1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-11-23 18:31:53 +00:00
CLK/Components/AY38910/AY38910.cpp

403 lines
13 KiB
C++
Raw Normal View History

//
// AY-3-8910.cpp
// Clock Signal
//
// Created by Thomas Harte on 14/10/2016.
// Copyright 2016 Thomas Harte. All rights reserved.
//
#include <cmath>
#include "AY38910.hpp"
//namespace GI {
//namespace AY38910 {
using namespace GI::AY38910;
template <bool is_stereo>
AY38910<is_stereo>::AY38910(Personality personality, Concurrency::DeferringAsyncTaskQueue &task_queue) : task_queue_(task_queue) {
// Don't use the low bit of the envelope position if this is an AY.
envelope_position_mask_ |= personality == Personality::AY38910;
// Set up envelope lookup tables.
2017-03-26 18:34:47 +00:00
for(int c = 0; c < 16; c++) {
for(int p = 0; p < 64; p++) {
2017-03-26 18:34:47 +00:00
switch(c) {
case 0: case 1: case 2: case 3: case 9:
/* Envelope: \____ */
envelope_shapes_[c][p] = (p < 32) ? (p^0x1f) : 0;
envelope_overflow_masks_[c] = 0x3f;
break;
case 4: case 5: case 6: case 7: case 15:
/* Envelope: /____ */
envelope_shapes_[c][p] = (p < 32) ? p : 0;
envelope_overflow_masks_[c] = 0x3f;
break;
case 8:
/* Envelope: \\\\\\\\ */
envelope_shapes_[c][p] = (p & 0x1f) ^ 0x1f;
envelope_overflow_masks_[c] = 0x00;
break;
case 12:
/* Envelope: //////// */
envelope_shapes_[c][p] = (p & 0x1f);
envelope_overflow_masks_[c] = 0x00;
break;
case 10:
/* Envelope: \/\/\/\/ */
envelope_shapes_[c][p] = (p & 0x1f) ^ ((p < 32) ? 0x1f : 0x0);
envelope_overflow_masks_[c] = 0x00;
break;
case 14:
/* Envelope: /\/\/\/\ */
envelope_shapes_[c][p] = (p & 0x1f) ^ ((p < 32) ? 0x0 : 0x1f);
envelope_overflow_masks_[c] = 0x00;
break;
case 11:
/* Envelope: \------ (if - is high) */
envelope_shapes_[c][p] = (p < 32) ? (p^0x1f) : 0x1f;
envelope_overflow_masks_[c] = 0x3f;
break;
case 13:
/* Envelope: /------- */
envelope_shapes_[c][p] = (p < 32) ? p : 0x1f;
envelope_overflow_masks_[c] = 0x3f;
break;
}
}
}
2016-10-20 03:07:51 +00:00
set_sample_volume_range(0);
}
template <bool is_stereo> void AY38910<is_stereo>::set_sample_volume_range(std::int16_t range) {
// Set up volume lookup table; the function below is based on a combination of the graph
// from the YM's datasheet, showing a clear power curve, and fitting that to observed
// values reported elsewhere.
const float max_volume = float(range) / 3.0f; // As there are three channels.
constexpr float root_two = 1.414213562373095f;
for(int v = 0; v < 32; v++) {
volumes_[v] = int(max_volume / powf(root_two, float(v ^ 0x1f) / 3.18f));
2016-10-20 03:07:51 +00:00
}
// Tie level 0 to silence.
for(int v = 31; v >= 0; --v) {
volumes_[v] -= volumes_[0];
}
evaluate_output_volume();
}
template <bool is_stereo> void AY38910<is_stereo>::set_output_mixing(float a_left, float b_left, float c_left, float a_right, float b_right, float c_right) {
a_left_ = uint8_t(a_left * 255.0f);
b_left_ = uint8_t(b_left * 255.0f);
c_left_ = uint8_t(c_left * 255.0f);
a_right_ = uint8_t(a_right * 255.0f);
b_right_ = uint8_t(b_right * 255.0f);
c_right_ = uint8_t(c_right * 255.0f);
}
template <bool is_stereo> void AY38910<is_stereo>::get_samples(std::size_t number_of_samples, int16_t *target) {
// Note on structure below: the real AY has a built-in divider of 8
// prior to applying its tone and noise dividers. But the YM fills the
// same total periods for noise and tone with double-precision envelopes.
