1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-09 01:10:10 +00:00
CLK/Machines/Acorn/Archimedes/MemoryController.hpp

455 lines
13 KiB
C++
Raw Normal View History

//
// MemoryController.hpp
// Clock Signal
//
// Created by Thomas Harte on 20/03/2024.
// Copyright © 2024 Thomas Harte. All rights reserved.
//
#pragma once
#include "InputOutputController.hpp"
#include "Video.hpp"
#include "Sound.hpp"
#include "../../../InstructionSets/ARM/Registers.hpp"
#include "../../../Outputs/Log.hpp"
2024-03-25 19:03:54 +00:00
#include "../../../Activity/Observer.hpp"
namespace Archimedes {
/// Provides the mask with all bits set in the range [start, end], where start must be >= end.
template <int start, int end> struct BitMask {
static_assert(start >= end);
static constexpr uint32_t value = ((1 << (start + 1)) - 1) - ((1 << end) - 1);
};
static_assert(BitMask<0, 0>::value == 1);
static_assert(BitMask<1, 1>::value == 2);
static_assert(BitMask<15, 15>::value == 32768);
static_assert(BitMask<15, 0>::value == 0xffff);
static_assert(BitMask<15, 14>::value == 49152);
/// Models the MEMC, making this the Archimedes bus. Owns various other chips on the bus as a result.
template <typename InterruptObserverT, typename ClockRateObserverT>
struct MemoryController {
MemoryController(InterruptObserverT &observer, ClockRateObserverT &clock_rate_observer) :
2024-03-25 02:36:11 +00:00
ioc_(observer, clock_rate_observer, ram_.data()) {
read_zones_[0] = Zone::HighROM; // Temporarily put high ROM at address 0.
// TODO: could I just copy it in? Or, at least,
// could I detect at ROM loading time whether I can?
}
int interrupt_mask() const {
return ioc_.interrupt_mask();
}
void set_rom(const std::vector<uint8_t> &rom) {
std::copy(
rom.begin(),
rom.begin() + static_cast<ptrdiff_t>(std::min(rom.size(), rom_.size())),
rom_.begin());
}
template <typename IntT>
uint32_t aligned(uint32_t address) {
if constexpr (std::is_same_v<IntT, uint32_t>) {
return address & static_cast<uint32_t>(~3);
}
return address;
}
template <typename IntT>
bool write(uint32_t address, IntT source, InstructionSet::ARM::Mode mode, bool trans) {
// User mode may only _write_ to logically-mapped RAM (subject to further testing below).
if(mode == InstructionSet::ARM::Mode::User && address >= 0x200'0000) {
return false;
}
switch(write_zones_[(address >> 21) & 31]) {
case Zone::DMAAndMEMC: {
const auto buffer_address = [](uint32_t source) -> uint32_t {
return (source & 0x1fffc0) << 2;
};
// The MEMC itself isn't on the data bus; all values below should be taken from `address`.
switch((address >> 17) & 0b111) {
2024-03-25 02:30:26 +00:00
case 0b000: ioc_.video().set_frame_start(buffer_address(address)); break;
case 0b001: ioc_.video().set_buffer_start(buffer_address(address)); break;
case 0b010: ioc_.video().set_buffer_end(buffer_address(address)); break;
case 0b011: ioc_.video().set_cursor_start(buffer_address(address)); break;
2024-03-25 02:30:26 +00:00
case 0b100: ioc_.sound().set_next_start(buffer_address(address)); break;
case 0b101: ioc_.sound().set_next_end(buffer_address(address)); break;
case 0b110: ioc_.sound().swap(); break;
case 0b111:
os_mode_ = address & (1 << 12);
sound_dma_enable_ = address & (1 << 11);
video_dma_enable_ = address & (1 << 10);
switch((address >> 8) & 3) {
default:
dynamic_ram_refresh_ = DynamicRAMRefresh::None;
break;
case 0b01:
case 0b11:
dynamic_ram_refresh_ = DynamicRAMRefresh((address >> 8) & 3);
break;
}
high_rom_access_time_ = ROMAccessTime((address >> 6) & 3);
low_rom_access_time_ = ROMAccessTime((address >> 4) & 3);
page_size_ = PageSize((address >> 2) & 3);
logger.info().append("MEMC Control: %08x -> OS:%d sound:%d video:%d refresh:%d high:%d low:%d size:%d", address, os_mode_, sound_dma_enable_, video_dma_enable_, dynamic_ram_refresh_, high_rom_access_time_, low_rom_access_time_, page_size_);
map_dirty_ = true;
2024-03-25 02:30:26 +00:00
break;
}
} break;
case Zone::LogicallyMappedRAM: {
const auto item = logical_ram<IntT, false>(address, trans);
if(!item) {
return false;
}
*item = source;
} break;
case Zone::IOControllers:
ioc_.template write<IntT>(address, source);
2024-03-25 02:30:26 +00:00
break;
case Zone::VideoController:
// TODO: handle byte writes correctly.
