1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-23 18:31:53 +00:00
CLK/InstructionSets/x86/Implementation/PerformImplementation.hpp

703 lines
22 KiB
C++
Raw Normal View History

2023-10-05 18:37:58 +00:00
//
// PerformImplementation.hpp
// Clock Signal
//
// Created by Thomas Harte on 05/10/2023.
// Copyright © 2023 Thomas Harte. All rights reserved.
//
#ifndef PerformImplementation_h
#define PerformImplementation_h
2023-10-05 19:49:07 +00:00
#include "../../../Numeric/Carry.hpp"
#include "../../../Numeric/RegisterSizes.hpp"
#include "../Interrupts.hpp"
2023-10-05 19:49:07 +00:00
2023-10-05 18:37:58 +00:00
namespace InstructionSet::x86 {
2023-10-09 15:46:59 +00:00
template <Model model, typename IntT, typename InstructionT, typename RegistersT, typename MemoryT>
IntT *resolve(
InstructionT &instruction,
Source source,
DataPointer pointer,
RegistersT &registers,
MemoryT &memory,
IntT *none = nullptr,
IntT *immediate = nullptr
);
template <Model model, Source source, typename IntT, typename InstructionT, typename RegistersT, typename MemoryT>
uint32_t address(
InstructionT &instruction,
DataPointer pointer,
RegistersT &registers,
MemoryT &memory
) {
// TODO: non-word indexes and bases.
2023-10-09 15:49:38 +00:00
if constexpr (source == Source::DirectAddress) {
return instruction.offset();
}
2023-10-09 15:46:59 +00:00
2023-10-09 15:49:38 +00:00
uint32_t address;
uint16_t zero = 0;
address = *resolve<model, uint16_t>(instruction, pointer.index(), pointer, registers, memory, &zero);
if constexpr (is_32bit(model)) {
address <<= pointer.scale();
}
address += instruction.offset();
2023-10-09 15:46:59 +00:00
2023-10-09 15:49:38 +00:00
if constexpr (source == Source::IndirectNoBase) {
return address;
2023-10-09 15:46:59 +00:00
}
2023-10-09 15:49:38 +00:00
return address + *resolve<model, uint16_t>(instruction, pointer.base(), pointer, registers, memory);
2023-10-09 15:46:59 +00:00
}
template <Model model, typename IntT, typename InstructionT, typename RegistersT, typename MemoryT>
IntT *resolve(
InstructionT &instruction,
Source source,
DataPointer pointer,
RegistersT &registers,
MemoryT &memory,
IntT *none,
IntT *immediate
) {
// Rules:
//
// * if this is a memory access, set target_address and break;
// * otherwise return the appropriate value.
uint32_t target_address;
switch(source) {
case Source::eAX:
// Slightly contorted if chain here and below:
//
// (i) does the `constexpr` version of a `switch`; and
// (i) ensures .eax() etc aren't called on @c registers for 16-bit processors, so they need not implement 32-bit storage.