// Therefore this class implements a divider of 4 and doubles the tone
// and noise periods. The envelope ticks along at the divide-by-four rate,
// but if this is an AY rather than a YM then its lowest bit is forced to 1,
// matching the YM datasheet's depiction of envelope level 31 as equal to
// programmatic volume 15, envelope level 29 as equal to programmatic 14, etc.
2018-01-07 04:16:01 +00:00
std::size_t c = 0;
while((master_divider_&3) && c < number_of_samples) {
if constexpr (is_stereo) {
reinterpret_cast<uint32_t *>(target)[c] = output_volume_;
} else {
target[c] = int16_t(output_volume_);
}
master_divider_++;
c++;
}
2016-10-20 01:43:18 +00:00
2017-03-26 18:34:47 +00:00
while(c < number_of_samples) {
#define step_channel(c) \
if(tone_counters_[c]) tone_counters_[c]--;\
2017-03-26 18:34:47 +00:00
else {\
tone_outputs_[c] ^= 1;\
tone_counters_[c] = tone_periods_[c] << 1;\
}
// Update the tone channels.
2016-10-20 01:43:18 +00:00
step_channel(0);
step_channel(1);
step_channel(2);
#undef step_channel
// Update the noise generator. This recomputes the new bit repeatedly but harmlessly, only shifting
// it into the official 17 upon divider underflow.
if(noise_counter_) noise_counter_--;
2017-03-26 18:34:47 +00:00
else {
noise_counter_ = noise_period_ << 1; // To cover the double resolution of envelopes.
noise_output_ ^= noise_shift_register_&1;
noise_shift_register_ |= ((noise_shift_register_ ^ (noise_shift_register_ >> 3))&1) << 17;
noise_shift_register_ >>= 1;
}
// Update the envelope generator. Table based for pattern lookup, with a 'refill' step: a way of
// implementing non-repeating patterns by locking them to the final table position.
if(envelope_divider_) envelope_divider_--;
2017-03-26 18:34:47 +00:00
else {
envelope_divider_ = envelope_period_;
envelope_position_ ++;
if(envelope_position_ == 64) envelope_position_ = envelope_overflow_masks_[output_registers_[13]];
}
evaluate_output_volume();
2016-10-20 01:43:18 +00:00
for(int ic = 0; ic < 4 && c < number_of_samples; ic++) {
if constexpr (is_stereo) {
reinterpret_cast<uint32_t *>(target)[c] = output_volume_;
} else {
target[c] = int16_t(output_volume_);
}
c++;
master_divider_++;
}
}
master_divider_ &= 3;
}
template <bool is_stereo> void AY38910<is_stereo>::evaluate_output_volume() {
int envelope_volume = envelope_shapes_[output_registers_[13]][envelope_position_ | envelope_position_mask_];
// The output level for a channel is:
// 1 if neither tone nor noise is enabled;
// 0 if either tone or noise is enabled and its value is low.
// The tone/noise enable bits use inverse logic; 0 = on, 1 = off; permitting the OR logic below.
#define tone_level(c, tone_bit) (tone_outputs_[c] | (output_registers_[7] >> tone_bit))
#define noise_level(c, noise_bit) (noise_output_ | (output_registers_[7] >> noise_bit))
#define level(c, tone_bit, noise_bit) tone_level(c, tone_bit) & noise_level(c, noise_bit) & 1
const int channel_levels[3] = {
level(0, 0, 3),
level(1, 1, 4),
level(2, 2, 5),
};
2016-10-20 01:43:18 +00:00
#undef level
// This remapping table seeks to map 'channel volumes', i.e. the levels produced from the
// 16-step progammatic volumes set per channel to 'envelope volumes', i.e. the 32-step
// volumes that are produced by the envelope generators (on a YM at least). My reading of
// the data sheet is that '0' is still off, but 15 should be as loud as peak envelope. So
// I've thrown in the discontinuity at the low end, where it'll be very quiet.
const int channel_volumes[] = {
0, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31
};
static_assert(sizeof(channel_volumes) == 16*sizeof(int));
// Channel volume is a simple selection: if the bit at 0x10 is set, use the envelope volume; otherwise use the lower four bits,
// mapped to the range 131 in case this is a YM.