2024-03-21 14:02:56 +00:00
ioc_.video().write(source);
break;
case Zone::PhysicallyMappedRAM:
physical_ram<IntT>(address) = source;
2024-03-25 02:30:26 +00:00
break;
case Zone::AddressTranslator:
// printf("Translator write at %08x; replaces %08x\n", address, pages_[address & 0x7f]);
pages_[address & 0x7f] = address;
map_dirty_ = true;
break;
default:
2024-03-25 02:30:26 +00:00
printf("TODO: write of %08x to %08x [%lu]\n", source, address, sizeof(IntT));
break;
}
return true;
}
template <typename IntT>
bool read(uint32_t address, IntT &source, InstructionSet::ARM::Mode mode, bool trans) {
// User mode may only read logically-maped RAM and ROM.
if(mode == InstructionSet::ARM::Mode::User && address >= 0x200'0000 && address < 0x380'0000) {
return false;
}
switch (read_zones_[(address >> 21) & 31]) {
case Zone::PhysicallyMappedRAM:
source = physical_ram<IntT>(address);
2024-03-25 02:30:26 +00:00
break;
case Zone::LogicallyMappedRAM: {
const auto item = logical_ram<IntT, true>(address, trans);
if(!item) {
return false;
}
source = *item;
} break;
case Zone::LowROM:
// logger.error().append("TODO: Low ROM read from %08x", address);
2024-03-25 02:36:11 +00:00
source = IntT(~0);
2024-03-25 02:30:26 +00:00
break;
case Zone::HighROM:
// Real test is: require A24=A25=0, then A25=1.
2024-03-25 02:36:11 +00:00
read_zones_[0] = Zone::LogicallyMappedRAM;
source = high_rom<IntT>(address);
2024-03-25 02:30:26 +00:00
break;
case Zone::IOControllers:
ioc_.template read<IntT>(address, source);
break;
default:
logger.error().append("TODO: read from %08x", address);
break;
}
2024-03-25 02:30:26 +00:00
return true;
}
2024-03-25 19:03:54 +00:00
//
// Expose various IOC-owned things.