if constexpr (is_32bit(model) && std::is_same_v<IntT, uint32_t>) { return &registers.eax(); }
else if constexpr (std::is_same_v<IntT, uint16_t>) { return &registers.ax(); }
else if constexpr (std::is_same_v<IntT, uint8_t>) { return &registers.al(); }
else { return nullptr; }
case Source::eCX:
if constexpr (is_32bit(model) && std::is_same_v<IntT, uint32_t>) { return &registers.ecx(); }
else if constexpr (std::is_same_v<IntT, uint16_t>) { return &registers.cx(); }
else if constexpr (std::is_same_v<IntT, uint8_t>) { return &registers.cl(); }
else { return nullptr; }
case Source::eDX:
if constexpr (is_32bit(model) && std::is_same_v<IntT, uint32_t>) { return &registers.edx(); }
else if constexpr (std::is_same_v<IntT, uint16_t>) { return &registers.dx(); }
else if constexpr (std::is_same_v<IntT, uint8_t>) { return &registers.dl(); }
else if constexpr (std::is_same_v<IntT, uint32_t>) { return nullptr; }
case Source::eBX:
if constexpr (is_32bit(model) && std::is_same_v<IntT, uint32_t>) { return &registers.ebx(); }
else if constexpr (std::is_same_v<IntT, uint16_t>) { return &registers.bx(); }
else if constexpr (std::is_same_v<IntT, uint8_t>) { return &registers.bl(); }
else if constexpr (std::is_same_v<IntT, uint32_t>) { return nullptr; }
case Source::eSPorAH:
if constexpr (is_32bit(model) && std::is_same_v<IntT, uint32_t>) { return &registers.esp(); }
else if constexpr (std::is_same_v<IntT, uint16_t>) { return &registers.sp(); }
else if constexpr (std::is_same_v<IntT, uint8_t>) { return &registers.ah(); }
else { return nullptr; }
case Source::eBPorCH:
if constexpr (is_32bit(model) && std::is_same_v<IntT, uint32_t>) { return &registers.ebp(); }
else if constexpr (std::is_same_v<IntT, uint16_t>) { return &registers.bp(); }
else if constexpr (std::is_same_v<IntT, uint8_t>) { return &registers.ch(); }
else { return nullptr; }
case Source::eSIorDH:
if constexpr (is_32bit(model) && std::is_same_v<IntT, uint32_t>) { return &registers.esi(); }
else if constexpr (std::is_same_v<IntT, uint16_t>) { return &registers.si(); }
else if constexpr (std::is_same_v<IntT, uint8_t>) { return &registers.dh(); }
else { return nullptr; }
case Source::eDIorBH:
if constexpr (is_32bit(model) && std::is_same_v<IntT, uint32_t>) { return &registers.edi(); }
else if constexpr (std::is_same_v<IntT, uint16_t>) { return &registers.di(); }
else if constexpr (std::is_same_v<IntT, uint8_t>) { return &registers.bh(); }
else { return nullptr; }
case Source::ES: if constexpr (std::is_same_v<IntT, uint16_t>) return &registers.es(); else return nullptr;
case Source::CS: if constexpr (std::is_same_v<IntT, uint16_t>) return &registers.cs(); else return nullptr;
case Source::SS: if constexpr (std::is_same_v<IntT, uint16_t>) return &registers.ss(); else return nullptr;
case Source::DS: if constexpr (std::is_same_v<IntT, uint16_t>) return &registers.ds(); else return nullptr;
// 16-bit models don't have FS and GS.
case Source::FS: if constexpr (is_32bit(model) && std::is_same_v<IntT, uint16_t>) return &registers.fs(); else return nullptr;
case Source::GS: if constexpr (is_32bit(model) && std::is_same_v<IntT, uint16_t>) return &registers.gs(); else return nullptr;
case Source::Immediate:
*immediate = instruction.operand();
return immediate;
case Source::None: return none;
case Source::Indirect:
target_address = address<model, Source::Indirect, IntT>(instruction, pointer, registers, memory);
break;
case Source::IndirectNoBase:
target_address = address<model, Source::IndirectNoBase, IntT>(instruction, pointer, registers, memory);
break;
case Source::DirectAddress:
target_address = address<model, Source::DirectAddress, IntT>(instruction, pointer, registers, memory);
break;
}
// If execution has reached here then a memory fetch is required.
// Do it and exit.
const Source segment = pointer.segment(instruction.segment_override());
return &memory.template access<IntT>(segment, target_address);
};
2023-10-05 18:37:58 +00:00
namespace Primitive {
2023-10-05 19:49:07 +00:00
//
// BEGIN TEMPORARY COPY AND PASTE SECTION.
//
// The following are largely excised from the M68k PerformImplementation.hpp; if there proves to be no
// reason further to specialise them, there'll be a factoring out. In some cases I've tightened the documentation.