2016-10-20 01:43:18 +00:00
#define channel_volume(c) \
((output_registers_[c] >> 4)&1) * envelope_volume + (((output_registers_[c] >> 4)&1)^1) * channel_volumes[output_registers_[c]&0xf]
const int volumes[3] = {
channel_volume(8),
channel_volume(9),
channel_volume(10)
};
2016-10-20 01:43:18 +00:00
#undef channel_volume
// Mix additively, weighting if in stereo.
if constexpr (is_stereo) {
2020-02-16 05:19:49 +00:00
int16_t *const output_volumes = reinterpret_cast<int16_t *>(&output_volume_);
output_volumes[0] = int16_t((
volumes_[volumes[0]] * channel_levels[0] * a_left_ +
volumes_[volumes[1]] * channel_levels[1] * b_left_ +
volumes_[volumes[2]] * channel_levels[2] * c_left_
) >> 8);
2020-02-16 05:19:49 +00:00
output_volumes[1] = int16_t((
volumes_[volumes[0]] * channel_levels[0] * a_right_ +
volumes_[volumes[1]] * channel_levels[1] * b_right_ +
volumes_[volumes[2]] * channel_levels[2] * c_right_
) >> 8);
} else {
output_volume_ = uint32_t(
volumes_[volumes[0]] * channel_levels[0] +
volumes_[volumes[1]] * channel_levels[1] +
volumes_[volumes[2]] * channel_levels[2]
);
}
}
template <bool is_stereo> bool AY38910<is_stereo>::is_zero_level() const {
// Confirm that the AY is trivially at the zero level if all three volume controls are set to fixed zero.
return output_registers_[0x8] == 0 && output_registers_[0x9] == 0 && output_registers_[0xa] == 0;
}
// MARK: - Register manipulation
template <bool is_stereo> void AY38910<is_stereo>::select_register(uint8_t r) {
selected_register_ = r;
}
template <bool is_stereo> void AY38910<is_stereo>::set_register_value(uint8_t value) {
// There are only 16 registers.
if(selected_register_ > 15) return;
// If this is a register that affects audio output, enqueue a mutation onto the
// audio generation thread.
2017-03-26 18:34:47 +00:00
if(selected_register_ < 14) {
task_queue_.defer([this, selected_register = selected_register_, value] () {
// Perform any register-specific mutation to output generation.
uint8_t masked_value = value;
2017-03-26 18:34:47 +00:00
switch(selected_register) {
case 0: case 2: case 4:
2017-03-26 18:34:47 +00:00
case 1: case 3: case 5: {
int channel = selected_register >> 1;
if(selected_register & 1)
tone_periods_[channel] = (tone_periods_[channel] & 0xff) | uint16_t((value&0xf) << 8);
else
tone_periods_[channel] = (tone_periods_[channel] & ~0xff) | value;
}
break;
case 6:
noise_period_ = value & 0x1f;
break;
case 11:
envelope_period_ = (envelope_period_ & ~0xff) | value;
break;
case 12:
envelope_period_ = (envelope_period_ & 0xff) | int(value << 8);
break;
case 13:
masked_value &= 0xf;
envelope_position_ = 0;
break;
}
// Store a copy of the current register within the storage used by the audio generation
// thread, and apply any changes to output volume.
output_registers_[selected_register] = masked_value;
evaluate_output_volume();
});
}
// Decide which outputs are going to need updating (if any).
