1
0
mirror of https://github.com/TomHarte/CLK.git synced 2024-07-07 23:29:06 +00:00

Merge pull request #84 from TomHarte/OricColour

Switches to using the original Oric colour ROM to generate Oric composite values
This commit is contained in:
Thomas Harte 2016-12-10 19:37:17 -05:00 committed by GitHub
commit 0653770c63
15 changed files with 166 additions and 78 deletions

View File

@ -60,7 +60,7 @@ Machine::Machine() :
void Machine::setup_output(float aspect_ratio)
{
speaker_.reset(new Speaker);
crt_.reset(new Outputs::CRT::CRT(228, 1, 263, Outputs::CRT::ColourSpace::YIQ, 228, 1, 1));
crt_.reset(new Outputs::CRT::CRT(228, 1, 263, Outputs::CRT::ColourSpace::YIQ, 228, 1, false, 1));
crt_->set_output_device(Outputs::CRT::Television);
// this is the NTSC phase offset function; see below for PAL
@ -93,7 +93,7 @@ void Machine::switch_region()
"return mix(float(y) / 14.0, step(4, (iPhase + 2u) & 15u) * cos(phase + phaseOffset), amplitude);"
"}");
crt_->set_new_timing(228, 312, Outputs::CRT::ColourSpace::YUV, 228, 1);
crt_->set_new_timing(228, 312, Outputs::CRT::ColourSpace::YUV, 228, 1, true);
is_pal_region_ = true;
speaker_->set_input_rate((float)(get_clock_rate() / 38.0));

View File

@ -43,8 +43,7 @@ Machine::Machine() :
display_output_position_(0),
audio_output_position_(0),
current_pixel_line_(-1),
use_fast_tape_hack_(false),
phase_(0)
use_fast_tape_hack_(false)
{
memset(key_states_, 0, sizeof(key_states_));
memset(palette_, 0xf, sizeof(palette_));
@ -452,8 +451,6 @@ unsigned int Machine::perform_bus_operation(CPU6502::BusOperation operation, uin
frame_cycles_ += cycles;
if(!(frame_cycles_&127)) phase_ += 64;
// deal with frame wraparound by updating the two dependent subsystems
// as though the exact end of frame had been hit, then reset those
// and allow the frame cycle counter to assume its real value
@ -874,7 +871,7 @@ inline void Machine::update_display()
if(this_cycle < 24)
{
if(final_cycle < 24) return;
crt_->output_colour_burst((24-9) * crt_cycles_multiplier, phase_, 12);
crt_->output_default_colour_burst((24-9) * crt_cycles_multiplier);
display_output_position_ += 24-9;
this_cycle = 24;
// TODO: phase shouldn't be zero on every line

View File

@ -135,7 +135,6 @@ class Machine:
// Counters related to simultaneous subsystems
unsigned int frame_cycles_, display_output_position_;
unsigned int audio_output_position_, audio_output_position_error_;
uint8_t phase_;
struct {
uint16_t forty1bpp[256];

View File

@ -82,6 +82,10 @@ void Machine::set_rom(ROM rom, const std::vector<uint8_t> &data)
case BASIC11: basic11_rom_ = std::move(data); break;
case BASIC10: basic10_rom_ = std::move(data); break;
case Microdisc: microdisc_rom_ = std::move(data); break;
case Colour:
colour_rom_ = std::move(data);
if(video_output_) video_output_->set_colour_rom(colour_rom_);
break;
}
}
@ -172,9 +176,10 @@ void Machine::update_video()
void Machine::setup_output(float aspect_ratio)
{
video_output_.reset(new VideoOutput(ram_));
via_.ay8910.reset(new GI::AY38910());
via_.ay8910->set_clock_rate(1000000);
video_output_.reset(new VideoOutput(ram_));
if(!colour_rom_.empty()) video_output_->set_colour_rom(colour_rom_);
}
void Machine::close_output()
@ -213,6 +218,11 @@ void Machine::set_use_fast_tape_hack(bool activate)
use_fast_tape_hack_ = activate;
}
void Machine::set_output_device(Outputs::CRT::OutputDevice output_device)
{
video_output_->set_output_device(output_device);
}
void Machine::tape_did_change_input(Storage::Tape::BinaryTapePlayer *tape_player)
{
// set CB1