//
/// @returns An int of type @c IntT with only the most-significant bit set.
template <typename IntT> constexpr IntT top_bit() {
static_assert(!std::numeric_limits<IntT>::is_signed);
constexpr IntT max = std::numeric_limits<IntT>::max();
return max - (max >> 1);
}
/// @returns The number of bits in @c IntT.
template <typename IntT> constexpr int bit_size() {
return sizeof(IntT) * 8;
}
/// @returns An int with the top bit indicating whether overflow occurred during the calculation of
/// • @c lhs + @c rhs (if @c is_add is true); or
/// • @c lhs - @c rhs (if @c is_add is false)
/// and the result was @c result. All other bits will be clear.
template <bool is_add, typename IntT>
IntT overflow(IntT lhs, IntT rhs, IntT result) {
2023-10-09 20:30:47 +00:00
const IntT output_changed = result ^ lhs;
2023-10-05 19:49:07 +00:00
const IntT input_differed = lhs ^ rhs;
if constexpr (is_add) {
return top_bit<IntT>() & output_changed & ~input_differed;
} else {
return top_bit<IntT>() & output_changed & input_differed;
}
}
2023-10-09 20:30:47 +00:00
// NOTE TO FUTURE SELF: the original 68k `overflow` treats lhs and rhs the other way
// around, affecting subtractive overflow. Be careful.
2023-10-05 19:49:07 +00:00
//
// END COPY AND PASTE SECTION.
//
2023-10-06 15:10:54 +00:00
//
// Comments below on intended functioning of each operation come from the 1997 edition of the
// Intel Architecture Software Developers Manual; that year all such definitions still fitted within a
// single volume, Volume 2.
//
// Order Number 243191; e.g. https://www.ardent-tool.com/CPU/docs/Intel/IA/243191-002.pdf
//
inline void aaa(CPU::RegisterPair16 &ax, Status &status) { // P. 313
2023-10-05 18:37:58 +00:00
/*
IF ((AL AND 0FH) > 9) OR (AF = 1)
THEN
AL (AL + 6);
AH AH + 1;
AF 1;
CF 1;
ELSE
AF 0;
CF 0;
FI;
AL AL AND 0FH;
*/
/*
The AF and CF flags are set to 1 if the adjustment results in a decimal carry;
otherwise they are cleared to 0. The OF, SF, ZF, and PF flags are undefined.
*/
if((ax.halves.low & 0x0f) > 9 || status.auxiliary_carry) {
ax.halves.low += 6;
++ax.halves.high;
status.auxiliary_carry = status.carry = 1;
} else {
status.auxiliary_carry = status.carry = 0;
}
ax.halves.low &= 0x0f;
2023-10-05 18:37:58 +00:00
}
2023-10-06 15:11:29 +00:00
inline void aad(CPU::RegisterPair16 &ax, uint8_t imm, Status &status) {
2023-10-05 18:37:58 +00:00
/*
tempAL AL;
tempAH AH;
AL (tempAL + (tempAH * imm8)) AND FFH; (* imm8 is set to 0AH for the AAD mnemonic *)
AH 0
*/
/*
The SF, ZF, and PF flags are set according to the result;
the OF, AF, and CF flags are undefined.
*/
ax.halves.low = ax.halves.low + (ax.halves.high * imm);
ax.halves.high = 0;
status.sign = ax.halves.low & 0x80;
status.parity = status.zero = ax.halves.low;
}
template <typename FlowControllerT>
inline void aam(CPU::RegisterPair16 &ax, uint8_t imm, Status &status, FlowControllerT &flow_controller) {
2023-10-05 18:52:24 +00:00
/*
tempAL AL;
AH tempAL / imm8; (* imm8 is set to 0AH for the AAD mnemonic *)
AL tempAL MOD imm8;
*/
/*
The SF, ZF, and PF flags are set according to the result.
The OF, AF, and CF flags are undefined.
*/
/*
If ... an immediate value of 0 is used, it will cause a #DE (divide error) exception.
