1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-01-10 16:30:07 +00:00

Commuted all of 'Storage' other than 'Tape' to postfix underscores.

This commit is contained in:
Thomas Harte 2016-12-03 11:59:28 -05:00
parent 5be22e2f8d
commit 0dc2aa6454
13 changed files with 156 additions and 157 deletions

View File

@ -51,10 +51,10 @@ class Cartridge {
std::vector<uint8_t> data;
};
const std::list<Segment> &get_segments() { return _segments; }
const std::list<Segment> &get_segments() { return segments_; }
protected:
std::list<Segment> _segments;
std::list<Segment> segments_;
};
}

View File

@ -28,7 +28,7 @@ BinaryDump::BinaryDump(const char *file_name)
fclose(file);
// enshrine
_segments.emplace_back(
segments_.emplace_back(
::Storage::Cartridge::Cartridge::Segment::UnknownAddress,
::Storage::Cartridge::Cartridge::Segment::UnknownAddress,
std::move(contents));

View File

@ -46,5 +46,5 @@ PRG::PRG(const char *file_name)
if(!Storage::Cartridge::Encodings::CommodoreROM::isROM(contents))
throw ErrorNotROM;
_segments.emplace_back(0xa000, 0xa000 + data_length, std::move(contents));
segments_.emplace_back(0xa000, 0xa000 + data_length, std::move(contents));
}

View File

@ -13,58 +13,58 @@
using namespace Storage;
DigitalPhaseLockedLoop::DigitalPhaseLockedLoop(int clocks_per_bit, int tolerance, size_t length_of_history) :
_clocks_per_bit(clocks_per_bit),
_tolerance(tolerance),
clocks_per_bit_(clocks_per_bit),
tolerance_(tolerance),
_phase(0),
_window_length(clocks_per_bit),
phase_(0),
window_length_(clocks_per_bit),
_phase_error_pointer(0)
phase_error_pointer_(0)
{
_phase_error_history.reset(new std::vector<int>(length_of_history, 0));
phase_error_history_.reset(new std::vector<int>(length_of_history, 0));
}
void DigitalPhaseLockedLoop::run_for_cycles(int number_of_cycles)
{
_phase += number_of_cycles;
if(_phase >= _window_length)
phase_ += number_of_cycles;
if(phase_ >= window_length_)
{
int windows_crossed = _phase / _window_length;
int windows_crossed = phase_ / window_length_;
// check whether this triggers any 0s, if anybody cares
if(_delegate)
if(delegate_)
{
if(_window_was_filled) windows_crossed--;
if(window_was_filled_) windows_crossed--;
for(int c = 0; c < windows_crossed; c++)
_delegate->digital_phase_locked_loop_output_bit(0);
delegate_->digital_phase_locked_loop_output_bit(0);
}
_window_was_filled = false;
_phase %= _window_length;
window_was_filled_ = false;
phase_ %= window_length_;
}
}
void DigitalPhaseLockedLoop::add_pulse()
{
if(!_window_was_filled)
if(!window_was_filled_)
{
if(_delegate) _delegate->digital_phase_locked_loop_output_bit(1);
_window_was_filled = true;
post_phase_error(_phase - (_window_length >> 1));
if(delegate_) delegate_->digital_phase_locked_loop_output_bit(1);
window_was_filled_ = true;
post_phase_error(phase_ - (window_length_ >> 1));
}
}
void DigitalPhaseLockedLoop::post_phase_error(int error)
{
// use a simple spring mechanism as a lowpass filter for phase
_phase -= (error + 1) >> 1;
phase_ -= (error + 1) >> 1;
// use the average of the last few errors to affect frequency
std::vector<int> *phase_error_history = _phase_error_history.get();
std::vector<int> *phase_error_history = phase_error_history_.get();
size_t phase_error_history_size = phase_error_history->size();
(*phase_error_history)[_phase_error_pointer] = error;
_phase_error_pointer = (_phase_error_pointer + 1)%phase_error_history_size;
(*phase_error_history)[phase_error_pointer_] = error;
phase_error_pointer_ = (phase_error_pointer_ + 1)%phase_error_history_size;
int total_error = 0;
for(size_t c = 0; c < phase_error_history_size; c++)
@ -72,6 +72,6 @@ void DigitalPhaseLockedLoop::post_phase_error(int error)
total_error += (*phase_error_history)[c];
}
int denominator = (int)(phase_error_history_size * 4);
_window_length += (total_error + (denominator >> 1)) / denominator;
_window_length = std::max(std::min(_window_length, _clocks_per_bit + _tolerance), _clocks_per_bit - _tolerance);
window_length_ += (total_error + (denominator >> 1)) / denominator;
window_length_ = std::max(std::min(window_length_, clocks_per_bit_ + tolerance_), clocks_per_bit_ - tolerance_);
}

