1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-08-16 16:28:59 +00:00
CLK/Outputs/CRT.cpp

272 lines
8.0 KiB
C++
Raw Normal View History

//
// CRT.cpp
// Clock Signal
//
// Created by Thomas Harte on 19/07/2015.
// Copyright © 2015 Thomas Harte. All rights reserved.
//
#include "CRT.hpp"
#include <stdarg.h>
static const int bufferWidth = 512;
static const int bufferHeight = 512;
static const int syncCapacityLineChargeThreshold = 3;
static const int millisecondsHorizontalRetraceTime = 16;
static const int scanlinesVerticalRetraceTime = 26;
#define kEmergencyRetraceTime (_expected_next_hsync + _hsync_error_window)
using namespace Outputs;
CRT::CRT(int cycles_per_line, int height_of_display, int number_of_buffers, ...)
{
_height_of_display = height_of_display;
_cycles_per_line = cycles_per_line;
_horizontalOffset = 0.0f;
_verticalOffset = 0.0f;
_numberOfBuffers = number_of_buffers;
_bufferSizes = new int[_numberOfBuffers];
_buffers = new uint8_t *[_numberOfBuffers];
va_list va;
va_start(va, number_of_buffers);
for(int c = 0; c < _numberOfBuffers; c++)
{
_bufferSizes[c] = va_arg(va, int);
_buffers[c] = new uint8_t[bufferHeight * bufferWidth * _bufferSizes[c]];
}
va_end(va);
_write_allocation_pointer = 0;
_expected_next_hsync = cycles_per_line;
_hsync_error_window = cycles_per_line >> 5;
_horizontal_counter = 0;
_sync_capacitor_charge_level = 0;
_is_receiving_sync = false;
_is_in_hsync = false;
_run_pointer = 0;
}
CRT::~CRT()
{
delete[] _bufferSizes;
for(int c = 0; c < _numberOfBuffers; c++)
{
delete[] _buffers[c];
}
delete[] _buffers;
}
#pragma mark - Sync loop
CRT::SyncEvent CRT::advance_to_next_sync_event(bool hsync_is_requested, bool vsync_is_charging, int cycles_to_run_for, int *cycles_advanced)
{
// do we recognise this hsync, thereby adjusting time expectations?
if ((_horizontal_counter < _hsync_error_window || _horizontal_counter >= _expected_next_hsync - _hsync_error_window) && hsync_is_requested) {
_did_detect_hsync = true;
int time_now = (_horizontal_counter < _hsync_error_window) ? _expected_next_hsync + _horizontal_counter : _horizontal_counter;
_expected_next_hsync = (_expected_next_hsync + time_now) >> 1;
// printf("to %d for %d\n", _expected_next_hsync, time_now);
}
SyncEvent proposedEvent = SyncEvent::None;
int proposedSyncTime = cycles_to_run_for;
// have we overrun the maximum permitted number of horizontal syncs for this frame?
if (_hsync_counter > _height_of_display + 10) {
*cycles_advanced = 0;
return SyncEvent::StartHSync;
}
// will we end an ongoing hsync?
const int endOfHSyncTime = (millisecondsHorizontalRetraceTime*_cycles_per_line) >> 6;
if (_horizontal_counter < endOfHSyncTime && _horizontal_counter+proposedSyncTime >= endOfHSyncTime) {
proposedSyncTime = endOfHSyncTime - _horizontal_counter;
proposedEvent = SyncEvent::EndHSync;
}
// will we start an hsync?
if (_horizontal_counter + proposedSyncTime >= _expected_next_hsync) {
proposedSyncTime = _expected_next_hsync - _horizontal_counter;
proposedEvent = SyncEvent::StartHSync;
}
// will an acceptable vertical sync be triggered?
if (vsync_is_charging && !_vretrace_counter) {
const int startOfVSyncTime = syncCapacityLineChargeThreshold*_cycles_per_line;
if (_sync_capacitor_charge_level < startOfVSyncTime && _sync_capacitor_charge_level + proposedSyncTime >= startOfVSyncTime) {
proposedSyncTime = startOfVSyncTime - _sync_capacitor_charge_level;
proposedEvent = SyncEvent::StartVSync;
}
}
// will an ongoing vertical sync end?
