1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-12-11 15:49:38 +00:00
CLK/ClockReceiver/JustInTime.hpp

341 lines
12 KiB
C++
Raw Normal View History

//
// JustInTime.hpp
// Clock Signal
//
// Created by Thomas Harte on 28/07/2019.
// Copyright © 2019 Thomas Harte. All rights reserved.
//
#pragma once
#include "ClockReceiver.hpp"
#include "../Concurrency/AsyncTaskQueue.hpp"
#include "ClockingHintSource.hpp"
#include "ForceInline.hpp"
2023-02-15 01:13:16 +00:00
#include <atomic>
/*!
A JustInTimeActor holds (i) an embedded object with a run_for method; and (ii) an amount
of time since run_for was last called.
Time can be added using the += operator. The -> operator can be used to access the
embedded object. All time accumulated will be pushed to object before the pointer is returned.
Machines that accumulate HalfCycle time but supply to a Cycle-counted device may supply a
separate @c TargetTimeScale at template declaration.
If the held object implements @c next_sequence_point() then it'll be used to flush implicitly
as and when sequence points are hit. Callers can use will_flush() to predict these.
If the held object is a subclass of ClockingHint::Source, this template will register as an
observer and potentially stop clocking or stop delaying clocking until just-in-time references
as directed.
TODO: incorporate and codify AsyncJustInTimeActor.
*/
template <class T, class LocalTimeScale = HalfCycles, int multiplier = 1, int divider = 1> class JustInTimeActor:
2024-11-30 03:12:57 +00:00
public ClockingHint::Observer
{
private:
/*!
A std::unique_ptr deleter which causes an update_sequence_point to occur on the actor supplied
to it at construction if it implements @c next_sequence_point(). Otherwise destruction is a no-op.
**Does not delete the object.**
This is used by the -> operators below, which provide a unique pointer to the enclosed object and
update their sequence points upon its destruction i.e. after the caller has made whatever call
or calls as were relevant to the enclosed object.
*/
class SequencePointAwareDeleter {
public:
2024-11-30 03:12:57 +00:00
explicit SequencePointAwareDeleter(
JustInTimeActor<T, LocalTimeScale, multiplier, divider> *const actor) noexcept
: actor_(actor) {}
forceinline void operator ()(const T *const) const {
if constexpr (has_sequence_points<T>::value) {
actor_->update_sequence_point();
}
}
2024-11-30 03:12:57 +00:00
private:
JustInTimeActor<T, LocalTimeScale, multiplier, divider> *const actor_;
};
// This block of SFINAE determines whether objects of type T accepts Cycles or HalfCycles.
using HalfRunFor = void (T::*const)(HalfCycles);
static uint8_t half_sig(...);
static uint16_t half_sig(HalfRunFor);
using TargetTimeScale =
std::conditional_t<
sizeof(half_sig(&T::run_for)) == sizeof(uint16_t),
HalfCycles,
Cycles>;
public:
/// Constructs a new JustInTimeActor using the same construction arguments as the included object.
template<typename... Args> JustInTimeActor(Args&&... args) : object_(std::forward<Args>(args)...) {
if constexpr (std::is_base_of<ClockingHint::Source, T>::value) {
object_.set_clocking_hint_observer(this);
}
}
/// Adds time to the actor.
///
/// @returns @c true if adding time caused a flush; @c false otherwise.
forceinline bool operator += (LocalTimeScale rhs) {
if constexpr (std::is_base_of<ClockingHint::Source, T>::value) {
if(clocking_preference_ == ClockingHint::Preference::None) {
return false;
}
2024-11-30 03:12:57 +00:00
}
2024-11-30 03:12:57 +00:00
if constexpr (multiplier != 1) {
time_since_update_ += rhs * multiplier;
} else {
time_since_update_ += rhs;
}
is_flushed_ = false;
2024-11-30 03:12:57 +00:00
if constexpr (std::is_base_of<ClockingHint::Source, T>::value) {
if (clocking_preference_ == ClockingHint::Preference::RealTime) {
flush();
return true;
}
2024-11-30 03:12:57 +00:00
}
2024-11-30 03:12:57 +00:00
if constexpr (has_sequence_points<T>::value) {
time_until_event_ -= rhs * multiplier;
if(time_until_event_ <= LocalTimeScale(0)) {
time_overrun_ = time_until_event_ / divider;
flush();
update_sequence_point();
return true;
}
}
2024-11-30 03:12:57 +00:00
return false;
}
/// Flushes all accumulated time and returns a pointer to the included object.
///
/// If this object provides sequence points, checks for changes to the next
/// sequence point upon deletion of the pointer.