*/
if(!imm) {
flow_controller.interrupt(Interrupt::DivideByZero);
return;
}
2023-10-05 18:52:24 +00:00
ax.halves.high = ax.halves.low / imm;
ax.halves.low = ax.halves.low % imm;
status.sign = ax.halves.low & 0x80;
status.parity = status.zero = ax.halves.low;
}
2023-10-06 15:11:29 +00:00
inline void aas(CPU::RegisterPair16 &ax, Status &status) {
2023-10-05 18:52:24 +00:00
/*
IF ((AL AND 0FH) > 9) OR (AF = 1)
THEN
AL AL 6;
AH AH 1;
AF 1;
CF 1;
ELSE
CF 0;
AF 0;
FI;
AL AL AND 0FH;
*/
/*
The AF and CF flags are set to 1 if there is a decimal borrow;
otherwise, they are cleared to 0. The OF, SF, ZF, and PF flags are undefined.
*/
if((ax.halves.low & 0x0f) > 9 || status.auxiliary_carry) {
ax.halves.low -= 6;
--ax.halves.high;
status.auxiliary_carry = status.carry = 1;
} else {
status.auxiliary_carry = status.carry = 0;
}
ax.halves.low &= 0x0f;
}
inline void daa(uint8_t &al, Status &status) {
/*
2023-10-09 18:42:32 +00:00
(as modified by https://www.felixcloutier.com/x86/daa ...)
old_AL AL;
old_CF CF;
CF 0;
IF (((AL AND 0FH) > 9) or AF = 1)
THEN
AL AL + 6;
2023-10-09 18:42:32 +00:00
CF old_CF OR CarryFromLastAddition; (* CF OR carry from AL AL + 6 *)
AF 1;
ELSE
AF 0;
FI;
2023-10-09 18:42:32 +00:00
IF ((old_AL > 99H) or old_CF = 1)
THEN
AL AL + 60H;
CF 1;
ELSE
CF 0;
FI;
*/
/*
The CF and AF flags are set if the adjustment of the value results in a
decimal carry in either digit of the result (see the Operation section above).
The SF, ZF, and PF flags are set according to the result. The OF flag is undefined.
*/
2023-10-09 18:42:32 +00:00
const uint8_t old_al = al;
const auto old_carry = status.carry;
status.carry = 0;
if((al & 0x0f) > 0x09 || status.auxiliary_carry) {
2023-10-09 18:42:32 +00:00
status.carry = old_carry | (al > 0xf9);
al += 0x06;
status.auxiliary_carry = 1;
} else {
status.auxiliary_carry = 0;
}
2023-10-09 18:42:32 +00:00
if(old_al > 0x99 || old_carry) {
al += 0x60;
status.carry = 1;
} else {
status.carry = 0;
}
status.sign = al & 0x80;
status.zero = status.parity = al;
}
inline void das(uint8_t &al, Status &status) {
/*
(as modified by https://www.felixcloutier.com/x86/daa ...)
old_AL AL;
old_CF CF;
CF 0;
IF (((AL AND 0FH) > 9) or AF = 1)
THEN
AL AL - 6;
CF old_CF OR CarryFromLastAddition; (* CF OR borrow from AL AL - 6 *)
AF 1;
ELSE
AF 0;
FI;
IF ((old_AL > 99H) or old_CF = 1)
THEN
AL AL - 60H;
CF 1;
ELSE
CF 0;
FI;
*/
/*
The CF and AF flags are set if the adjustment of the value results in a
decimal carry in either digit of the result (see the Operation section above).
The SF, ZF, and PF flags are set according to the result. The OF flag is undefined.
*/
const uint8_t old_al = al;
const auto old_carry = status.carry;
status.carry = 0;
if((al & 0x0f) > 0x09 || status.auxiliary_carry) {
status.carry = old_carry | (al < 0x06);
al -= 0x06;
status.auxiliary_carry = 1;
} else {
status.auxiliary_carry = 0;
}
if(old_al > 0x99 || old_carry) {
al -= 0x60;
status.carry = 1;
} else {
status.carry = 0;
}
status.sign = al & 0x80;
status.zero = status.parity = al;
}
2023-10-05 19:49:07 +00:00
template <typename IntT>
void adc(IntT &destination, IntT source, Status &status) {
/*
DEST DEST + SRC + CF;
*/
/*
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.