View File

@ -53,7 +53,7 @@ enum Key: uint16_t {
};
enum ROM {
BASIC10, BASIC11, Microdisc
BASIC10, BASIC11, Microdisc, Colour
};
class Machine:
@ -73,6 +73,7 @@ class Machine:
void clear_all_keys();
void set_use_fast_tape_hack(bool activate);
void set_output_device(Outputs::CRT::OutputDevice output_device);
// to satisfy ConfigurationTarget::Machine
void configure_as_target(const StaticAnalyser::Target &target);
@ -103,7 +104,7 @@ class Machine:
private:
// RAM and ROM
std::vector<uint8_t> basic11_rom_, basic10_rom_, microdisc_rom_;
std::vector<uint8_t> basic11_rom_, basic10_rom_, microdisc_rom_, colour_rom_;
uint8_t ram_[65536], rom_[16384];
int cycles_since_video_update_;
inline void update_video();

View File

@ -24,24 +24,57 @@ VideoOutput::VideoOutput(uint8_t *memory) :
frame_counter_(0), counter_(0),
is_graphics_mode_(false),
character_set_base_address_(0xb400),
phase_(0),
v_sync_start_position_(PAL50VSyncStartPosition), v_sync_end_position_(PAL50VSyncEndPosition),
counter_period_(PAL50Period), next_frame_is_sixty_hertz_(false),
crt_(new Outputs::CRT::CRT(64*6, 6, Outputs::CRT::DisplayType::PAL50, 1))
crt_(new Outputs::CRT::CRT(64*6, 6, Outputs::CRT::DisplayType::PAL50, 2))
{
// TODO: this is a copy and paste from the Electron; factor out.
crt_->set_rgb_sampling_function(
"vec3 rgb_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate)"
"{"
"uint texValue = texture(sampler, coordinate).r;"
"texValue >>= 4 - (int(icoordinate.x * 8) & 4);"
"return vec3( uvec3(texValue) & uvec3(4u, 2u, 1u));"
"}");
crt_->set_composite_sampling_function(
"float composite_sample(usampler2D sampler, vec2 coordinate, vec2 icoordinate, float phase, float amplitude)"
"{"
"uint texValue = uint(dot(texture(sampler, coordinate).rg, uvec2(1, 256)));"
"uint iPhase = uint((phase + 3.141592654 + 0.39269908175) * 2.0 / 3.141592654) & 3u;"
"texValue = (texValue >> (4u*(3u - iPhase))) & 15u;"
"return (float(texValue) - 4.0) / 20.0;"
"}"
);
crt_->set_output_device(Outputs::CRT::Television);
set_output_device(Outputs::CRT::Television);
crt_->set_visible_area(crt_->get_rect_for_area(50, 224, 16 * 6, 40 * 6, 4.0f / 3.0f));
}
void VideoOutput::set_output_device(Outputs::CRT::OutputDevice output_device)
{
output_device_ = output_device;
crt_->set_output_device(output_device);
}
void VideoOutput::set_colour_rom(const std::vector<uint8_t> &rom)
{
for(size_t c = 0; c < 8; c++)
{
size_t index = (c << 2);
uint16_t rom_value = (uint16_t)(((uint16_t)rom[index] << 8) | (uint16_t)rom[index+1]);
rom_value = (rom_value & 0xff00) | ((rom_value >> 4)&0x000f) | ((rom_value << 4)&0x00f0);
colour_forms_[c] = rom_value;
}
// check for big endianness and byte swap if required
uint16_t test_value = 0x0001;
if(*(uint8_t *)&test_value != 0x01)
{
for(size_t c = 0; c < 8; c++)
{
colour_forms_[c] = (uint16_t)((colour_forms_[c] >> 8) | (colour_forms_[c] << 8));
}
}
}
std::shared_ptr<Outputs::CRT::CRT> VideoOutput::get_crt()
{
return crt_;
@ -71,16 +104,14 @@ void VideoOutput::run_for_cycles(int number_of_cycles)
// this is a pixel line
if(!h_counter)
{
ink_ = 0xff;
paper_ = 0x00;
ink_ = 0x7;
paper_ = 0x0;
use_alternative_character_set_ = use_double_height_characters_ = blink_text_ = false;
set_character_set_base_address();
phase_ += 64;
pixel_target_ = crt_->allocate_write_area(120);
pixel_target_ = (uint16_t *)crt_->allocate_write_area(240);
if(!counter_)
{
phase_ += 128; // TODO: incorporate all the lines that were missed
frame_counter_++;
v_sync_start_position_ = next_frame_is_sixty_hertz_ ? PAL60VSyncStartPosition : PAL50VSyncStartPosition;
