1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-25 01:32:55 +00:00
CLK/Machines/Acorn/Electron/Video.hpp

184 lines
5.8 KiB
C++
Raw Normal View History

//
// Video.hpp
// Clock Signal
//
// Created by Thomas Harte on 10/12/2016.
// Copyright 2016 Thomas Harte. All rights reserved.
//
#pragma once
2024-03-04 16:31:25 +00:00
#include "../../../Outputs/CRT/CRT.hpp"
#include "../../../ClockReceiver/ClockReceiver.hpp"
#include "Interrupts.hpp"
#include <vector>
namespace Electron {
/*!
Implements the Electron's video subsystem plus appropriate signalling.
The Electron has an interlaced fully-bitmapped display with six different output modes,
running either at 40 or 80 columns. Memory is shared between video and CPU; when the video
is accessing it the CPU may not.
*/
class VideoOutput {
public:
/*!
Instantiates a VideoOutput that will read its pixels from @c memory.
The pointer supplied should be to address 0 in the unexpanded Electron's memory map.
*/
VideoOutput(const uint8_t *memory);
/// Sets the destination for output.
void set_scan_target(Outputs::Display::ScanTarget *scan_target);
/// Gets the current scan status.
Outputs::Display::ScanStatus get_scaled_scan_status() const;
2018-11-30 04:44:21 +00:00
/// Sets the type of output.
void set_display_type(Outputs::Display::DisplayType);
/// Gets the type of output.
Outputs::Display::DisplayType get_display_type() const;
/// Produces the next @c cycles of video output.
///
/// @returns a bit mask of all interrupts triggered.
uint8_t run_for(const Cycles cycles);
/// @returns The number of 2Mhz cycles that will pass before completion of an attempted
/// IO [/1Mhz] access that is first signalled in the upcoming cycle.
Cycles io_delay() {
2024-09-09 00:16:43 +00:00
return 2 + ((h_count_ >> 3)&1);
}
/// @returns The number of 2Mhz cycles that will pass before completion of an attempted
/// RAM access that is first signalled in the upcoming cycle.
Cycles ram_delay() {
2024-09-09 00:16:43 +00:00
if(!mode_40_ && !in_blank()) {
return 2 + ((h_active - h_count_) >> 3);
}
return io_delay();
}
/*!
Writes @c value to the register at @c address. May mutate the results of @c get_next_interrupt,
@c get_cycles_until_next_ram_availability and @c get_memory_access_range.
*/
void write(int address, uint8_t value);
/*!
@returns the number of cycles after (final cycle of last run_for batch + @c from_time)
before the video circuits will allow the CPU to access RAM.
*/
unsigned int get_cycles_until_next_ram_availability(int from_time);
private:
const uint8_t *ram_ = nullptr;
// CRT output
enum class OutputStage {
2024-09-09 01:12:45 +00:00
Sync, Blank, Pixels, ColourBurst,
};
2024-09-07 02:12:19 +00:00
OutputStage output_ = OutputStage::Blank;
int output_length_ = 0;
2024-09-07 01:01:30 +00:00
int screen_pitch_ = 0;
uint8_t *current_output_target_ = nullptr;
uint8_t *initial_output_target_ = nullptr;
int current_output_divider_ = 1;
Outputs::CRT::CRT crt_;
2024-09-07 01:36:05 +00:00
// Palettes.
2024-09-07 02:12:19 +00:00
uint8_t palette_[8]{};
uint8_t palette1bpp_[2]{};
uint8_t palette2bpp_[4]{};
uint8_t palette4bpp_[16]{};
2024-09-07 01:36:05 +00:00
template <int index, int source_bit, int target_bit>
uint8_t channel() {
if constexpr (source_bit < target_bit) {
return (palette_[index] << (target_bit - source_bit)) & (1 << target_bit);
} else {
return (palette_[index] >> (source_bit - target_bit)) & (1 << target_bit);
}
}
template <int r_index, int r_bit, int g_index, int g_bit, int b_index, int b_bit>
uint8_t palette_entry() {
return channel<r_index, r_bit, 2>() | channel<g_index, g_bit, 1>() | channel<b_index, b_bit, 0>();
}
// User-selected base address; constrained to a 64-byte boundary by the setter.
2024-09-09 00:16:43 +00:00
uint16_t screen_base_ = 0;
// Parameters implied by mode selection.
2024-09-09 00:16:43 +00:00
uint16_t mode_base_ = 0;
bool mode_40_ = true;
bool mode_text_ = false;
enum class Bpp {
2024-09-07 01:01:30 +00:00
One = 1, Two = 2, Four = 4
2024-09-09 00:16:43 +00:00
} mode_bpp_ = Bpp::One;
// Frame position.
2024-09-09 00:16:43 +00:00
int v_count_ = 0;
int h_count_ = 0;
bool field_ = true;
// Current working address.
2024-09-09 00:16:43 +00:00
uint16_t row_addr_ = 0; // Address, sans character row, adopted at the start of a row.
uint16_t byte_addr_ = 0; // Current working address, incremented as the raster moves across the line.
int char_row_ = 0; // Character row; 09 in text mode, 07 in graphics.
// Sync states.
2024-09-09 00:16:43 +00:00
bool vsync_int_ = false; // True => vsync active.
bool hsync_int_ = false; // True => hsync active.
// Horizontal timing parameters; all in terms of the 16Mhz pixel clock but conveniently all
// divisible by 8, so it's safe to count time with a 2Mhz input.
static constexpr int h_active = 640;
static constexpr int hsync_start = 768;
static constexpr int hsync_end = 832;
static constexpr int h_reset_addr = 1016;
static constexpr int h_total = 1024; // Minor digression from the FPGA original here;
// in this implementation the value is tested
// _after_ position increment rather than before/instead.
// So it needs to be one higher. Which is baked into
// the constant to emphasise the all-divisible-by-8 property.
2024-09-09 01:12:45 +00:00
static constexpr int h_half = h_total / 2;
2024-09-09 01:12:45 +00:00
static constexpr int hburst_start = 856;
static constexpr int hburst_end = 896;
// Vertical timing parameters; all in terms of lines. As per the horizontal parameters above,
// lines begin with their first visible pixel (or the equivalent position).
static constexpr int v_active_gph = 256;
static constexpr int v_active_txt = 250;
static constexpr int v_disp_gph = v_active_gph - 1;
static constexpr int v_disp_txt = v_active_txt - 1;
static constexpr int vsync_start = 274;
static constexpr int vsync_end = 276;
static constexpr int v_rtc = 99;
// Various signals that it was convenient to factor out.
int v_total() const {
2024-09-09 00:16:43 +00:00
return field_ ? 312 : 311;
}
bool last_line() const {
2024-09-09 00:16:43 +00:00
return char_row_ == (mode_text_ ? 9 : 7);
}
bool in_blank() const {
2024-09-09 00:16:43 +00:00
return h_count_ >= h_active || (mode_text_ && v_count_ >= v_active_txt) || (!mode_text_ && v_count_ >= v_active_gph) || char_row_ >= 8;
2024-09-09 00:57:43 +00:00
}
bool is_v_end() const {
return v_count_ == v_total();
}
};
}