*/
const IntT result = destination + source + status.carry_bit<IntT>();
status.carry = Numeric::carried_out<bit_size<IntT>() - 1>(destination, source, result);
status.auxiliary_carry = Numeric::carried_in<4>(destination, source, result);
2023-10-08 17:39:46 +00:00
status.sign = result & top_bit<IntT>();
status.zero = status.parity = result;
2023-10-05 19:49:07 +00:00
status.overflow = overflow<true, IntT>(destination, source, result);
destination = result;
}
template <typename IntT>
void add(IntT &destination, IntT source, Status &status) {
/*
DEST DEST + SRC;
*/
/*
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.
*/
const IntT result = destination + source;
status.carry = Numeric::carried_out<bit_size<IntT>() - 1>(destination, source, result);
status.auxiliary_carry = Numeric::carried_in<4>(destination, source, result);
2023-10-08 17:39:46 +00:00
status.sign = result & top_bit<IntT>();
status.zero = status.parity = result;
2023-10-05 19:49:07 +00:00
status.overflow = overflow<true, IntT>(destination, source, result);
destination = result;
}
2023-10-09 20:21:04 +00:00
template <typename IntT>
void sbb(IntT &destination, IntT source, Status &status) {
/*
DEST DEST - (SRC + CF);
*/
/*
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.
*/
const IntT result = destination + source + status.carry_bit<IntT>();
status.carry = !Numeric::carried_out<bit_size<IntT>() - 1>(destination, IntT(~source), result);
status.auxiliary_carry = !Numeric::carried_in<4>(destination, IntT(~source), result);
status.sign = result & top_bit<IntT>();
status.zero = status.parity = result;
status.overflow = overflow<false, IntT>(destination, source, result);
destination = result;
}
template <typename IntT>
void sub(IntT &destination, IntT source, Status &status) {
/*
DEST DEST - SRC;
*/
/*
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.
*/
const IntT result = destination - source;
status.carry = !Numeric::carried_out<bit_size<IntT>() - 1>(destination, IntT(~source), result);
status.auxiliary_carry = !Numeric::carried_in<4>(destination, IntT(~source), result);
status.sign = result & top_bit<IntT>();
status.zero = status.parity = result;
status.overflow = overflow<false, IntT>(destination, source, result);
destination = result;
}
2023-10-09 02:18:40 +00:00
template <typename IntT>
void and_(IntT &destination, IntT source, Status &status) {
/*
DEST DEST AND SRC;
*/
/*
The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result.
The state of the AF flag is undefined.
*/
destination &= source;
status.overflow = 0;
status.carry = 0;
status.sign = destination & top_bit<IntT>();
status.zero = status.parity = destination;
}
2023-10-09 15:46:59 +00:00
template <typename IntT, typename RegistersT, typename FlowControllerT>
inline void call_relative(IntT offset, RegistersT &registers, FlowControllerT &flow_controller) {
flow_controller.call(registers.ip() + offset);
2023-10-05 18:37:58 +00:00
}
2023-10-09 15:46:59 +00:00
template <typename IntT, typename FlowControllerT>
inline void call_absolute(IntT target, FlowControllerT &flow_controller) {
flow_controller.call(target);
}
2023-10-08 17:34:28 +00:00
2023-10-09 15:46:59 +00:00
template <Model model, typename InstructionT, typename FlowControllerT, typename RegistersT, typename MemoryT>
2023-10-09 15:59:38 +00:00
void call_far(InstructionT &instruction,
2023-10-09 15:46:59 +00:00
FlowControllerT &flow_controller,
RegistersT &registers,
MemoryT &memory) {
2023-10-08 17:34:28 +00:00
2023-10-09 15:46:59 +00:00
// TODO: eliminate 16-bit assumption below.
