1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-02-27 00:30:26 +00:00

Trim the public interface of Executor.

This commit is contained in:
Thomas Harte 2022-05-13 13:55:37 -04:00
parent 4299334e24
commit 002a8c061f
2 changed files with 253 additions and 236 deletions

View File

@ -59,7 +59,7 @@ struct BusHandler {
/// Ties together the decoder, sequencer and performer to provide an executor for 680x0 instruction streams.
/// As is standard for these executors, no bus- or cache-level fidelity to any real 680x0 is attempted. This is
/// simply an executor of 680x0 code.
template <Model model, typename BusHandler> class Executor: public NullFlowController {
template <Model model, typename BusHandler> class Executor {
public:
Executor(BusHandler &);
@ -77,36 +77,8 @@ template <Model model, typename BusHandler> class Executor: public NullFlowContr
/// Sets the current input interrupt level.
void set_interrupt_level(int);
// Flow control; Cf. Perform.hpp.
template <bool use_current_instruction_pc = true> void raise_exception(int);
void did_update_status();
template <typename IntT> void complete_bcc(bool matched_condition, IntT offset);
void complete_dbcc(bool matched_condition, bool overflowed, int16_t offset);
void bsr(uint32_t offset);
void jmp(uint32_t);
void jsr(uint32_t offset);
void rtr();
void rts();
void rte();
void stop();
void reset();
void link(Preinstruction instruction, uint32_t offset);
void unlink(uint32_t &address);
void pea(uint32_t address);
void move_to_usp(uint32_t address);
void move_from_usp(uint32_t &address);
template <typename IntT> void movep(Preinstruction instruction, uint32_t source, uint32_t dest);
template <typename IntT> void movem_toM(Preinstruction instruction, uint32_t source, uint32_t dest);
template <typename IntT> void movem_toR(Preinstruction instruction, uint32_t source, uint32_t dest);
void tas(Preinstruction instruction, uint32_t address);
// TODO: ownership of this shouldn't be here.
// TODO: this will likely be shared in some capacity with the bus-accurate versions of the 680x0;
// therefore it will almost certainly be factored out in future.
struct Registers {
uint32_t data[8], address[7];
uint32_t user_stack_pointer;
@ -118,44 +90,80 @@ template <Model model, typename BusHandler> class Executor: public NullFlowContr
void set_state(const Registers &);
private:
void run(int &);
/// Reset the processor, back to a state as if just externally reset.
void reset();
BusHandler &bus_handler_;
Predecoder<model> decoder_;
class State: public NullFlowController {
public:
State(BusHandler &handler) : bus_handler_(handler) {}
void reset_processor();
struct EffectiveAddress {
CPU::SlicedInt32 value;
bool requires_fetch;
};
EffectiveAddress calculate_effective_address(Preinstruction instruction, uint16_t opcode, int index);
void run(int &);
void read(DataSize size, uint32_t address, CPU::SlicedInt32 &value);
void write(DataSize size, uint32_t address, CPU::SlicedInt32 value);
template <typename IntT> IntT read(uint32_t address, bool is_from_pc = false);
template <typename IntT> void write(uint32_t address, IntT value);
void read(DataSize size, uint32_t address, CPU::SlicedInt32 &value);
void write(DataSize size, uint32_t address, CPU::SlicedInt32 value);
template <typename IntT> IntT read(uint32_t address, bool is_from_pc = false);
template <typename IntT> void write(uint32_t address, IntT value);
template <typename IntT> IntT read_pc();
template <typename IntT> IntT read_pc();
uint32_t index_8bitdisplacement();
// Processor state.
Status status;
CPU::SlicedInt32 program_counter;
CPU::SlicedInt32 registers[16]; // D0D7 followed by A0A7.
CPU::SlicedInt32 stack_pointers[2];
uint32_t instruction_address;
uint16_t instruction_opcode;
int active_stack_pointer = 0;
// Processor state.
Status status_;
CPU::SlicedInt32 program_counter_;
CPU::SlicedInt32 registers_[16]; // D0D8, followed by A0A8.