if (_vretrace_counter > 0) {
if (_vretrace_counter < proposedSyncTime) {
proposedSyncTime = _vretrace_counter;
proposedEvent = SyncEvent::EndVSync;
}
}
*cycles_advanced = proposedSyncTime;
return proposedEvent;
}
void CRT::advance_cycles(int number_of_cycles, bool hsync_requested, const bool vsync_charging, const CRTRun::Type type, const char *data_type)
{
int buffer_offset = 0;
while(number_of_cycles) {
int next_run_length;
SyncEvent next_event = advance_to_next_sync_event(hsync_requested, vsync_charging, number_of_cycles, &next_run_length);
if(_run_pointer >= _all_runs.size())
{
_all_runs.resize((_all_runs.size() * 2)+1);
}
CRTRun *nextRun = &_all_runs[_run_pointer];
_run_pointer++;
nextRun->type = type;
nextRun->start_point.dst_x = _horizontalOffset;
nextRun->start_point.dst_y = _verticalOffset;
if(type == CRTRun::Type::Data || type == CRTRun::Type::Level)
{
nextRun->start_point.src_x = (_write_target_pointer + buffer_offset) & (bufferWidth - 1);
nextRun->start_point.dst_x = (_write_target_pointer + buffer_offset) / bufferWidth;
}
nextRun->data_type = data_type;
if (_vretrace_counter > 0)
{
_verticalOffset = std::max(0.0f, _verticalOffset - (float)number_of_cycles / (float)(scanlinesVerticalRetraceTime * _cycles_per_line));
}
else
{
_verticalOffset = std::min(1.0f, _verticalOffset + (float)number_of_cycles / (float)(_height_of_display * _cycles_per_line));
}
if (_is_in_hsync)
{
_horizontalOffset = std::max(0.0f, _horizontalOffset - (float)(((millisecondsHorizontalRetraceTime * _cycles_per_line) >> 6) * number_of_cycles) / (float)_cycles_per_line);
}
else
{
_horizontalOffset = std::min(1.0f, _horizontalOffset + (float)((((64 - millisecondsHorizontalRetraceTime) * _cycles_per_line) >> 6) * number_of_cycles) / (float)_cycles_per_line);
}
nextRun->end_point.dst_x = _horizontalOffset;
nextRun->end_point.dst_y = _verticalOffset;
if(type == CRTRun::Type::Data)
{
buffer_offset += next_run_length;
}
if(type == CRTRun::Type::Data || type == CRTRun::Type::Level)
{
nextRun->end_point.src_x = (_write_target_pointer + buffer_offset) & (bufferWidth - 1);
nextRun->end_point.dst_x = (_write_target_pointer + buffer_offset) / bufferWidth;
}
hsync_requested = false;
number_of_cycles -= next_run_length;
_horizontal_counter += next_run_length;
if (vsync_charging)
_sync_capacitor_charge_level += next_run_length;
else
_sync_capacitor_charge_level = std::max(_sync_capacitor_charge_level - next_run_length, 0);
_vretrace_counter = std::max(_vretrace_counter - next_run_length, 0);
switch(next_event) {
default: break;
case SyncEvent::StartHSync:
_horizontal_counter = 0;
_is_in_hsync = true;
_hsync_counter++;
break;
case SyncEvent::EndHSync:
if (!_did_detect_hsync) {
_expected_next_hsync = (_expected_next_hsync + (_hsync_error_window >> 1) + _cycles_per_line) >> 1;
}
_did_detect_hsync = false;
_is_in_hsync = false;
break;
case SyncEvent::StartVSync:
_vretrace_counter = scanlinesVerticalRetraceTime * _cycles_per_line;
_hsync_counter = 0;
break;
case SyncEvent::EndVSync:
if(_delegate != nullptr)
_delegate->crt_did_start_vertical_retrace_with_runs(&_all_runs[0], _run_pointer);
_run_pointer = 0;
break;
}
}
}
#pragma mark - delegate
void CRT::set_crt_delegate(CRTDelegate *delegate)
{
_delegate = delegate;
}
#pragma mark - stream feeding methods
void CRT::output_sync(int number_of_cycles)
{
bool _hsync_requested = !_is_receiving_sync;
_is_receiving_sync = true;
advance_cycles(number_of_cycles, _hsync_requested, true, CRTRun::Type::Sync, nullptr);
}
void CRT::output_blank(int number_of_cycles)
{
_is_receiving_sync = false;
advance_cycles(number_of_cycles, false, false, CRTRun::Type::Blank, nullptr);
}
void CRT::output_level(int number_of_cycles, const char *type)
{
_is_receiving_sync = false;
advance_cycles(number_of_cycles, false, false, CRTRun::Type::Level, type);
}
void CRT::output_data(int number_of_cycles, const char *type)
{
_is_receiving_sync = false;
advance_cycles(number_of_cycles, false, false, CRTRun::Type::Data, type);
}
#pragma mark - Buffer supply
void CRT::allocate_write_area(int required_length)
{
int xPos = _write_allocation_pointer & (bufferWidth - 1);
if (xPos + required_length > bufferWidth)
{
_write_allocation_pointer &= ~(bufferWidth - 1);
_write_allocation_pointer = (_write_allocation_pointer + bufferWidth) & ((bufferHeight-1) * bufferWidth);
}
_write_target_pointer = _write_allocation_pointer;
_write_allocation_pointer += required_length;
}
uint8_t *CRT::get_write_target_for_buffer(int buffer)
{
return &_buffers[buffer][_write_target_pointer * _bufferSizes[buffer]];
}