uint16_t source_address = 0;
auto pointer = instruction.destination();
switch(pointer.template source<false>()) {
default:
case Source::Immediate: flow_controller.call(instruction.segment(), instruction.offset()); return;
2023-10-08 17:34:28 +00:00
2023-10-09 15:46:59 +00:00
case Source::Indirect:
source_address = address<model, Source::Indirect, uint16_t>(instruction, pointer, registers, memory);
break;
case Source::IndirectNoBase:
source_address = address<model, Source::IndirectNoBase, uint16_t>(instruction, pointer, registers, memory);
break;
2023-10-08 17:34:28 +00:00
case Source::DirectAddress:
2023-10-09 15:46:59 +00:00
source_address = address<model, Source::DirectAddress, uint16_t>(instruction, pointer, registers, memory);
2023-10-08 17:34:28 +00:00
break;
}
2023-10-09 15:46:59 +00:00
const Source source_segment = pointer.segment(instruction.segment_override());
const uint16_t offset = memory.template access<uint16_t>(source_segment, source_address);
source_address += 2;
const uint16_t segment = memory.template access<uint16_t>(source_segment, source_address);
flow_controller.call(segment, offset);
}
2023-10-09 19:00:04 +00:00
template <typename IntT>
void cbw(IntT &ax) {
constexpr IntT test_bit = 1 << (sizeof(IntT) * 4 - 1);
constexpr IntT low_half = (1 << (sizeof(IntT) * 4)) - 1;
if(ax & test_bit) {
ax |= ~low_half;
} else {
ax &= low_half;
}
2023-10-09 15:59:38 +00:00
}
2023-10-09 18:54:14 +00:00
template <typename IntT>
2023-10-09 19:00:04 +00:00
void cwd(IntT &dx, IntT ax) {
2023-10-09 18:54:14 +00:00
dx = ax & top_bit<IntT>() ? IntT(~0) : IntT(0);
}
2023-10-09 15:59:38 +00:00
inline void clc(Status &status) { status.carry = 0; }
inline void cld(Status &status) { status.direction = 0; }
inline void cli(Status &status) { status.interrupt = 0; } // TODO: quite a bit more in protected mode.
inline void cmc(Status &status) { status.carry = !status.carry; }
2023-10-09 15:46:59 +00:00
}
2023-10-08 17:34:28 +00:00
2023-10-05 18:37:58 +00:00
template <
Model model,
DataSize data_size,
typename InstructionT,
typename FlowControllerT,
typename RegistersT,
typename MemoryT,
typename IOT
2023-10-05 18:37:58 +00:00
> void perform(
const InstructionT &instruction,
2023-10-05 18:37:58 +00:00
Status &status,
2023-10-09 15:46:59 +00:00
FlowControllerT &flow_controller,
RegistersT &registers,
2023-10-09 15:46:59 +00:00
MemoryT &memory,
[[maybe_unused]] IOT &io
2023-10-05 18:37:58 +00:00
) {
using IntT = typename DataSizeType<data_size>::type;
using AddressT = typename AddressT<is_32bit(model)>::type;
// Establish source() and destination() shorthand to fetch data if necessary.
IntT immediate;
auto source = [&]() -> IntT& {
2023-10-09 15:46:59 +00:00
return *resolve<model, IntT>(
instruction,
instruction.source().template source<false>(),
instruction.source(),
registers,
memory,
nullptr,
&immediate);
};
auto destination = [&]() -> IntT& {
2023-10-09 15:46:59 +00:00
return *resolve<model, IntT>(
instruction,
instruction.destination().template source<false>(),
instruction.destination(),
registers,
memory,
nullptr,
&immediate);
};
// Guide to the below:
//
// * use hard-coded register names where appropriate;
// * return directly if there is definitely no possible write back to RAM;
// * otherwise use the source() and destination() lambdas, and break in order to allow a writeback if necessary.