@ -111,35 +142,44 @@ void VideoOutput::run_for_cycles(int number_of_cycles)
pixels = ram_[character_set_base_address_ + (control_byte&127) * 8 + line];
}
uint8_t inverse_mask = (control_byte & 0x80) ? 0x77 : 0x00;
uint8_t inverse_mask = (control_byte & 0x80) ? 0x7 : 0x0;
pixels &= blink_mask;
if(control_byte & 0x60)
{
if(pixel_target_)
{
uint8_t colours[2] = {
(uint8_t)(paper_ ^ inverse_mask),
(uint8_t)(ink_ ^ inverse_mask),
};
pixel_target_[0] = (colours[(pixels >> 4)&1] & 0x0f) | (colours[(pixels >> 5)&1] & 0xf0);
pixel_target_[1] = (colours[(pixels >> 2)&1] & 0x0f) | (colours[(pixels >> 3)&1] & 0xf0);
pixel_target_[2] = (colours[(pixels >> 0)&1] & 0x0f) | (colours[(pixels >> 1)&1] & 0xf0);
uint16_t colours[2];
if(output_device_ == Outputs::CRT::Monitor)
{
colours[0] = (uint8_t)(paper_ ^ inverse_mask);
colours[1] = (uint8_t)(ink_ ^ inverse_mask);
}
else
{
colours[0] = colour_forms_[paper_ ^ inverse_mask];
colours[1] = colour_forms_[ink_ ^ inverse_mask];
}
pixel_target_[0] = colours[(pixels >> 5)&1];
pixel_target_[1] = colours[(pixels >> 4)&1];
pixel_target_[2] = colours[(pixels >> 3)&1];
pixel_target_[3] = colours[(pixels >> 2)&1];
pixel_target_[4] = colours[(pixels >> 1)&1];
pixel_target_[5] = colours[(pixels >> 0)&1];
}
}
else
{
switch(control_byte & 0x1f)
{
case 0x00: ink_ = 0x00; break;
case 0x01: ink_ = 0x44; break;
case 0x02: ink_ = 0x22; break;
case 0x03: ink_ = 0x66; break;
case 0x04: ink_ = 0x11; break;
case 0x05: ink_ = 0x55; break;
case 0x06: ink_ = 0x33; break;
case 0x07: ink_ = 0x77; break;
case 0x00: ink_ = 0x0; break;
case 0x01: ink_ = 0x4; break;
case 0x02: ink_ = 0x2; break;
case 0x03: ink_ = 0x6; break;
case 0x04: ink_ = 0x1; break;
case 0x05: ink_ = 0x5; break;
case 0x06: ink_ = 0x3; break;
case 0x07: ink_ = 0x7; break;
case 0x08: case 0x09: case 0x0a: case 0x0b:
case 0x0c: case 0x0d: case 0x0e: case 0x0f:
@ -149,14 +189,14 @@ void VideoOutput::run_for_cycles(int number_of_cycles)
set_character_set_base_address();
break;
case 0x10: paper_ = 0x00; break;
case 0x11: paper_ = 0x44; break;
case 0x12: paper_ = 0x22; break;
case 0x13: paper_ = 0x66; break;
case 0x14: paper_ = 0x11; break;
case 0x15: paper_ = 0x55; break;
case 0x16: paper_ = 0x33; break;
case 0x17: paper_ = 0x77; break;
case 0x10: paper_ = 0x0; break;
case 0x11: paper_ = 0x4; break;
case 0x12: paper_ = 0x2; break;
case 0x13: paper_ = 0x6; break;
case 0x14: paper_ = 0x1; break;
case 0x15: paper_ = 0x5; break;
case 0x16: paper_ = 0x3; break;
case 0x17: paper_ = 0x7; break;
case 0x18: case 0x19: case 0x1a: case 0x1b:
case 0x1c: case 0x1d: case 0x1e: case 0x1f:
@ -166,15 +206,21 @@ void VideoOutput::run_for_cycles(int number_of_cycles)
default: break;
}
if(pixel_target_) pixel_target_[0] = pixel_target_[1] = pixel_target_[2] = (uint8_t)(paper_ ^ inverse_mask);
if(pixel_target_)
{
pixel_target_[0] = pixel_target_[1] =
pixel_target_[2] = pixel_target_[3] =
pixel_target_[4] = pixel_target_[5] =
(output_device_ == Outputs::CRT::Monitor) ? paper_ ^ inverse_mask : colour_forms_[paper_ ^ inverse_mask];
}
}
if(pixel_target_) pixel_target_ += 3;
if(pixel_target_) pixel_target_ += 6;
h_counter++;
}
if(h_counter == 40)
{
crt_->output_data(40 * 6, 2);
crt_->output_data(40 * 6, 1);
}
}
else
@ -196,7 +242,7 @@ void VideoOutput::run_for_cycles(int number_of_cycles)
else if(h_counter < 56)
{
cycles_run_for = 56 - h_counter;
clamp(crt_->output_colour_burst(2 * 6, phase_, 128));
clamp(crt_->output_default_colour_burst(2 * 6));
}
else
{