//
void tick_timers() { ioc_.tick_timers(); }
2024-03-23 19:43:04 +00:00
auto &sound() { return ioc_.sound(); }
const auto &sound() const { return ioc_.sound(); }
auto &video() { return ioc_.video(); }
const auto &video() const { return ioc_.video(); }
auto &keyboard() { return ioc_.keyboard(); }
const auto &keyboard() const { return ioc_.keyboard(); }
2024-03-25 19:03:54 +00:00
void set_activity_observer(Activity::Observer *observer) {
ioc_.set_activity_observer(observer);
}
private:
Log::Logger<Log::Source::ARMIOC> logger;
enum class Zone {
LogicallyMappedRAM,
PhysicallyMappedRAM,
IOControllers,
LowROM,
HighROM,
VideoController,
DMAAndMEMC,
AddressTranslator,
};
static std::array<Zone, 0x20> zones(bool is_read) {
std::array<Zone, 0x20> zones{};
for(size_t c = 0; c < zones.size(); c++) {
const auto address = c << 21;
if(address < 0x200'0000) {
zones[c] = Zone::LogicallyMappedRAM;
} else if(address < 0x300'0000) {
zones[c] = Zone::PhysicallyMappedRAM;
} else if(address < 0x340'0000) {
zones[c] = Zone::IOControllers;
} else if(address < 0x360'0000) {
zones[c] = is_read ? Zone::LowROM : Zone::VideoController;
} else if(address < 0x380'0000) {
zones[c] = is_read ? Zone::LowROM : Zone::DMAAndMEMC;
} else {
zones[c] = is_read ? Zone::HighROM : Zone::AddressTranslator;
}
}
return zones;
}
bool has_moved_rom_ = false;
std::array<uint8_t, 4*1024*1024> ram_{};
std::array<uint8_t, 2*1024*1024> rom_;
InputOutputController<InterruptObserverT, ClockRateObserverT> ioc_;
template <typename IntT>
IntT &physical_ram(uint32_t address) {
address = aligned<IntT>(address);
address &= (ram_.size() - 1);
return *reinterpret_cast<IntT *>(&ram_[address]);
}
template <typename IntT>
IntT &high_rom(uint32_t address) {
address = aligned<IntT>(address);
return *reinterpret_cast<IntT *>(&rom_[address & (rom_.size() - 1)]);
}
2024-03-25 02:36:11 +00:00
std::array<Zone, 0x20> read_zones_ = zones(true);
const std::array<Zone, 0x20> write_zones_ = zones(false);
// Control register values.
bool os_mode_ = false;
bool sound_dma_enable_ = false;
bool video_dma_enable_ = false; // "Unaffected" by reset, so here picked arbitrarily.
enum class DynamicRAMRefresh {
None = 0b00,
DuringFlyback = 0b01,
Continuous = 0b11,
} dynamic_ram_refresh_ = DynamicRAMRefresh::None; // State at reset is undefined; constrain to a valid enum value.
enum class ROMAccessTime {
ns450 = 0b00,
ns325 = 0b01,
ns200 = 0b10,
ns200with60nsNibble = 0b11,
} high_rom_access_time_ = ROMAccessTime::ns450, low_rom_access_time_ = ROMAccessTime::ns450;
enum class PageSize {
kb4 = 0b00,
kb8 = 0b01,
kb16 = 0b10,
kb32 = 0b11,
} page_size_ = PageSize::kb4;
// Address translator.
//
// MEMC contains one entry per a physical page number, indicating where it goes logically.
// Any logical access is tested against all 128 mappings. So that's backwards compared to
// the ideal for an emulator, which would map from logical to physical, even if a lot more
// compact — there are always 128 physical pages; there are up to 8192 logical pages.
//
// So captured here are both the physical -> logical map as representative of the real
// hardware, and the reverse logical -> physical map, which is built (and rebuilt, and rebuilt)
// from the other.
// Physical to logical mapping.
std::array<uint32_t, 128> pages_{};
// Logical to physical mapping.
struct MappedPage {
uint8_t *target = nullptr;
uint8_t protection_level = 0;
};
std::array<MappedPage, 8192> mapping_;
bool map_dirty_ = true;
template <typename IntT, bool is_read>
IntT *logical_ram(uint32_t address, bool trans) {
// Possibly TODO: this recompute-if-dirty flag is supposed to ameliorate for an expensive
// mapping process. It can be eliminated when the process is improved.
if(map_dirty_) {
update_mapping();
map_dirty_ = false;
}
address = aligned<IntT>(address);
address &= 0x1ff'ffff;
size_t page;
// TODO: eliminate switch here.
switch(page_size_) {
default:
case PageSize::kb4:
page = address >> 12;
address &= 0x0fff;
break;
case PageSize::kb8:
page = address >> 13;
address &= 0x1fff;
break;
case PageSize::kb16:
page = address >> 14;
address &= 0x3fff;
break;
case PageSize::kb32:
page = address >> 15;
address &= 0x7fff;
break;
}
if(!mapping_[page].target) {
return nullptr;
}
// TODO: eliminate switch here.