View File

@ -46,22 +46,22 @@ class DigitalPhaseLockedLoop {
};
void set_delegate(Delegate *delegate)
{
_delegate = delegate;
delegate_ = delegate;
}
private:
Delegate *_delegate;
Delegate *delegate_;
void post_phase_error(int error);
std::unique_ptr<std::vector<int>> _phase_error_history;
size_t _phase_error_pointer;
std::unique_ptr<std::vector<int>> phase_error_history_;
size_t phase_error_pointer_;
int _phase;
int _window_length;
bool _window_was_filled;
int phase_;
int window_length_;
bool window_was_filled_;
int _clocks_per_bit;
int _tolerance;
int clocks_per_bit_;
int tolerance_;
};
}

View File

@ -11,14 +11,14 @@
using namespace Storage::Disk;
Controller::Controller(unsigned int clock_rate, unsigned int clock_rate_multiplier, unsigned int revolutions_per_minute) :
_clock_rate(clock_rate * clock_rate_multiplier),
_clock_rate_multiplier(clock_rate_multiplier),
clock_rate_(clock_rate * clock_rate_multiplier),
clock_rate_multiplier_(clock_rate_multiplier),
TimedEventLoop(clock_rate * clock_rate_multiplier)
{
_rotational_multiplier.length = 60;
_rotational_multiplier.clock_rate = revolutions_per_minute;
_rotational_multiplier.simplify();
rotational_multiplier_.length = 60;
rotational_multiplier_.clock_rate = revolutions_per_minute;
rotational_multiplier_.simplify();
// seed this class with a PLL, any PLL, so that it's safe to assume non-nullptr later
Time one;
@ -27,38 +27,38 @@ Controller::Controller(unsigned int clock_rate, unsigned int clock_rate_multipli
void Controller::setup_track()
{
_track = _drive->get_track();
track_ = drive_->get_track();
Time offset;
if(_track && _time_into_track.length > 0)
if(track_ && time_into_track_.length > 0)
{
Time time_found = _track->seek_to(_time_into_track).simplify();
offset = (_time_into_track - time_found).simplify();
_time_into_track = time_found;
Time time_found = track_->seek_to(time_into_track_).simplify();
offset = (time_into_track_ - time_found).simplify();
time_into_track_ = time_found;
}
else
{
offset = _time_into_track;
_time_into_track.set_zero();
offset = time_into_track_;
time_into_track_.set_zero();
}
reset_timer_to_offset(offset * _rotational_multiplier);
reset_timer_to_offset(offset * rotational_multiplier_);
get_next_event();
}
void Controller::run_for_cycles(int number_of_cycles)
{
if(_drive && _drive->has_disk() && _motor_is_on)
if(drive_ && drive_->has_disk() && motor_is_on_)
{
if(!_track) setup_track();
number_of_cycles *= _clock_rate_multiplier;
if(!track_) setup_track();
number_of_cycles *= clock_rate_multiplier_;
while(number_of_cycles)
{
int cycles_until_next_event = (int)get_cycles_until_next_event();
int cycles_to_run_for = std::min(cycles_until_next_event, number_of_cycles);
_cycles_since_index_hole += (unsigned int)cycles_to_run_for;
cycles_since_index_hole_ += (unsigned int)cycles_to_run_for;
number_of_cycles -= cycles_to_run_for;
_pll->run_for_cycles(cycles_to_run_for);
pll_->run_for_cycles(cycles_to_run_for);
TimedEventLoop::run_for_cycles(cycles_to_run_for);
}
}
@ -68,31 +68,31 @@ void Controller::run_for_cycles(int number_of_cycles)
void Controller::get_next_event()
{
if(_track)
_current_event = _track->get_next_event();
if(track_)
current_event_ = track_->get_next_event();
else
{
_current_event.length.length = 1;
_current_event.length.clock_rate = 1;
_current_event.type = Track::Event::IndexHole;
current_event_.length.length = 1;
current_event_.length.clock_rate = 1;
current_event_.type = Track::Event::IndexHole;
}