CPU::SlicedInt32 stack_pointers_[2];
uint32_t instruction_address_;
uint16_t instruction_opcode_;
int active_stack_pointer_ = 0;
// Bus state.
int interrupt_input = 0;
// Bus state.
int interrupt_input_ = 0;
// A lookup table to ensure that A7 is adjusted by 2 rather than 1 in
// postincrement and predecrement mode.
static constexpr uint32_t byte_increments[] = {
1, 1, 1, 1, 1, 1, 1, 2
};
// A lookup table to ensure that A7 is adjusted by 2 rather than 1 in
// postincrement and predecrement mode.
static constexpr uint32_t byte_increments[] = {
1, 1, 1, 1, 1, 1, 1, 2
};
// Flow control; Cf. Perform.hpp.
template <bool use_current_instruction_pc = true> void raise_exception(int);
void did_update_status();
template <typename IntT> void complete_bcc(bool matched_condition, IntT offset);
void complete_dbcc(bool matched_condition, bool overflowed, int16_t offset);
void bsr(uint32_t offset);
void jmp(uint32_t);
void jsr(uint32_t offset);
void rtr();
void rts();
void rte();
void stop();
void reset();
void link(Preinstruction instruction, uint32_t offset);
void unlink(uint32_t &address);
void pea(uint32_t address);
void move_to_usp(uint32_t address);
void move_from_usp(uint32_t &address);
template <typename IntT> void movep(Preinstruction instruction, uint32_t source, uint32_t dest);
template <typename IntT> void movem_toM(Preinstruction instruction, uint32_t source, uint32_t dest);
template <typename IntT> void movem_toR(Preinstruction instruction, uint32_t source, uint32_t dest);
void tas(Preinstruction instruction, uint32_t address);
private:
BusHandler &bus_handler_;
Predecoder<model> decoder_;
struct EffectiveAddress {
CPU::SlicedInt32 value;
bool requires_fetch;
};
EffectiveAddress calculate_effective_address(Preinstruction instruction, uint16_t opcode, int index);
uint32_t index_8bitdisplacement();
} state_;
};
}

View File

@ -17,33 +17,127 @@
namespace InstructionSet {
namespace M68k {
#define An(x) registers_[8 + x]
#define Dn(x) registers_[x]
#define An(x) state_.registers[8 + x]
#define Dn(x) state_.registers[x]
#define sp An(7)
#define AccessException(code, address, vector) \
uint64_t(((vector) << 8) | uint64_t(code) | ((address) << 16))
// MARK: - Executor itself.
template <Model model, typename BusHandler>
Executor<model, BusHandler>::Executor(BusHandler &handler) : bus_handler_(handler) {
reset_processor();
Executor<model, BusHandler>::Executor(BusHandler &handler) : state_(handler) {
reset();
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::reset_processor() {
void Executor<model, BusHandler>::reset() {
// Establish: supervisor state, all interrupts blocked.
status_.set_status(0b0010'0011'1000'0000);
did_update_status();
state_.status.set_status(0b0010'0011'1000'0000);
state_.did_update_status();
// Seed stack pointer and program counter.
sp.l = read<uint32_t>(0) & 0xffff'fffe;
program_counter_.l = read<uint32_t>(4);
sp.l = state_.template read<uint32_t>(0) & 0xffff'fffe;
state_.program_counter.l = state_.template read<uint32_t>(4);
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::signal_bus_error(FunctionCode code, uint32_t address) {
throw AccessException(code, address, Exception::AccessFault);
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::set_interrupt_level(int level) {
state_.interrupt_input_ = level;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::run_for_instructions(int count) {
while(count > 0) {
try {
state_.run(count);
} catch (uint64_t exception) {
// Unpack the exception; this is the converse of the AccessException macro.
const int vector_address = (exception >> 6) & 0xfc;
const uint16_t code = uint16_t(exception & 0xff);
const uint32_t faulting_address = uint32_t(exception >> 16);
// Grab the status to store, then switch into supervisor mode.
const uint16_t status = state_.status.status();
state_.status.is_supervisor = true;
state_.status.trace_flag = 0;
state_.did_update_status();
// Push status and the program counter at instruction start.
state_.template write<uint16_t>(sp.l - 14, code);
state_.template write<uint32_t>(sp.l - 12, faulting_address);
state_.template write<uint16_t>(sp.l - 8, state_.instruction_opcode);
state_.template write<uint16_t>(sp.l - 6, status);
state_.template write<uint16_t>(sp.l - 4, state_.instruction_address);
sp.l -= 14;
// Fetch the new program counter; reset on a double fault.
