MC68000 {
2022-05-16 15:44:16 +00:00
struct ProcessorBase: public InstructionSet::M68k::NullFlowController {
ProcessorBase() {
read_program_announce.address = read_program.address = &program_counter_.l;
}
ProcessorBase(const ProcessorBase& rhs) = delete;
ProcessorBase& operator=(const ProcessorBase& rhs) = delete;
2022-06-30 01:40:48 +00:00
int state_ = 0;
2022-05-16 15:44:16 +00:00
/// Counts time left on the clock before the current batch of processing
/// is complete; may be less than zero.
HalfCycles time_remaining_;
/// E clock phase.
HalfCycles e_clock_phase_;
/// Current supervisor state, for direct provision to the bus handler.
int is_supervisor_ = 1;
// A decoder for instructions, plus all collected information about the
// current instruction.
InstructionSet::M68k::Predecoder<InstructionSet::M68k::Model::M68000> decoder_;
InstructionSet::M68k::Preinstruction instruction_;
uint16_t opcode_;
2022-05-17 12:26:35 +00:00
uint8_t operand_flags_;
SlicedInt32 instruction_address_;
// Register state.
InstructionSet::M68k::Status status_;
SlicedInt32 program_counter_;
SlicedInt32 registers_[16]{}; // D0D7 followed by A0A7.
SlicedInt32 stack_pointers_[2];
/// Current state of the DTACK input.
bool dtack_ = false;
/// Current state of the VPA input.
bool vpa_ = false;
/// Current state of the BERR input.
bool berr_ = false;
/// Current input interrupt level.
int bus_interrupt_level_ = 0;
2022-05-24 19:47:47 +00:00
// Whether to trace at the end of this instruction.
InstructionSet::M68k::Status::FlagT should_trace_ = 0;
2022-05-24 14:53:59 +00:00
// I don't have great information on the 68000 interrupt latency; as a first
// guess, capture the bus interrupt level upon every prefetch, and use that for
// the inner-loop decision.
int captured_interrupt_level_ = 0;
/// Contains the prefetch queue; the most-recently fetched thing is the
/// low portion of this word, and the thing fetched before that has
/// proceeded to the high portion.
2022-05-17 12:26:35 +00:00
SlicedInt32 prefetch_;
// Temporary storage for the current instruction's operands
// and the corresponding effective addresses.
CPU::SlicedInt32 operand_[2];
2022-05-22 15:27:38 +00:00
CPU::SlicedInt32 effective_address_[2];
/// If currently in the wait-for-DTACK state, this indicates where to go
/// upon receipt of DTACK or VPA. BERR will automatically segue
/// into the proper exception.
int post_dtack_state_ = 0;
/// If using CalcEffectiveAddress, this is the state to adopt after the
/// effective address for next_operand_ has been calculated.
int post_ea_state_ = 0;
/// The perform state for this operation.
int perform_state_ = 0;
/// When fetching or storing operands, this is the next one to fetch
/// or store.
int next_operand_ = -1;
2022-05-17 20:10:20 +00:00
/// Storage for a temporary address, which can't be a local because it'll
/// be used to populate microcycles, which may persist beyond an entry
/// and exit of run_for (especially between an address announcement, and
/// a data select).
SlicedInt32 temporary_address_;
2022-05-17 20:10:20 +00:00
2022-05-20 18:22:32 +00:00
/// Storage for a temporary value; primarily used by MOVEP to split a 32-bit
/// source into bus-compatible byte units.
SlicedInt32 temporary_value_;
/// A record of the exception to trigger.
int exception_vector_ = 0;
/// Transient storage for exception processing.
SlicedInt16 captured_status_;
/// An internal flag used during various dynamically-sized instructions
/// (e.g. BCHG, DIVU) to indicate how much additional processing happened;
/// this is measured in microcycles.
int dynamic_instruction_length_ = 0;
2022-05-20 16:58:45 +00:00
2022-05-20 22:48:19 +00:00
/// Two bits of state for MOVEM, being the curent register and what to
/// add to it to get to the next register.
int register_index_ = 0, register_delta_ = 0;
// A lookup table that aids with effective address calculation in
// predecrement and postincrement modes; index as [size][register]
// and note that [0][7] is 2 rather than 1.
static constexpr uint32_t address_increments[3][8] = {
{ 1, 1, 1, 1, 1, 1, 1, 2, },
{ 2, 2, 2, 2, 2, 2, 2, 2, },
{ 4, 4, 4, 4, 4, 4, 4, 4, },
};
2022-05-23 12:18:37 +00:00
// A lookup table that ensures write-back to data registers affects
// only the correct bits.
static constexpr uint32_t size_masks[3] = { 0xff, 0xffff, 0xffff'ffff };
// Assumptions used by the lookup tables above:
static_assert(int(InstructionSet::M68k::DataSize::Byte) == 0);
static_assert(int(InstructionSet::M68k::DataSize::Word) == 1);
static_assert(int(InstructionSet::M68k::DataSize::LongWord) == 2);
/// Used by some dedicated read-modify-write perform patterns to
/// determine the size of the bus operation.