bool update_port_a = false;
bool update_port_b = true;
if(port_handler_) {
if(selected_register_ == 7) {
const uint8_t io_change = registers_[7] ^ value;
update_port_b = !!(io_change&0x80);
update_port_a = !!(io_change&0x40);
} else {
update_port_b = selected_register_ == 15;
update_port_a = selected_register_ != 15;
}
}
// Keep a copy of the new value that is usable from the emulation thread.
registers_[selected_register_] = value;
// Update ports as required.
if(update_port_b) set_port_output(true);
if(update_port_a) set_port_output(false);
}
template <bool is_stereo> uint8_t AY38910<is_stereo>::get_register_value() {
// This table ensures that bits that aren't defined within the AY are returned as 0s
// when read, conforming to CPC-sourced unit tests.
const uint8_t register_masks[16] = {
0xff, 0x0f, 0xff, 0x0f, 0xff, 0x0f, 0x1f, 0xff,
0x1f, 0x1f, 0x1f, 0xff, 0xff, 0x0f, 0xff, 0xff
};
if(selected_register_ > 15) return 0xff;
return registers_[selected_register_] & register_masks[selected_register_];
2016-10-15 01:44:15 +00:00
}
// MARK: - Port querying
template <bool is_stereo> uint8_t AY38910<is_stereo>::get_port_output(bool port_b) {
return registers_[port_b ? 15 : 14];
}
// MARK: - Bus handling
template <bool is_stereo> void AY38910<is_stereo>::set_port_handler(PortHandler *handler) {
port_handler_ = handler;
set_port_output(true);
set_port_output(false);
}
template <bool is_stereo> void AY38910<is_stereo>::set_data_input(uint8_t r) {
data_input_ = r;
update_bus();
}
template <bool is_stereo> void AY38910<is_stereo>::set_port_output(bool port_b) {
// Per the data sheet: "each [IO] pin is provided with an on-chip pull-up resistor,
// so that when in the "input" mode, all pins will read normally high". Therefore,
// report programmer selection of input mode as creating an output of 0xff.
if(port_handler_) {
const bool is_output = !!(registers_[7] & (port_b ? 0x80 : 0x40));
port_handler_->set_port_output(port_b, is_output ? registers_[port_b ? 15 : 14] : 0xff);
}
}
template <bool is_stereo> uint8_t AY38910<is_stereo>::get_data_output() {
if(control_state_ == Read && selected_register_ >= 14 && selected_register_ < 16) {
// Per http://cpctech.cpc-live.com/docs/psgnotes.htm if a port is defined as output then the
// value returned to the CPU when reading it is the and of the output value and any input.
// If it's defined as input then you just get the input.
const uint8_t mask = port_handler_ ? port_handler_->get_port_input(selected_register_ == 15) : 0xff;
switch(selected_register_) {
2018-11-24 03:32:32 +00:00
default: break;
case 14: return mask & ((registers_[0x7] & 0x40) ? registers_[14] : 0xff);
case 15: return mask & ((registers_[0x7] & 0x80) ? registers_[15] : 0xff);
}
}
return data_output_;
}
template <bool is_stereo> void AY38910<is_stereo>::set_control_lines(ControlLines control_lines) {
switch(int(control_lines)) {
default: control_state_ = Inactive; break;
case int(BDIR | BC2 | BC1):
case BDIR:
case BC1: control_state_ = LatchAddress; break;
case int(BC2 | BC1): control_state_ = Read; break;
case int(BDIR | BC2): control_state_ = Write; break;
}
update_bus();
}
template <bool is_stereo> void AY38910<is_stereo>::update_bus() {
// Assume no output, unless this turns out to be a read.
data_output_ = 0xff;
switch(control_state_) {
2018-11-24 03:32:32 +00:00
default: break;
case LatchAddress: select_register(data_input_); break;
case Write: set_register_value(data_input_); break;
case Read: data_output_ = get_register_value(); break;
}
}
// Ensure both mono and stereo versions of the AY are built.
template class GI::AY38910::AY38910<true>;
template class GI::AY38910::AY38910<false>;