try {
state_.program_counter.l = state_.template read<uint32_t>(vector_address);
} catch (uint64_t) {
// TODO: I think this is incorrect, but need to verify consistency
// across different 680x0s.
reset();
}
}
}
}
template <Model model, typename BusHandler>
typename Executor<model, BusHandler>::Registers Executor<model, BusHandler>::get_state() {
Registers result;
for(int c = 0; c < 8; c++) {
result.data[c] = Dn(c).l;
}
for(int c = 0; c < 7; c++) {
result.address[c] = An(c).l;
}
result.status = state_.status.status();
result.program_counter = state_.program_counter.l;
state_.stack_pointers[state_.active_stack_pointer] = sp;
result.user_stack_pointer = state_.stack_pointers[0].l;
result.supervisor_stack_pointer = state_.stack_pointers[1].l;
return result;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::set_state(const Registers &state) {
for(int c = 0; c < 8; c++) {
Dn(c).l = state.data[c];
}
for(int c = 0; c < 7; c++) {
An(c).l = state.address[c];
}
state_.status.set_status(state.status);
state_.did_update_status();
state_.program_counter.l = state.program_counter;
state_.stack_pointers[0].l = state.user_stack_pointer;
state_.stack_pointers[1].l = state.supervisor_stack_pointer;
sp = state_.stack_pointers[state_.active_stack_pointer];
}
#undef Dn
#undef An
// MARK: - State.
#define An(x) registers[8 + x]
#define Dn(x) registers[x]
template <Model model, typename BusHandler>
template <typename IntT>
IntT Executor<model, BusHandler>::read(uint32_t address, bool is_from_pc) {
const auto code = FunctionCode((active_stack_pointer_ << 2) | 1 << int(is_from_pc));
IntT Executor<model, BusHandler>::State::read(uint32_t address, bool is_from_pc) {
const auto code = FunctionCode((active_stack_pointer << 2) | 1 << int(is_from_pc));
if(model == Model::M68000 && sizeof(IntT) > 1 && address & 1) {
throw AccessException(code, address, Exception::AddressError | (int(is_from_pc) << 3) | (1 << 4));
}
@ -53,8 +147,8 @@ IntT Executor<model, BusHandler>::read(uint32_t address, bool is_from_pc) {
template <Model model, typename BusHandler>
template <typename IntT>
void Executor<model, BusHandler>::write(uint32_t address, IntT value) {
const auto code = FunctionCode((active_stack_pointer_ << 2) | 1);
void Executor<model, BusHandler>::State::write(uint32_t address, IntT value) {
const auto code = FunctionCode((active_stack_pointer << 2) | 1);
if(model == Model::M68000 && sizeof(IntT) > 1 && address & 1) {
throw AccessException(code, address, Exception::AddressError);
}
@ -63,7 +157,7 @@ void Executor<model, BusHandler>::write(uint32_t address, IntT value) {
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::read(DataSize size, uint32_t address, CPU::SlicedInt32 &value) {
void Executor<model, BusHandler>::State::read(DataSize size, uint32_t address, CPU::SlicedInt32 &value) {
switch(size) {
case DataSize::Byte: value.b = read<uint8_t>(address); break;
case DataSize::Word: value.w = read<uint16_t>(address); break;
@ -72,7 +166,7 @@ void Executor<model, BusHandler>::read(DataSize size, uint32_t address, CPU::Sli
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::write(DataSize size, uint32_t address, CPU::SlicedInt32 value) {
void Executor<model, BusHandler>::State::write(DataSize size, uint32_t address, CPU::SlicedInt32 value) {
switch(size) {
case DataSize::Byte: write<uint8_t>(address, value.b); break;
case DataSize::Word: write<uint16_t>(address, value.w); break;
@ -81,32 +175,33 @@ void Executor<model, BusHandler>::write(DataSize size, uint32_t address, CPU::Sl
}
template <Model model, typename BusHandler>
template <typename IntT> IntT Executor<model, BusHandler>::read_pc() {
const IntT result = read<IntT>(program_counter_.l, true);
template <typename IntT> IntT Executor<model, BusHandler>::State::read_pc() {
const IntT result = read<IntT>(program_counter.l, true);
if constexpr (sizeof(IntT) == 4) {
program_counter_.l += 4;
program_counter.l += 4;
} else {
program_counter_.l += 2;
program_counter.l += 2;
}
return result;
}
template <Model model, typename BusHandler>
uint32_t Executor<model, BusHandler>::index_8bitdisplacement() {
uint32_t Executor<model, BusHandler>::State::index_8bitdisplacement() {
// TODO: if not a 68000, check bit 8 for whether this should be a full extension word;
// also include the scale field even if not.