// Top of my head idea: is_read, trans and os_mode_ make three bits, so
// keep a one-byte bitmap of permitted accesses rather than the raw protection
// level?
if(trans) {
switch(mapping_[page].protection_level) {
case 0b00: break;
case 0b01:
// Reject: writes, in user mode.
if(!is_read && !os_mode_) {
return nullptr;
}
break;
default:
// Reject: writes, and user mode.
if(!is_read || !os_mode_) {
return nullptr;
}
break;
}
}
return reinterpret_cast<IntT *>(mapping_[page].target + address);
}
void update_mapping() {
// For each physical page, project it into logical space.
switch(page_size_) {
default:
case PageSize::kb4: update_mapping<PageSize::kb4>(); break;
case PageSize::kb8: update_mapping<PageSize::kb8>(); break;
case PageSize::kb16: update_mapping<PageSize::kb16>(); break;
case PageSize::kb32: update_mapping<PageSize::kb32>(); break;
}
}
template <PageSize size>
void update_mapping() {
// Clear all logical mappings.
std::fill(mapping_.begin(), mapping_.end(), MappedPage{});
// For each physical page, project it into logical space
// and store it.
for(const auto page: pages_) {
uint32_t physical, logical;
switch(size) {
case PageSize::kb4:
// 4kb:
// A[6:0] -> PPN[6:0]
// A[11:10] -> LPN[12:11]; A[22:12] -> LPN[10:0] i.e. 8192 logical pages
physical = page & BitMask<6, 0>::value;
physical <<= 12;
logical = (page & BitMask<11, 10>::value) << 1;
logical |= (page & BitMask<22, 12>::value) >> 12;
break;
case PageSize::kb8:
// 8kb:
// A[0] -> PPN[6]; A[6:1] -> PPN[5:0]
// A[11:10] -> LPN[11:10]; A[22:13] -> LPN[9:0] i.e. 4096 logical pages
physical = (page & BitMask<0, 0>::value) << 6;
physical |= (page & BitMask<6, 1>::value) >> 1;
physical <<= 13;
logical = page & BitMask<11, 10>::value;
logical |= (page & BitMask<22, 13>::value) >> 13;
break;
case PageSize::kb16:
// 16kb:
// A[1:0] -> PPN[6:5]; A[6:2] -> PPN[4:0]
// A[11:10] -> LPN[10:9]; A[22:14] -> LPN[8:0] i.e. 2048 logical pages
physical = (page & BitMask<1, 0>::value) << 5;
physical |= (page & BitMask<6, 2>::value) >> 2;
physical <<= 14;
logical = (page & BitMask<11, 10>::value) >> 1;
logical |= (page & BitMask<22, 14>::value) >> 14;
break;
case PageSize::kb32:
// 32kb:
// A[1] -> PPN[6]; A[2] -> PPN[5]; A[0] -> PPN[4]; A[6:3] -> PPN[3:0]
// A[11:10] -> LPN[9:8]; A[22:15] -> LPN[7:0] i.e. 1024 logical pages
physical = (page & BitMask<1, 1>::value) << 5;
physical |= (page & BitMask<2, 2>::value) << 3;
physical |= (page & BitMask<0, 0>::value) << 4;
physical |= (page & BitMask<6, 3>::value) >> 3;
physical <<= 15;
logical = (page & BitMask<11, 10>::value) >> 2;
logical |= (page & BitMask<22, 15>::value) >> 15;
break;
}
// printf("%08x => physical %d -> logical %d\n", page, (physical >> 15), logical);
// TODO: consider clashes.
// TODO: what if there's less than 4mb present?
mapping_[logical].target = &ram_[physical];
mapping_[logical].protection_level = (page >> 8) & 3;
}
}
};
}