View File

@ -18,6 +18,8 @@ class VideoOutput {
VideoOutput(uint8_t *memory);
std::shared_ptr<Outputs::CRT::CRT> get_crt();
void run_for_cycles(int number_of_cycles);
void set_colour_rom(const std::vector<uint8_t> &rom);
void set_output_device(Outputs::CRT::OutputDevice output_device);
private:
uint8_t *ram_;
@ -27,8 +29,10 @@ class VideoOutput {
int counter_, frame_counter_;
int v_sync_start_position_, v_sync_end_position_, counter_period_;
// Output target
uint8_t *pixel_target_;
// Output target and device
uint16_t *pixel_target_;
uint16_t colour_forms_[8];
Outputs::CRT::OutputDevice output_device_;
// Registers
uint8_t ink_, paper_;
@ -41,8 +45,6 @@ class VideoOutput {
bool use_alternative_character_set_;
bool use_double_height_characters_;
bool blink_text_;
uint8_t phase_;
};
}

View File

@ -27,10 +27,12 @@
{
NSData *basic10 = [self rom:@"basic10"];
NSData *basic11 = [self rom:@"basic11"];
NSData *colour = [self rom:@"colour"];
NSData *microdisc = [self rom:@"microdisc"];
if(basic10) _oric.set_rom(Oric::BASIC10, basic10.stdVector8);
if(basic11) _oric.set_rom(Oric::BASIC11, basic11.stdVector8);
if(colour) _oric.set_rom(Oric::Colour, colour.stdVector8);
if(microdisc) _oric.set_rom(Oric::Microdisc, microdisc.stdVector8);
}
return self;
@ -150,7 +152,7 @@
- (void)setUseCompositeOutput:(BOOL)useCompositeOutput {
@synchronized(self) {
_useCompositeOutput = useCompositeOutput;
_oric.get_crt()->set_output_device(useCompositeOutput ? Outputs::CRT::Television : Outputs::CRT::Monitor);
_oric.set_output_device(useCompositeOutput ? Outputs::CRT::Television : Outputs::CRT::Monitor);
}
}