const auto extension = read_pc<uint16_t>();
const auto offset = int8_t(extension);
const int register_index = (extension >> 12) & 7;
const uint32_t displacement = registers_[register_index + ((extension >> 12) & 0x08)].l;
const uint32_t displacement = registers[register_index + ((extension >> 12) & 0x08)].l;
const uint32_t sized_displacement = (extension & 0x800) ? displacement : int16_t(displacement);
return offset + sized_displacement;
}
template <Model model, typename BusHandler>
typename Executor<model, BusHandler>::EffectiveAddress Executor<model, BusHandler>::calculate_effective_address(Preinstruction instruction, uint16_t opcode, int index) {
typename Executor<model, BusHandler>::State::EffectiveAddress
Executor<model, BusHandler>::State::calculate_effective_address(Preinstruction instruction, uint16_t opcode, int index) {
EffectiveAddress ea;
switch(instruction.mode(index)) {
@ -120,7 +215,7 @@ typename Executor<model, BusHandler>::EffectiveAddress Executor<model, BusHandle
//
case AddressingMode::DataRegisterDirect:
case AddressingMode::AddressRegisterDirect:
ea.value = registers_[instruction.lreg(index)];
ea.value = registers[instruction.lreg(index)];
ea.requires_fetch = false;
break;
case AddressingMode::Quick:
@ -198,11 +293,11 @@ typename Executor<model, BusHandler>::EffectiveAddress Executor<model, BusHandle
// PC-relative addresses.
//
case AddressingMode::ProgramCounterIndirectWithDisplacement:
ea.value.l = program_counter_.l + int16_t(read_pc<uint16_t>());
ea.value.l = program_counter.l + int16_t(read_pc<uint16_t>());
ea.requires_fetch = true;
break;
case AddressingMode::ProgramCounterIndirectWithIndex8bitDisplacement:
ea.value.l = program_counter_.l + index_8bitdisplacement();
ea.value.l = program_counter.l + index_8bitdisplacement();
ea.requires_fetch = true;
break;
@ -214,77 +309,30 @@ typename Executor<model, BusHandler>::EffectiveAddress Executor<model, BusHandle
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::signal_bus_error(FunctionCode code, uint32_t address) {
throw AccessException(code, address, Exception::AccessFault);
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::set_interrupt_level(int level) {
interrupt_input_ = level;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::run_for_instructions(int count) {
while(count > 0) {
try {
run(count);
} catch (uint64_t exception) {
// Unpack the exception; this is the converse of the AccessException macro.
const int vector_address = (exception >> 6) & 0xfc;
const uint16_t code = uint16_t(exception & 0xff);
const uint32_t faulting_address = uint32_t(exception >> 16);
// Grab the status to store, then switch into supervisor mode.
const uint16_t status = status_.status();
status_.is_supervisor = true;
status_.trace_flag = 0;
did_update_status();
// Push status and the program counter at instruction start.
write<uint16_t>(sp.l - 14, code);
write<uint32_t>(sp.l - 12, faulting_address);
write<uint16_t>(sp.l - 8, instruction_opcode_);
write<uint16_t>(sp.l - 6, status);
write<uint16_t>(sp.l - 4, instruction_address_);
sp.l -= 14;
// Fetch the new program counter; reset on a double fault.
try {
program_counter_.l = read<uint32_t>(vector_address);
} catch (uint64_t) {
// TODO: I think this is incorrect, but need to verify consistency
// across different 680x0s.
reset_processor();
}
}
}
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::run(int &count) {
void Executor<model, BusHandler>::State::run(int &count) {
while(count--) {
// Check for a new interrupt.