switch(instruction.operation) {
2023-10-09 15:46:59 +00:00
default:
assert(false);
case Operation::AAA: Primitive::aaa(registers.axp(), status); return;
case Operation::AAD: Primitive::aad(registers.axp(), instruction.operand(), status); return;
case Operation::AAM: Primitive::aam(registers.axp(), instruction.operand(), status, flow_controller); return;
case Operation::AAS: Primitive::aas(registers.axp(), status); return;
case Operation::DAA: Primitive::daa(registers.al(), status); return;
case Operation::DAS: Primitive::das(registers.al(), status); return;
2023-10-09 19:00:04 +00:00
case Operation::CBW:
if constexpr (data_size == DataSize::Word) {
Primitive::cbw(registers.ax());
} else if constexpr (is_32bit(model) && data_size == DataSize::DWord) {
Primitive::cbw(registers.eax());
}
return;
2023-10-09 18:54:14 +00:00
case Operation::CWD:
if constexpr (data_size == DataSize::Word) {
Primitive::cwd(registers.dx(), registers.ax());
} else if constexpr (is_32bit(model) && data_size == DataSize::DWord) {
Primitive::cwd(registers.edx(), registers.eax());
}
return;
2023-10-09 19:03:01 +00:00
case Operation::ESC:
case Operation::NOP: return;
2023-10-09 20:21:04 +00:00
case Operation::HLT: flow_controller.halt(); return;
case Operation::WAIT: flow_controller.wait(); return;
2023-10-09 15:59:38 +00:00
case Operation::ADC: Primitive::adc(destination(), source(), status); break;
case Operation::ADD: Primitive::add(destination(), source(), status); break;
2023-10-09 20:21:04 +00:00
case Operation::SBB: Primitive::sbb(destination(), source(), status); break;
case Operation::SUB: Primitive::sub(destination(), source(), status); break;
2023-10-09 15:59:38 +00:00
case Operation::AND: Primitive::and_(destination(), source(), status); break;
2023-10-09 15:46:59 +00:00
case Operation::CALLrel:
Primitive::call_relative(instruction.displacement(), registers, flow_controller);
return;
case Operation::CALLabs:
Primitive::call_absolute(destination(), flow_controller);
return;
case Operation::CALLfar:
Primitive::call_far<model>(instruction, flow_controller, registers, memory);
return;
2023-10-09 15:59:38 +00:00
case Operation::CLC: Primitive::clc(status); return;
case Operation::CLD: Primitive::cld(status); return;
case Operation::CLI: Primitive::cli(status); return;
case Operation::CMC: Primitive::cmc(status); return;
2023-10-05 18:37:58 +00:00
}
// Write to memory if required to complete this operation.
memory.template write_back<IntT>();
2023-10-05 18:37:58 +00:00
}
template <
2023-10-05 18:37:58 +00:00
Model model,
typename InstructionT,
typename FlowControllerT,
typename RegistersT,
typename MemoryT,
typename IOT
2023-10-05 18:37:58 +00:00
> void perform(
const InstructionT &instruction,
Status &status,
FlowControllerT &flow_controller,
RegistersT &registers,
MemoryT &memory,
IOT &io
) {
// Dispatch to a function just like this that is specialised on data size.
// Fetching will occur in that specialised function, per the overlapping
// meaning of register names.
switch(instruction.operation_size()) {
case DataSize::Byte:
perform<model, DataSize::Byte>(instruction, status, flow_controller, registers, memory, io);
break;
case DataSize::Word:
perform<model, DataSize::Word>(instruction, status, flow_controller, registers, memory, io);
break;
case DataSize::DWord:
perform<model, DataSize::DWord>(instruction, status, flow_controller, registers, memory, io);
break;
case DataSize::None:
perform<model, DataSize::None>(instruction, status, flow_controller, registers, memory, io);
break;
2023-10-05 18:37:58 +00:00
}
}
2023-10-05 18:37:58 +00:00
}
#endif /* PerformImplementation_h */