1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-26 23:52:26 +00:00
CLK/Components/6532/6532.hpp

205 lines
5.5 KiB
C++
Raw Normal View History

//
// 6532.hpp
// Clock Signal
//
// Created by Thomas Harte on 19/06/2016.
// Copyright © 2016 Thomas Harte. All rights reserved.
//
#ifndef _532_hpp
#define _532_hpp
#include <cstdint>
#include <cstdio>
namespace MOS {
/*!
Implements a template for emulation of the MOS 6532 RAM-I/O-Timer ('RIOT').
The RIOT provides:
* 128 bytes of static RAM;
* an interval timer; and
* two digital input/output ports.
Consumers should derive their own curiously-recurring-template-pattern subclass,
implementing bus communications as required.
*/
template <class T> class MOS6532 {
public:
inline void set_ram(uint16_t address, uint8_t value) { _ram[address&0x7f] = value; }
inline uint8_t get_ram(uint16_t address) { return _ram[address & 0x7f]; }
inline void set_register(int address, uint8_t value)
{
const uint8_t decodedAddress = address & 0x07;
switch(decodedAddress) {
// Port output
case 0x00: case 0x02:
_port[decodedAddress / 2].output = value;
static_cast<T *>(this)->set_port_output(decodedAddress / 2, _port[decodedAddress/2].output, _port[decodedAddress / 2].output_mask);
set_port_did_change(decodedAddress / 2);
break;
case 0x01: case 0x03:
_port[decodedAddress / 2].output_mask = value;
static_cast<T *>(this)->set_port_output(decodedAddress / 2, _port[decodedAddress/2].output, _port[decodedAddress / 2].output_mask);
set_port_did_change(decodedAddress / 2);
break;
// The timer and edge detect control
case 0x04: case 0x05: case 0x06: case 0x07:
if(address & 0x10)
{
_timer.writtenShift = _timer.activeShift = (decodedAddress - 0x04) * 3 + (decodedAddress / 0x07); // i.e. 0, 3, 6, 10
_timer.value = ((unsigned int)(value) << _timer.activeShift) | ((1 << _timer.activeShift)-1);
_timer.interrupt_enabled = !!(address&0x08);
_interrupt_status &= ~InterruptFlag::Timer;
evaluate_interrupts();
}
else
{
_a7_interrupt.enabled = !!(address&0x2);
_a7_interrupt.active_on_positive = !!(address & 0x01);
}
break;
}
}
inline uint8_t get_register(int address)
{
const uint8_t decodedAddress = address & 0x7;
switch(decodedAddress) {
// Port input
case 0x00: case 0x02:
{
const int port = decodedAddress / 2;
uint8_t input = static_cast<T *>(this)->get_port_input(port);
return (input & ~_port[port].output_mask) | (_port[port].output & _port[port].output_mask);
}
break;
case 0x01: case 0x03:
return _port[decodedAddress / 2].output_mask;
break;
// Timer and interrupt control
case 0x04: case 0x06:
{
uint8_t value = (uint8_t)(_timer.value >> _timer.activeShift);
_timer.interrupt_enabled = !!(address&0x08);
_interrupt_status &= ~InterruptFlag::Timer;
evaluate_interrupts();
if(_timer.activeShift != _timer.writtenShift) {
unsigned int shift = _timer.writtenShift - _timer.activeShift;
_timer.value = (_timer.value << shift) | ((1 << shift) - 1);
_timer.activeShift = _timer.writtenShift;
}
return value;
}
break;
case 0x05: case 0x07:
{
uint8_t value = _interrupt_status;
_interrupt_status &= ~InterruptFlag::PA7;
evaluate_interrupts();
return value;
}
break;
}
return 0xff;
}
inline void run_for_cycles(unsigned int number_of_cycles)
{
// permit counting _to_ zero; counting _through_ zero initiates the other behaviour
if(_timer.value >= number_of_cycles) {
_timer.value -= number_of_cycles;
} else {
number_of_cycles -= _timer.value;
_timer.value = 0x100 - number_of_cycles;
_timer.activeShift = 0;
_interrupt_status |= InterruptFlag::Timer;
evaluate_interrupts();
}
}
MOS6532() :
_interrupt_status(0),
_port{{.output_mask = 0, .output = 0}, {.output_mask = 0, .output = 0}},
_a7_interrupt({.last_port_value = 0, .enabled = false}),
_interrupt_line(false)
{}
inline void set_port_did_change(int port)
{
if(!port)
{
uint8_t new_port_a_value = (get_port_input(0) & ~_port[0].output_mask) | (_port[0].output & _port[0].output_mask);
uint8_t difference = new_port_a_value ^ _a7_interrupt.last_port_value;
_a7_interrupt.last_port_value = new_port_a_value;
if(difference&0x80)
{
if(
((new_port_a_value&0x80) && _a7_interrupt.active_on_positive) ||
(!(new_port_a_value&0x80) && !_a7_interrupt.active_on_positive)
)
{
_interrupt_status |= InterruptFlag::PA7;
evaluate_interrupts();
}
}
}
}
inline bool get_inerrupt_line()
{
return _interrupt_line;
}
private:
uint8_t _ram[128];
struct {
unsigned int value;
unsigned int activeShift, writtenShift;
bool interrupt_enabled;
} _timer;
struct {
bool enabled;
bool active_on_positive;
uint8_t last_port_value;
} _a7_interrupt;
struct {
uint8_t output_mask, output;
} _port[2];
uint8_t _interrupt_status;
enum InterruptFlag: uint8_t {
Timer = 0x80,
PA7 = 0x40
};
bool _interrupt_line;
// expected to be overridden
uint8_t get_port_input(int port) { return 0xff; }
void set_port_output(int port, uint8_t value, uint8_t output_mask) {}
void set_irq_line(bool new_value) {}
inline void evaluate_interrupts()
{
_interrupt_line =
((_interrupt_status&InterruptFlag::Timer) && _timer.interrupt_enabled) ||
((_interrupt_status&InterruptFlag::PA7) && _a7_interrupt.enabled);
set_irq_line(_interrupt_line);
}
};
}
#endif /* _532_hpp */