if(interrupt_input_ > status_.interrupt_level) {
const int vector = bus_handler_.acknowlege_interrupt(interrupt_input_);
if(interrupt_input > status.interrupt_level) {
const int vector = bus_handler_.acknowlege_interrupt(interrupt_input);
if(vector >= 0) {
raise_exception<false>(vector);
} else {
raise_exception<false>(Exception::InterruptAutovectorBase - 1 + interrupt_input_);
raise_exception<false>(Exception::InterruptAutovectorBase - 1 + interrupt_input);
}
status_.interrupt_level = interrupt_input_;
status.interrupt_level = interrupt_input;
}
// Read the next instruction.
instruction_address_ = program_counter_.l;
instruction_opcode_ = read_pc<uint16_t>();
const Preinstruction instruction = decoder_.decode(instruction_opcode_);
instruction_address = program_counter.l;
instruction_opcode = read_pc<uint16_t>();
const Preinstruction instruction = decoder_.decode(instruction_opcode);
if(instruction.requires_supervisor() && !status_.is_supervisor) {
if(instruction.requires_supervisor() && !status.is_supervisor) {
raise_exception(Exception::PrivilegeViolation);
continue;
}
if(instruction.operation == Operation::Undefined) {
switch(instruction_opcode_ & 0xf000) {
switch(instruction_opcode & 0xf000) {
default:
raise_exception(Exception::IllegalInstruction);
continue;
@ -299,7 +347,7 @@ void Executor<model, BusHandler>::run(int &count) {
// Capture the trace bit, indicating whether to trace
// after this instruction.
const auto should_trace = status_.trace_flag;
const auto should_trace = status.trace_flag;
// Temporary storage.
CPU::SlicedInt32 operand_[2];
@ -309,8 +357,8 @@ void Executor<model, BusHandler>::run(int &count) {
// operands by default both: (i) because they might be values,
// rather than addresses; and (ii) then they'll be there for use
// by LEA and PEA.
effective_address_[0] = calculate_effective_address(instruction, instruction_opcode_, 0);
effective_address_[1] = calculate_effective_address(instruction, instruction_opcode_, 1);
effective_address_[0] = calculate_effective_address(instruction, instruction_opcode, 0);
effective_address_[1] = calculate_effective_address(instruction, instruction_opcode, 1);
operand_[0] = effective_address_[0].value;
operand_[1] = effective_address_[1].value;
@ -327,11 +375,11 @@ void Executor<model, BusHandler>::run(int &count) {
#undef fetch_operand
perform<model>(instruction, operand_[0], operand_[1], status_, *this);
perform<model>(instruction, operand_[0], operand_[1], status, *this);
#define store_operand(n) \
if(!effective_address_[n].requires_fetch) { \
registers_[instruction.lreg(n)] = operand_[n]; \
registers[instruction.lreg(n)] = operand_[n]; \
} else { \
write(instruction.operand_size(), effective_address_[n].value.l, operand_[n]); \
}
@ -348,119 +396,80 @@ void Executor<model, BusHandler>::run(int &count) {
}
}
// MARK: - State
template <Model model, typename BusHandler>
typename Executor<model, BusHandler>::Registers Executor<model, BusHandler>::get_state() {
Registers result;
for(int c = 0; c < 8; c++) {
result.data[c] = Dn(c).l;
}
for(int c = 0; c < 7; c++) {
result.address[c] = An(c).l;
}
result.status = status_.status();
result.program_counter = program_counter_.l;
stack_pointers_[active_stack_pointer_] = sp;
result.user_stack_pointer = stack_pointers_[0].l;
result.supervisor_stack_pointer = stack_pointers_[1].l;
return result;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::set_state(const Registers &state) {
for(int c = 0; c < 8; c++) {
Dn(c).l = state.data[c];
}
for(int c = 0; c < 7; c++) {
An(c).l = state.address[c];
}
status_.set_status(state.status);
did_update_status();
program_counter_.l = state.program_counter;
stack_pointers_[0].l = state.user_stack_pointer;
stack_pointers_[1].l = state.supervisor_stack_pointer;
sp = stack_pointers_[active_stack_pointer_];
}
// MARK: - Flow Control.