View File

@ -14,7 +14,7 @@
using namespace Outputs::CRT;
void CRT::set_new_timing(unsigned int cycles_per_line, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator)
void CRT::set_new_timing(unsigned int cycles_per_line, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, bool should_alternate)
{
openGL_output_builder_.set_colour_format(colour_space, colour_cycle_numerator, colour_cycle_denominator);
@ -29,6 +29,11 @@ void CRT::set_new_timing(unsigned int cycles_per_line, unsigned int height_of_di
// for horizontal retrace and 500 to 750 µs for vertical retrace in NTSC and PAL TV."
time_multiplier_ = IntermediateBufferWidth / cycles_per_line;
phase_denominator_ = cycles_per_line * colour_cycle_denominator;
phase_numerator_ = 0;
colour_cycle_numerator_ = colour_cycle_numerator * time_multiplier_;
phase_alternates_ = should_alternate;
is_alernate_line_ &= phase_alternates_;
unsigned int multiplied_cycles_per_line = cycles_per_line * time_multiplier_;
// generate timing values implied by the given arbuments
@ -50,11 +55,11 @@ void CRT::set_new_display_type(unsigned int cycles_per_line, DisplayType display
switch(displayType)
{
case DisplayType::PAL50:
set_new_timing(cycles_per_line, 312, ColourSpace::YUV, 709379, 2500); // i.e. 283.7516
set_new_timing(cycles_per_line, 312, ColourSpace::YUV, 709379, 2500, true); // i.e. 283.7516
break;
case DisplayType::NTSC60:
set_new_timing(cycles_per_line, 262, ColourSpace::YIQ, 545, 2);
set_new_timing(cycles_per_line, 262, ColourSpace::YIQ, 545, 2, false);
break;
}
}
@ -67,12 +72,13 @@ CRT::CRT(unsigned int common_output_divisor, unsigned int buffer_depth) :
is_writing_composite_run_(false),
delegate_(nullptr),
frames_since_last_delegate_call_(0),
openGL_output_builder_(buffer_depth) {}
openGL_output_builder_(buffer_depth),
is_alernate_line_(false) {}
CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, unsigned int buffer_depth) :
CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, bool should_alternate, unsigned int buffer_depth) :
CRT(common_output_divisor, buffer_depth)
{
set_new_timing(cycles_per_line, height_of_display, colour_space, colour_cycle_numerator, colour_cycle_denominator);
set_new_timing(cycles_per_line, height_of_display, colour_space, colour_cycle_numerator, colour_cycle_denominator, should_alternate);
}
CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, DisplayType displayType, unsigned int buffer_depth) :
@ -124,6 +130,8 @@ void CRT::advance_cycles(unsigned int number_of_cycles, bool hsync_requested, bo
// get the next sync event and its timing; hsync request is instantaneous (being edge triggered) so
// set it to false for the next run through this loop (if any)
unsigned int next_run_length = std::min(time_until_vertical_sync_event, time_until_horizontal_sync_event);
phase_numerator_ += next_run_length * colour_cycle_numerator_;
phase_numerator_ %= phase_denominator_;
hsync_requested = false;
vsync_requested = false;
@ -171,6 +179,8 @@ void CRT::advance_cycles(unsigned int number_of_cycles, bool hsync_requested, bo
(honoured_event == Flywheel::SyncEvent::StartRetrace && is_writing_composite_run_) ||
(honoured_event == Flywheel::SyncEvent::EndRetrace && !horizontal_flywheel_->is_in_retrace() && !vertical_flywheel_->is_in_retrace());
if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace) is_alernate_line_ ^= phase_alternates_;
if(needs_endpoint)
{
if(
@ -329,6 +339,17 @@ void CRT::output_colour_burst(unsigned int number_of_cycles, uint8_t phase, uint
output_scan(&scan);
}
void CRT::output_default_colour_burst(unsigned int number_of_cycles)
{
Scan scan {
.type = Scan::Type::ColourBurst,
.number_of_cycles = number_of_cycles,
.phase = (uint8_t)((phase_numerator_ * 255) / phase_denominator_ + (is_alernate_line_ ? 128 : 0)),
.amplitude = 32
};
output_scan(&scan);
}
void CRT::output_data(unsigned int number_of_cycles, unsigned int source_divider)
{
openGL_output_builder_.texture_builder.reduce_previous_allocation_to(number_of_cycles / source_divider);

