1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-05 21:05:51 +00:00
CLK/Outputs/Speaker.hpp

203 lines
6.0 KiB
C++
Raw Normal View History

//
// Speaker.hpp
// Clock Signal
//
// Created by Thomas Harte on 12/01/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#ifndef Speaker_hpp
#define Speaker_hpp
#include <stdint.h>
#include <stdio.h>
#include <time.h>
#include "../SignalProcessing/Stepper.hpp"
#include "../SignalProcessing/FIRFilter.hpp"
namespace Outputs {
class Speaker {
public:
class Delegate {
public:
virtual void speaker_did_complete_samples(Speaker *speaker, const int16_t *buffer, int buffer_size) = 0;
};
float get_ideal_clock_rate_in_range(float minimum, float maximum)
{
// return exactly the input rate if possible
if(_input_cycles_per_second >= minimum && _input_cycles_per_second <= maximum) return _input_cycles_per_second;
// if the input rate is lower, return the minimum
if(_input_cycles_per_second < minimum) return minimum;
// otherwise, return the maximum
return maximum;
}
void set_output_rate(float cycles_per_second, int buffer_size)
{
_output_cycles_per_second = cycles_per_second;
if(_buffer_size != buffer_size)
{
_buffer_in_progress = std::unique_ptr<int16_t>(new int16_t[buffer_size]);
_buffer_size = buffer_size;
}
set_needs_updated_filter_coefficients();
}
void set_output_quality(int number_of_taps)
{
_requested_number_of_taps = number_of_taps;
set_needs_updated_filter_coefficients();
}
void set_delegate(Delegate *delegate)
{
_delegate = delegate;
}
void set_input_rate(float cycles_per_second)
{
_input_cycles_per_second = cycles_per_second;
set_needs_updated_filter_coefficients();
}
Speaker() : _buffer_in_progress_pointer(0), _requested_number_of_taps(0) {}
protected:
std::unique_ptr<int16_t> _buffer_in_progress;
int _buffer_size;
int _buffer_in_progress_pointer;
int _number_of_taps, _requested_number_of_taps;
bool _coefficients_are_dirty;
Delegate *_delegate;
float _input_cycles_per_second, _output_cycles_per_second;
void set_needs_updated_filter_coefficients()
{
_coefficients_are_dirty = true;
}
};
template <class T> class Filter: public Speaker {
public:
void run_for_cycles(unsigned int input_cycles)
{
if(_coefficients_are_dirty) update_filter_coefficients();
// if input and output rates exactly match, just accumulate results and pass on
if(_input_cycles_per_second == _output_cycles_per_second)
{
while(input_cycles)
{
unsigned int cycles_to_read = (unsigned int)(_buffer_size - _buffer_in_progress_pointer);
if(cycles_to_read > input_cycles) cycles_to_read = input_cycles;
static_cast<T *>(this)->get_samples(cycles_to_read, &_buffer_in_progress.get()[_buffer_in_progress_pointer]);
_buffer_in_progress_pointer += cycles_to_read;
// announce to delegate if full
if(_buffer_in_progress_pointer == _buffer_size)
{
_buffer_in_progress_pointer = 0;
if(_delegate)
{
_delegate->speaker_did_complete_samples(this, _buffer_in_progress.get(), _buffer_size);
}
}
input_cycles -= cycles_to_read;
}
return;
}
// if the output rate is less than the input rate, use the filter
if(_input_cycles_per_second > _output_cycles_per_second)
{
while(input_cycles)
{
unsigned int cycles_to_read = (unsigned int)std::min((int)input_cycles, _number_of_taps - _input_buffer_depth);
static_cast<T *>(this)->get_samples(cycles_to_read, &_input_buffer.get()[_input_buffer_depth]);
input_cycles -= cycles_to_read;
_input_buffer_depth += cycles_to_read;
if(_input_buffer_depth == _number_of_taps)
{
_buffer_in_progress.get()[_buffer_in_progress_pointer] = _filter->apply(_input_buffer.get());
_buffer_in_progress_pointer++;
// announce to delegate if full
if(_buffer_in_progress_pointer == _buffer_size)
{
_buffer_in_progress_pointer = 0;
if(_delegate)
{
_delegate->speaker_did_complete_samples(this, _buffer_in_progress.get(), _buffer_size);
}
}
// If the next loop around is going to reuse some of the samples just collected, use a memmove to
// preserve them in the correct locations (TODO: use a longer buffer to fix that) and don't skip
// anything. Otherwise skip as required to get to the next sample batch and don't expect to reuse.
uint64_t steps = _stepper->step();
if(steps < _number_of_taps)
{
int16_t *input_buffer = _input_buffer.get();
memmove(input_buffer, &input_buffer[steps], sizeof(int16_t) * ((size_t)_number_of_taps - (size_t)steps));
_input_buffer_depth -= steps;
}
else
{
if(steps > _number_of_taps)
static_cast<T *>(this)->skip_samples((unsigned int)steps - (unsigned int)_number_of_taps);
_input_buffer_depth = 0;
}
}
}
return;
}
// TODO: input rate is less than output rate
}
private:
std::unique_ptr<SignalProcessing::Stepper> _stepper;
std::unique_ptr<SignalProcessing::FIRFilter> _filter;
std::unique_ptr<int16_t> _input_buffer;
int _input_buffer_depth;
void update_filter_coefficients()
{
// make a guess at a good number of taps if this hasn't been provided explicitly
if(_requested_number_of_taps)
{
_number_of_taps = _requested_number_of_taps;
}
else
{
_number_of_taps = (int)ceilf((_input_cycles_per_second + _output_cycles_per_second) / _output_cycles_per_second);
_number_of_taps *= 2;
_number_of_taps |= 1;
}
_coefficients_are_dirty = false;
_buffer_in_progress_pointer = 0;
_stepper = std::unique_ptr<SignalProcessing::Stepper>(new SignalProcessing::Stepper((uint64_t)_input_cycles_per_second, (uint64_t)_output_cycles_per_second));
_filter = std::unique_ptr<SignalProcessing::FIRFilter>(new SignalProcessing::FIRFilter((unsigned int)_number_of_taps, (float)_input_cycles_per_second, 0.0, (float)_output_cycles_per_second / 2.0f, SignalProcessing::FIRFilter::DefaultAttenuation));
_input_buffer = std::unique_ptr<int16_t>(new int16_t[_number_of_taps]);
_input_buffer_depth = 0;
}
};
}
#endif /* Speaker_hpp */