template <Model model, typename BusHandler>
template <bool use_current_instruction_pc>
void Executor<model, BusHandler>::raise_exception(int index) {
void Executor<model, BusHandler>::State::raise_exception(int index) {
const uint32_t address = index << 2;
// Grab the status to store, then switch into supervisor mode
// and disable tracing.
const uint16_t status = status_.status();
status_.is_supervisor = true;
status_.trace_flag = 0;
const uint16_t previous_status = status.status();
status.is_supervisor = true;
status.trace_flag = 0;
did_update_status();
// Push status and the program counter at instruction start.
write<uint32_t>(sp.l - 4, use_current_instruction_pc ? instruction_address_ : program_counter_.l);
write<uint16_t>(sp.l - 6, status);
write<uint32_t>(sp.l - 4, use_current_instruction_pc ? instruction_address : program_counter.l);
write<uint16_t>(sp.l - 6, previous_status);
sp.l -= 6;
// Fetch the new program counter.
program_counter_.l = read<uint32_t>(address);
program_counter.l = read<uint32_t>(address);
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::did_update_status() {
void Executor<model, BusHandler>::State::did_update_status() {
// Shuffle the stack pointers.
stack_pointers_[active_stack_pointer_] = sp;
sp = stack_pointers_[int(status_.is_supervisor)];
active_stack_pointer_ = int(status_.is_supervisor);
stack_pointers[active_stack_pointer] = sp;
sp = stack_pointers[int(status.is_supervisor)];
active_stack_pointer = int(status.is_supervisor);
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::stop() {}
void Executor<model, BusHandler>::State::stop() {}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::reset() {
void Executor<model, BusHandler>::State::reset() {
bus_handler_.reset();
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::jmp(uint32_t address) {
program_counter_.l = address;
void Executor<model, BusHandler>::State::jmp(uint32_t address) {
program_counter.l = address;
}
template <Model model, typename BusHandler>
template <typename IntT> void Executor<model, BusHandler>::complete_bcc(bool branch, IntT offset) {
template <typename IntT> void Executor<model, BusHandler>::State::complete_bcc(bool branch, IntT offset) {
if(branch) {
program_counter_.l = instruction_address_ + offset + 2;
program_counter.l = instruction_address + offset + 2;
}
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::complete_dbcc(bool matched_condition, bool overflowed, int16_t offset) {
void Executor<model, BusHandler>::State::complete_dbcc(bool matched_condition, bool overflowed, int16_t offset) {
if(!matched_condition && !overflowed) {
program_counter_.l = instruction_address_ + offset + 2;
program_counter.l = instruction_address + offset + 2;
}
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::bsr(uint32_t offset) {
void Executor<model, BusHandler>::State::bsr(uint32_t offset) {
sp.l -= 4;
write<uint32_t>(sp.l, program_counter_.l);
program_counter_.l = instruction_address_ + offset;
write<uint32_t>(sp.l, program_counter.l);
program_counter.l = instruction_address + offset;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::jsr(uint32_t address) {
void Executor<model, BusHandler>::State::jsr(uint32_t address) {
sp.l -= 4;
write<uint32_t>(sp.l, program_counter_.l);
program_counter_.l = address;
write<uint32_t>(sp.l, program_counter.l);
program_counter.l = address;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::link(Preinstruction instruction, uint32_t offset) {
void Executor<model, BusHandler>::State::link(Preinstruction instruction, uint32_t offset) {
const auto reg = 8 + instruction.reg<0>();
sp.l -= 4;
@ -470,40 +479,40 @@ void Executor<model, BusHandler>::link(Preinstruction instruction, uint32_t offs
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::unlink(uint32_t &address) {
void Executor<model, BusHandler>::State::unlink(uint32_t &address) {
sp.l = address;
address = read<uint32_t>(sp.l);
sp.l += 4;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::pea(uint32_t address) {
void Executor<model, BusHandler>::State::pea(uint32_t address) {
sp.l -= 4;
write<uint32_t>(sp.l, address);
