1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-07 23:29:06 +00:00
CLK/Components/RP5C01/RP5C01.cpp

150 lines
3.4 KiB
C++
Raw Normal View History

2023-01-14 19:17:28 +00:00
//
// RP5C01.cpp
// Clock Signal
//
// Created by Thomas Harte on 14/01/2023.
// Copyright © 2023 Thomas Harte. All rights reserved.
//
#include "RP5C01.hpp"
2023-01-17 01:11:42 +00:00
#include <ctime>
2023-01-14 19:17:28 +00:00
using namespace Ricoh::RP5C01;
2023-01-17 01:11:42 +00:00
RP5C01::RP5C01(HalfCycles clock_rate) : clock_rate_(clock_rate) {
// Seed internal clock.
std::time_t now = time(NULL);
std::tm *time_date = localtime(&now);
seconds_ =
time_date->tm_sec +
time_date->tm_min * 60 +
time_date->tm_hour * 60 * 60;
day_of_the_week_ = time_date->tm_wday;
day_ = time_date->tm_mday;
month_ = time_date->tm_mon;
year_ = time_date->tm_year % 100;
leap_year_ = time_date->tm_year % 4;
}
2023-01-14 19:17:28 +00:00
void RP5C01::run_for(HalfCycles cycles) {
sub_seconds_ += cycles;
// Guess: this happens so rarely (i.e. once a second, ordinarily) that
// it's not worth worrying about the branch prediction consequences.
//
// ... and ditto all the conditionals below, which will be very rarely reached.
if(sub_seconds_ < clock_rate_) {
return;
}
const auto elapsed_seconds = int(sub_seconds_.as_integral() / clock_rate_.as_integral());
sub_seconds_ %= clock_rate_;
// Update time within day.
seconds_ += elapsed_seconds;
constexpr int day_length = 60 * 60 * 24;
if(seconds_ < day_length) {
return;
}
const int elapsed_days = seconds_ / day_length;
seconds_ %= day_length;
// Day of the week doesn't aggregate upwards.
day_of_the_week_ = (day_of_the_week_ + elapsed_days) % 7;
// Assumed for now: day and month run from 0.
// A leap year count of 0 implies a leap year.
// TODO: verify.
day_ += elapsed_days;
while(true) {
int month_length = 1;
switch(month_) {
case 0: month_length = 31; break;
case 1: month_length = 28 + !leap_year_; break;
case 2: month_length = 31; break;
case 3: month_length = 30; break;
case 4: month_length = 31; break;
case 5: month_length = 30; break;
case 6: month_length = 31; break;
case 7: month_length = 31; break;
case 8: month_length = 30; break;
case 9: month_length = 31; break;
case 10: month_length = 30; break;
case 11: month_length = 31; break;
}
if(day_ < month_length) {
return;
}
day_ -= month_length;
++month_;
if(month_ == 12) {
month_ = 0;
2023-01-17 01:11:42 +00:00
year_ = (year_ + 1) % 100;
2023-01-14 19:17:28 +00:00
leap_year_ = (leap_year_ + 1) & 3;
}
}
}
/// Performs a write of @c value to @c address.
void RP5C01::write(int address, uint8_t value) {
2023-01-14 19:52:07 +00:00
address &= 0xf;
2023-01-14 19:17:28 +00:00
// Registers DF don't depend on the mode.
if(address >= 0xd) {
switch(address) {
default: break;
case 0xd:
timer_enabled_ = value & 0x8;
alarm_enabled_ = value & 0x4;
mode_ = value & 0x3;
break;
case 0xe:
// Test register; unclear what is supposed to happen.
break;
case 0xf:
one_hz_on_ = !(value & 0x8);
sixteen_hz_on_ = !(value & 0x4);
// TODO: timer reset on bit 1, alarm reset on bit 0
break;
}
return;
}
2023-01-14 19:52:07 +00:00
2023-01-14 19:58:12 +00:00
switch(mode_) {
case 3:
address += 13;
[[fallthrough]];
case 2:
ram_[size_t(address)] = value & 0xf;
return;
}
2023-01-14 19:52:07 +00:00
// TODO.
printf("RP-5C01 write of %d to %d in mode %d\n", value, address & 0xf, mode_);
}
uint8_t RP5C01::read(int address) {
address &= 0xf;
2023-01-14 19:58:12 +00:00
if(address < 0xd) {
switch(mode_) {
case 3:
address += 13;
[[fallthrough]];
case 2:
return 0xf0 | ram_[size_t(address)];
}
}
2023-01-14 19:52:07 +00:00
// TODO.
printf("RP-5C01 read from %d in mode %d\n", address & 0xf, mode_);
return 0xff;
2023-01-14 19:17:28 +00:00
}