[[nodiscard]] forceinline auto operator->() {
2023-02-15 01:13:16 +00:00
#ifndef NDEBUG
2024-11-30 03:12:57 +00:00
assert(!flush_concurrency_check_.test_and_set());
2023-02-15 01:13:16 +00:00
#endif
2024-11-30 03:12:57 +00:00
flush();
2023-02-15 01:13:16 +00:00
#ifndef NDEBUG
2024-11-30 03:12:57 +00:00
flush_concurrency_check_.clear();
2023-02-15 01:13:16 +00:00
#endif
2024-11-30 03:12:57 +00:00
return std::unique_ptr<T, SequencePointAwareDeleter>(&object_, SequencePointAwareDeleter(this));
}
/// Acts exactly as per the standard ->, but preserves constness.
///
/// Despite being const, this will flush the object and, if relevant, update the next sequence point.
[[nodiscard]] forceinline auto operator -> () const {
auto non_const_this = const_cast<JustInTimeActor<T, LocalTimeScale, multiplier, divider> *>(this);
2023-02-15 01:13:16 +00:00
#ifndef NDEBUG
2024-11-30 03:12:57 +00:00
assert(!non_const_this->flush_concurrency_check_.test_and_set());
2023-02-15 01:13:16 +00:00
#endif
2024-11-30 03:12:57 +00:00
non_const_this->flush();
2023-02-15 01:13:16 +00:00
#ifndef NDEBUG
2024-11-30 03:12:57 +00:00
non_const_this->flush_concurrency_check_.clear();
2023-02-15 01:13:16 +00:00
#endif
2024-11-30 03:12:57 +00:00
return std::unique_ptr<const T, SequencePointAwareDeleter>(&object_, SequencePointAwareDeleter(non_const_this));
}
/// @returns a pointer to the included object, without flushing time.
[[nodiscard]] forceinline T *last_valid() {
return &object_;
}
/// @returns a const pointer to the included object, without flushing time.
[[nodiscard]] forceinline const T *last_valid() const {
return &object_;
}
/// @returns the amount of time since the object was last flushed, in the target time scale.
[[nodiscard]] forceinline TargetTimeScale time_since_flush() const {
if constexpr (divider == 1) {
return time_since_update_;
2019-07-29 21:17:04 +00:00
}
2024-11-30 03:12:57 +00:00
return TargetTimeScale(time_since_update_.as_integral() / divider);
}
/// @returns the amount of time since the object was last flushed, plus the local time scale @c offset,
/// converted to the target time scale.
[[nodiscard]] forceinline TargetTimeScale time_since_flush(LocalTimeScale offset) const {
if constexpr (divider == 1) {
return time_since_update_ + offset;
}
2024-11-30 03:12:57 +00:00
return TargetTimeScale((time_since_update_ + offset).as_integral() / divider);
}
/// Flushes all accumulated time.
///
/// This does not affect this actor's record of when the next sequence point will occur.
forceinline void flush() {
if(!is_flushed_) {
did_flush_ = is_flushed_ = true;
if constexpr (divider == 1) {
2024-11-30 03:12:57 +00:00
const auto duration = time_since_update_.template flush<TargetTimeScale>();
object_.run_for(duration);
} else {
const auto duration = time_since_update_.template divide<TargetTimeScale>(LocalTimeScale(divider));
if(duration > TargetTimeScale(0))
object_.run_for(duration);
}
}
2024-11-30 03:12:57 +00:00
}
/// Indicates whether a flush has occurred since the last call to did_flush().
[[nodiscard]] forceinline bool did_flush() {
const bool did_flush = did_flush_;
did_flush_ = false;
return did_flush;
}
/// @returns a number in the range [-max, 0] indicating the offset of the most recent sequence
/// point from the final time at the end of the += that triggered the sequence point.
[[nodiscard]] forceinline LocalTimeScale last_sequence_point_overrun() {
return time_overrun_;
}
/// @returns the number of cycles until the next sequence-point-based flush, if the embedded object
/// supports sequence points; @c LocalTimeScale() otherwise.
[[nodiscard]] LocalTimeScale cycles_until_implicit_flush() const {
return time_until_event_ / divider;
}
/// Indicates whether a sequence-point-caused flush will occur if the specified period is added.
[[nodiscard]] forceinline bool will_flush(LocalTimeScale rhs) const {
if constexpr (!has_sequence_points<T>::value) {
return false;
}
2024-11-30 03:12:57 +00:00
return rhs >= time_until_event_;
}
/// Indicates the amount of time, in the local time scale, until the first local slot that falls wholly
/// after @c duration, if that delay were to occur in @c offset units of time from now.