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::rtr() {
status_.set_ccr(read<uint16_t>(sp.l));
void Executor<model, BusHandler>::State::rtr() {
status.set_ccr(read<uint16_t>(sp.l));
sp.l += 2;
rts();
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::rte() {
status_.set_status(read<uint16_t>(sp.l));
void Executor<model, BusHandler>::State::rte() {
status.set_status(read<uint16_t>(sp.l));
sp.l += 2;
rts();
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::rts() {
program_counter_.l = read<uint32_t>(sp.l);
void Executor<model, BusHandler>::State::rts() {
program_counter.l = read<uint32_t>(sp.l);
sp.l += 4;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::tas(Preinstruction instruction, uint32_t address) {
void Executor<model, BusHandler>::State::tas(Preinstruction instruction, uint32_t address) {
uint8_t value;
if(instruction.mode<0>() != AddressingMode::DataRegisterDirect) {
value = read<uint8_t>(address);
@ -513,24 +522,24 @@ void Executor<model, BusHandler>::tas(Preinstruction instruction, uint32_t addre
Dn(instruction.reg<0>()).b = uint8_t(address | 0x80);
}
status_.overflow_flag = status_.carry_flag = 0;
status_.zero_result = value;
status_.negative_flag = value & 0x80;
status.overflow_flag = status.carry_flag = 0;
status.zero_result = value;
status.negative_flag = value & 0x80;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::move_to_usp(uint32_t address) {
stack_pointers_[0].l = address;
void Executor<model, BusHandler>::State::move_to_usp(uint32_t address) {
stack_pointers[0].l = address;
}
template <Model model, typename BusHandler>
void Executor<model, BusHandler>::move_from_usp(uint32_t &address) {
address = stack_pointers_[0].l;
void Executor<model, BusHandler>::State::move_from_usp(uint32_t &address) {
address = stack_pointers[0].l;
}
template <Model model, typename BusHandler>
template <typename IntT>
void Executor<model, BusHandler>::movep(Preinstruction instruction, uint32_t source, uint32_t dest) {
void Executor<model, BusHandler>::State::movep(Preinstruction instruction, uint32_t source, uint32_t dest) {
if(instruction.mode<0>() == AddressingMode::DataRegisterDirect) {
// Move register to memory.
const uint32_t reg = source;
@ -572,7 +581,7 @@ void Executor<model, BusHandler>::movep(Preinstruction instruction, uint32_t sou
template <Model model, typename BusHandler>
template <typename IntT>
void Executor<model, BusHandler>::movem_toM(Preinstruction instruction, uint32_t source, uint32_t dest) {
void Executor<model, BusHandler>::State::movem_toM(Preinstruction instruction, uint32_t source, uint32_t dest) {
// Move registers to memory. This is the only permitted use of the predecrement mode,
// which reverses output order.
@ -596,7 +605,7 @@ void Executor<model, BusHandler>::movem_toM(Preinstruction instruction, uint32_t
while(source) {
if(source & 1) {
address -= sizeof(IntT);
write<IntT>(address, IntT(registers_[index].l));
write<IntT>(address, IntT(registers[index].l));
}
--index;
source >>= 1;
@ -609,7 +618,7 @@ void Executor<model, BusHandler>::movem_toM(Preinstruction instruction, uint32_t
int index = 0;
while(source) {
if(source & 1) {
write<IntT>(dest, IntT(registers_[index].l));
write<IntT>(dest, IntT(registers[index].l));
dest += sizeof(IntT);
}
++index;
@ -619,7 +628,7 @@ void Executor<model, BusHandler>::movem_toM(Preinstruction instruction, uint32_t
template <Model model, typename BusHandler>
template <typename IntT>
void Executor<model, BusHandler>::movem_toR(Preinstruction instruction, uint32_t source, uint32_t dest) {
void Executor<model, BusHandler>::State::movem_toR(Preinstruction instruction, uint32_t source, uint32_t dest) {
// Move memory to registers.
//
// A 68000 convention has been broken here; the instruction form is:
@ -631,9 +640,9 @@ void Executor<model, BusHandler>::movem_toR(Preinstruction instruction, uint32_t
while(source) {
if(source & 1) {
if constexpr (sizeof(IntT) == 2) {
registers_[index].l = int16_t(read<uint16_t>(dest));
registers[index].l = int16_t(read<uint16_t>(dest));
} else {
registers_[index].l = read<uint32_t>(dest);
registers[index].l = read<uint32_t>(dest);
}
dest += sizeof(IntT);
}