1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-23 18:31:53 +00:00
CLK/OSBindings/Mac/Clock SignalTests/EmuTOSTests.mm

124 lines
3.7 KiB
Plaintext
Raw Normal View History

//
// EmuTOSTests.m
// Clock SignalTests
//
// Created by Thomas Harte on 10/03/2019.
// Copyright © 2019 Thomas Harte. All rights reserved.
//
#import <XCTest/XCTest.h>
#include <array>
#include <cassert>
#include "68000.hpp"
#include "CSROMFetcher.hpp"
class EmuTOS: public CPU::MC68000::BusHandler {
public:
EmuTOS(const std::vector<uint8_t> &emuTOS) : m68000_(*this) {
assert(!(emuTOS.size() & 1));
emuTOS_.resize(emuTOS.size() / 2);
for(size_t c = 0; c < emuTOS_.size(); ++c) {
emuTOS_[c] = (emuTOS[c << 1] << 8) | emuTOS[(c << 1) + 1];
}
}
void run_for(HalfCycles cycles) {
m68000_.run_for(cycles);
}
HalfCycles perform_bus_operation(const CPU::MC68000::Microcycle &cycle, int is_supervisor) {
const uint32_t address = cycle.word_address();
uint32_t word_address = address;
// As much about the Atari ST's memory map as is relevant here: the ROM begins
// at 0xfc0000, and the first eight bytes are mirrored to the first four memory
// addresses in order for /RESET to work properly. RAM otherwise fills the first
// 512kb of the address space. Trying to write to ROM raises a bus error.
const bool is_peripheral = word_address > (0xff0000 >> 1);
const bool is_rom = word_address > (0xfc0000 >> 1) || word_address < 4;
uint16_t *const base = is_rom ? emuTOS_.data() : ram_.data();
if(is_rom) {
word_address &= 0xffff;
} else {
word_address &= 0x3ffff;
}
using Microcycle = CPU::MC68000::Microcycle;
if(cycle.data_select_active()) {
uint16_t peripheral_result = 0xffff;
if(is_peripheral) {
switch(address & 0x7ff) {
// A hard-coded value for TIMER B.
case (0xa21 >> 1):
peripheral_result = 0x00000001;
break;
}
printf("Peripheral: %c %08x", (cycle.operation & Microcycle::Read) ? 'r' : 'w', *cycle.address);
if(!(cycle.operation & Microcycle::Read)) {
if(cycle.operation & Microcycle::SelectByte)
printf(" %02x", cycle.value->halves.low);
else
printf(" %04x", cycle.value->full);
}
printf("\n");
}
switch(cycle.operation & (Microcycle::SelectWord | Microcycle::SelectByte | Microcycle::Read)) {
default: break;
case Microcycle::SelectWord | Microcycle::Read:
cycle.value->full = is_peripheral ? peripheral_result : base[word_address];
break;
case Microcycle::SelectByte | Microcycle::Read:
cycle.value->halves.low = (is_peripheral ? peripheral_result : base[word_address]) >> cycle.byte_shift();
break;
case Microcycle::SelectWord:
assert(!(is_rom && !is_peripheral));
base[word_address] = cycle.value->full;
break;
case Microcycle::SelectByte:
assert(!(is_rom && !is_peripheral));
base[word_address] = (cycle.value->full & cycle.byte_mask()) | (base[word_address] & (0xffff ^ cycle.byte_mask()));
break;
}
}
return HalfCycles(0);
}
private:
CPU::MC68000::Processor<EmuTOS, true> m68000_;
std::vector<uint16_t> emuTOS_;
std::array<uint16_t, 256*1024> ram_;
};
@interface EmuTOSTests : XCTestCase
@end
@implementation EmuTOSTests {
std::unique_ptr<EmuTOS> _machine;
}
- (void)setUp {
// Put setup code here. This method is called before the invocation of each test method in the class.
const auto roms = CSROMFetcher()("AtariST", {"tos100.img"});
_machine.reset(new EmuTOS(*roms[0]));
}
- (void)tearDown {
// Put teardown code here. This method is called after the invocation of each test method in the class.
}
2019-04-03 23:43:54 +00:00
- (void)testStartup {
// This is an example of a functional test case.
// Use XCTAssert and related functions to verify your tests produce the correct results.
2019-04-07 03:21:01 +00:00
_machine->run_for(HalfCycles(400000));
}
@end