View File

@ -46,7 +46,6 @@ class CRT {
int sync_capacitor_charge_threshold_; // this charges up during times of sync and depletes otherwise; needs to hit a required threshold to trigger a vertical sync
unsigned int sync_period_;
// each call to output_* generates a scan. A two-slot queue for scans allows edge extensions.
struct Scan {
enum Type {
Sync, Level, Data, Blank, ColourBurst
@ -64,6 +63,9 @@ class CRT {
uint16_t colour_burst_time_;
bool is_writing_composite_run_;
unsigned int phase_denominator_, phase_numerator_, colour_cycle_numerator_;
bool is_alernate_line_, phase_alternates_;
// the outer entry point for dispatching output_sync, output_blank, output_level and output_data
void advance_cycles(unsigned int number_of_cycles, bool hsync_requested, bool vsync_requested, const bool vsync_charging, const Scan::Type type);
@ -91,7 +93,7 @@ class CRT {
@param cycles_per_line The clock rate at which this CRT will be driven, specified as the number
of cycles expected to take up one whole scanline of the display.
@param common_output_divisor The greatest a priori common divisor of all cycle counts that will be
supplied to @c output_sync, @c output_data, etc; supply 1 if no greater divisor is known. For many
machines output will run at a fixed multiple of the clock rate; knowing this divisor can improve
@ -113,7 +115,7 @@ class CRT {
@see @c set_rgb_sampling_function , @c set_composite_sampling_function
*/
CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, unsigned int buffer_depth);
CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, bool should_alternate, unsigned int buffer_depth);
/*! Constructs the CRT with the specified clock rate, with the display height and colour
subcarrier frequency dictated by a standard display type and with the requested number of
@ -126,7 +128,7 @@ class CRT {
/*! Resets the CRT with new timing information. The CRT then continues as though the new timing had
been provided at construction. */
void set_new_timing(unsigned int cycles_per_line, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator);
void set_new_timing(unsigned int cycles_per_line, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, bool should_alternate);
/*! Resets the CRT with new timing information derived from a new display type. The CRT then continues
as though the new timing had been provided at construction. */
@ -175,6 +177,12 @@ class CRT {
*/
void output_colour_burst(unsigned int number_of_cycles, uint8_t phase, uint8_t amplitude);
/*! Outputs a colour burst exactly in phase with CRT expectations using the idiomatic amplitude.
@param number_of_cycles The length of the colour burst;
*/
void output_default_colour_burst(unsigned int number_of_cycles);
/*! Attempts to allocate the given number of output samples for writing.
The beginning of the most recently allocated area is used as the start

View File

@ -78,7 +78,7 @@ ArrayBuilder::Submission ArrayBuilder::submit()
}
ArrayBuilder::Buffer::Buffer(size_t size, std::function<void(bool is_input, uint8_t *, size_t)> submission_function) :
is_full(false), was_reset(false),
is_full(false),
submission_function_(submission_function),
allocated_data(0), flushed_data(0), submitted_data(0)
{
@ -137,14 +137,6 @@ void ArrayBuilder::Buffer::flush()
}
flushed_data = allocated_data;
if(was_reset)
{
allocated_data = 0;
flushed_data = 0;
submitted_data = 0;
was_reset = false;
}
}
size_t ArrayBuilder::Buffer::submit(bool is_input)
@ -171,6 +163,8 @@ void ArrayBuilder::Buffer::bind()
void ArrayBuilder::Buffer::reset()
{
was_reset = true;
is_full = false;
allocated_data = 0;
flushed_data = 0;
submitted_data = 0;
}

View File

@ -82,7 +82,7 @@ class ArrayBuilder {
void reset();
private:
bool is_full, was_reset;
bool is_full;
GLuint buffer;
std::function<void(bool is_input, uint8_t *, size_t)> submission_function_;
std::vector<uint8_t> data;

View File

@ -36,7 +36,7 @@ const GLsizei InputBufferBuilderWidth = 2048;
const GLsizei InputBufferBuilderHeight = 512;
// This is the size of the intermediate buffers used during composite to RGB conversion
const GLsizei IntermediateBufferWidth = 2048;
const GLsizei IntermediateBufferWidth = 4096;
const GLsizei IntermediateBufferHeight = 512;
// Some internal buffer sizes

View File

@ -385,7 +385,7 @@ void OpenGLOutputBuilder::set_timing_uniforms()
float colour_subcarrier_frequency = (float)colour_cycle_numerator_ / (float)colour_cycle_denominator_;
if(composite_separation_filter_program_) composite_separation_filter_program_->set_separation_frequency(cycles_per_line_, colour_subcarrier_frequency);
if(composite_y_filter_shader_program_) composite_y_filter_shader_program_->set_filter_coefficients(cycles_per_line_, colour_subcarrier_frequency * 0.66f);
if(composite_y_filter_shader_program_) composite_y_filter_shader_program_->set_filter_coefficients(cycles_per_line_, colour_subcarrier_frequency * 0.25f);
if(composite_chrominance_filter_shader_program_) composite_chrominance_filter_shader_program_->set_filter_coefficients(cycles_per_line_, colour_subcarrier_frequency * 0.5f);
if(rgb_filter_shader_program_) rgb_filter_shader_program_->set_filter_coefficients(cycles_per_line_, (float)input_frequency_ * 0.5f);
}

View File

@ -0,0 +1,8 @@
ROM files would ordinarily go here; the copyright status of these is uncertain so they have not been included in this repository.
Expected files:
basic10.rom
basic11.rom
colour.rom
microdisc.rom