OperationT select_flag_ = 0;
2022-05-24 19:42:50 +00:00
// Captured bus/address-error state.
Microcycle<Operation::DecodeDynamically> bus_error_;
2022-05-24 19:42:50 +00:00
// Flow controller methods implemented.
using Preinstruction = InstructionSet::M68k::Preinstruction;
template <typename IntT> void did_mulu(IntT);
template <typename IntT> void did_muls(IntT);
inline void did_chk(bool, bool);
inline void did_scc(bool);
template <typename IntT> void did_shift(int);
template <bool did_overflow> void did_divu(uint32_t, uint32_t);
template <bool did_overflow> void did_divs(int32_t, int32_t);
2022-05-20 16:58:45 +00:00
inline void did_bit_op(int);
inline void did_update_status();
2022-05-20 16:04:43 +00:00
template <typename IntT> void complete_bcc(bool, IntT);
2022-05-20 15:32:06 +00:00
inline void complete_dbcc(bool, bool, int16_t);
2022-05-24 00:42:41 +00:00
inline void move_to_usp(uint32_t);
inline void move_from_usp(uint32_t &);
inline void tas(Preinstruction, uint32_t);
template <bool use_current_instruction_pc = true> void raise_exception(int);
// These aren't implemented because the specific details of the implementation
// mean that the performer call-out isn't necessary.
2022-05-17 20:10:20 +00:00
template <typename IntT> void movep(Preinstruction, uint32_t, uint32_t) {}
template <typename IntT> void movem_toM(Preinstruction, uint32_t, uint32_t) {}
template <typename IntT> void movem_toR(Preinstruction, uint32_t, uint32_t) {}
2022-05-22 11:39:16 +00:00
void jsr(uint32_t) {}
2022-05-25 20:32:02 +00:00
void bsr(uint32_t) {}
2022-05-22 11:39:16 +00:00
void jmp(uint32_t) {}
2022-05-22 15:27:38 +00:00
inline void pea(uint32_t) {}
inline void link(Preinstruction, uint32_t) {}
inline void unlink(uint32_t &) {}
inline void rtr() {}
inline void rte() {}
inline void rts() {}
inline void reset() {}
2022-05-24 19:14:20 +00:00
inline void stop() {}
2022-05-17 20:10:20 +00:00
// Some microcycles that will be modified as required and used in the main loop;
// the semantics of a switch statement make in-place declarations awkward and
// some of these may persist across multiple calls to run_for.
Microcycle<OperationT(0)> idle;
2022-05-17 20:10:20 +00:00
// Read a program word. All accesses via the program counter are word sized.
static constexpr OperationT
ReadProgramAnnounceOperation = Operation::Read | Operation::NewAddress | Operation::IsProgram;
static constexpr OperationT
ReadProgramOperation = Operation::Read | Operation::SameAddress | Operation::SelectWord | Operation::IsProgram;
Microcycle<ReadProgramAnnounceOperation> read_program_announce{};
Microcycle<ReadProgramOperation> read_program{};
// Read a data word or byte.
Microcycle<Operation::DecodeDynamically> access_announce {
Operation::Read | Operation::NewAddress | Operation::IsData
2022-05-17 20:10:20 +00:00
};
Microcycle<Operation::DecodeDynamically> access {
Operation::Read | Operation::SameAddress | Operation::SelectWord | Operation::IsData
2022-05-17 20:10:20 +00:00
};
2022-05-22 20:14:03 +00:00
// TAS.
static constexpr OperationT
TASOperations[5] = {
Operation::Read | Operation::NewAddress | Operation::IsData,
Operation::Read | Operation::SameAddress | Operation::IsData | Operation::SelectByte,
Operation::SameAddress,
Operation::SameAddress | Operation::IsData,
Operation::SameAddress | Operation::IsData | Operation::SelectByte,
};
Microcycle<TASOperations[0]> tas_cycle0;
Microcycle<TASOperations[1]> tas_cycle1;
Microcycle<TASOperations[2]> tas_cycle2;
Microcycle<TASOperations[3]> tas_cycle3;
Microcycle<TASOperations[4]> tas_cycle4;
2022-05-22 20:14:03 +00:00
// Reset.
static constexpr OperationT ResetOperation = CPU::MC68000::Operation::Reset;
Microcycle<ResetOperation> reset_cycle { HalfCycles(248) };
// Interrupt acknowledge.
static constexpr OperationT
InterruptCycleOperations[2] = {
Operation::InterruptAcknowledge | Operation::Read | Operation::NewAddress,
Operation::InterruptAcknowledge | Operation::Read | Operation::SameAddress | Operation::SelectByte
};
2023-12-22 04:12:14 +00:00
Microcycle<InterruptCycleOperations[0]> interrupt_cycle0;
Microcycle<InterruptCycleOperations[1]> interrupt_cycle1;
2022-05-17 20:10:20 +00:00
// Holding spot when awaiting DTACK/etc.
Microcycle<Operation::DecodeDynamically> awaiting_dtack;
2022-05-16 15:44:16 +00:00
};
}