[[nodiscard]] forceinline LocalTimeScale back_map(TargetTimeScale duration, TargetTimeScale offset) const {
// A 1:1 mapping is easy.
if constexpr (multiplier == 1 && divider == 1) {
return duration;
}
2024-11-30 03:12:57 +00:00
// Work out when this query is placed, and the time to which it relates
const auto base = time_since_update_ + offset * divider;
const auto target = base + duration * divider;
// Figure out the number of whole input steps that is required to get
// past target, and subtract the number of whole input steps necessary
// to get to base.
const auto steps_to_base = base.as_integral() / multiplier;
const auto steps_to_target = (target.as_integral() + divider - 1) / multiplier;
return LocalTimeScale(steps_to_target - steps_to_base);
}
/// Updates this template's record of the next sequence point.
void update_sequence_point() {
if constexpr (has_sequence_points<T>::value) {
// Keep a fast path where no conversions will be applied; if conversions are
// going to be applied then do a direct max -> max translation rather than
// allowing the arithmetic to overflow.
if constexpr (divider == 1 && std::is_same_v<LocalTimeScale, TargetTimeScale>) {
time_until_event_ = object_.next_sequence_point();
} else {
const auto time = object_.next_sequence_point();
if(time == TargetTimeScale::max()) {
time_until_event_ = LocalTimeScale::max();
} else {
2024-11-30 03:12:57 +00:00
time_until_event_ = time * divider;
}
}
2024-11-30 03:12:57 +00:00
assert(time_until_event_ > LocalTimeScale(0));
}
2024-11-30 03:12:57 +00:00
}
2024-11-30 03:12:57 +00:00
/// @returns A cached copy of the object's clocking preference.
ClockingHint::Preference clocking_preference() const {
return clocking_preference_;
}
2024-11-30 03:12:57 +00:00
private:
T object_;
LocalTimeScale time_since_update_, time_until_event_, time_overrun_;
bool is_flushed_ = true;
bool did_flush_ = false;
2024-11-30 03:12:57 +00:00
template <typename S, typename = void> struct has_sequence_points : std::false_type {};
template <typename S>
struct has_sequence_points<S, decltype(void(std::declval<S &>().next_sequence_point()))> : std::true_type {};
2024-11-30 03:12:57 +00:00
ClockingHint::Preference clocking_preference_ = ClockingHint::Preference::JustInTime;
void set_component_prefers_clocking(ClockingHint::Source *, ClockingHint::Preference clocking) {
clocking_preference_ = clocking;
}
2023-02-15 01:13:16 +00:00
#ifndef NDEBUG
2024-11-30 03:12:57 +00:00
std::atomic_flag flush_concurrency_check_{};
2023-02-15 01:13:16 +00:00
#endif
};
/*!
2021-04-04 20:14:47 +00:00
An AsyncJustInTimeActor acts like a JustInTimeActor but additionally contains an AsyncTaskQueue.
Any time the amount of accumulated time crosses a threshold provided at construction time,
the object will be updated on the AsyncTaskQueue.
*/
2024-11-30 03:12:57 +00:00
template <class T, class LocalTimeScale = HalfCycles, class TargetTimeScale = LocalTimeScale>
class AsyncJustInTimeActor {
public:
/// Constructs a new AsyncJustInTimeActor using the same construction arguments as the included object.
template<typename... Args> AsyncJustInTimeActor(TargetTimeScale threshold, Args&&... args) :
object_(std::forward<Args>(args)...),
threshold_(threshold) {}
/// Adds time to the actor.
inline void operator += (const LocalTimeScale &rhs) {
time_since_update_ += rhs;
if(time_since_update_ >= threshold_) {
time_since_update_ -= threshold_;
task_queue_.enqueue([this] () {
object_.run_for(threshold_);
});
}
2024-11-30 03:12:57 +00:00
is_flushed_ = false;
}
/// Flushes all accumulated time and returns a pointer to the included object.
inline T *operator->() {
flush();
return &object_;
}
/// Returns a pointer to the included object without flushing time.
inline T *last_valid() {
return &object_;
}
/// Flushes all accumulated time.
inline void flush() {
if(!is_flushed_) {
task_queue_.flush();
object_.run_for(time_since_update_.template flush<TargetTimeScale>());
is_flushed_ = true;
}
2024-11-30 03:12:57 +00:00
}
private:
T object_;
LocalTimeScale time_since_update_;
TargetTimeScale threshold_;
bool is_flushed_ = true;
Concurrency::AsyncTaskQueue<true> task_queue_;
};