// divide interval, which is in terms of a rotation of the disk, by rotation speed, and
// convert it into revolutions per second
set_next_event_time_interval(_current_event.length * _rotational_multiplier);
set_next_event_time_interval(current_event_.length * rotational_multiplier_);
}
void Controller::process_next_event()
{
switch(_current_event.type)
switch(current_event_.type)
{
case Track::Event::FluxTransition:
_pll->add_pulse();
_time_into_track += _current_event.length;
pll_->add_pulse();
time_into_track_ += current_event_.length;
break;
case Track::Event::IndexHole:
_cycles_since_index_hole = 0;
_time_into_track.set_zero();
cycles_since_index_hole_ = 0;
time_into_track_.set_zero();
process_index_hole();
break;
}
@ -103,57 +103,57 @@ void Controller::process_next_event()
void Controller::set_expected_bit_length(Time bit_length)
{
_bit_length = bit_length;
bit_length_ = bit_length;
// this conversion doesn't need to be exact because there's a lot of variation to be taken
// account of in rotation speed, air turbulence, etc, so a direct conversion will do
int clocks_per_bit = (int)((bit_length.length * _clock_rate) / bit_length.clock_rate);
_pll.reset(new DigitalPhaseLockedLoop(clocks_per_bit, clocks_per_bit / 5, 3));
_pll->set_delegate(this);
int clocks_per_bit = (int)((bit_length.length * clock_rate_) / bit_length.clock_rate);
pll_.reset(new DigitalPhaseLockedLoop(clocks_per_bit, clocks_per_bit / 5, 3));
pll_->set_delegate(this);
}
void Controller::digital_phase_locked_loop_output_bit(int value)
{
process_input_bit(value, _cycles_since_index_hole);
process_input_bit(value, cycles_since_index_hole_);
}
#pragma mark - Drive actions
bool Controller::get_is_track_zero()
{
if(!_drive) return false;
return _drive->get_is_track_zero();
if(!drive_) return false;
return drive_->get_is_track_zero();
}
bool Controller::get_drive_is_ready()
{
if(!_drive) return false;
return _drive->has_disk();
if(!drive_) return false;
return drive_->has_disk();
}
void Controller::step(int direction)
{
if(_drive) _drive->step(direction);
if(drive_) drive_->step(direction);
invalidate_track();
}
void Controller::set_motor_on(bool motor_on)
{
_motor_is_on = motor_on;
motor_is_on_ = motor_on;
}
bool Controller::get_motor_on()
{
return _motor_is_on;
return motor_is_on_;
}
void Controller::set_drive(std::shared_ptr<Drive> drive)
{
_drive = drive;
drive_ = drive;
invalidate_track();
}
void Controller::invalidate_track()
{
_track = nullptr;
track_ = nullptr;
}

View File

@ -81,20 +81,20 @@ class Controller: public DigitalPhaseLockedLoop::Delegate, public TimedEventLoop
virtual bool get_drive_is_ready();
private:
Time _bit_length;
unsigned int _clock_rate;
unsigned int _clock_rate_multiplier;
Time _rotational_multiplier;
Time bit_length_;
unsigned int clock_rate_;
unsigned int clock_rate_multiplier_;
Time rotational_multiplier_;
std::shared_ptr<DigitalPhaseLockedLoop> _pll;
std::shared_ptr<Drive> _drive;
std::shared_ptr<Track> _track;
unsigned int _cycles_since_index_hole;
std::shared_ptr<DigitalPhaseLockedLoop> pll_;
std::shared_ptr<Drive> drive_;
std::shared_ptr<Track> track_;
unsigned int cycles_since_index_hole_;
inline void get_next_event();
Track::Event _current_event;
Time _time_into_track;
bool _motor_is_on;
Track::Event current_event_;
Time time_into_track_;
bool motor_is_on_;
void setup_track();
};

View File

@ -12,35 +12,35 @@
using namespace Storage::Disk;
Drive::Drive()
: _head_position(0), _head(0) {}
: head_position_(0), head_(0) {}
void Drive::set_disk(std::shared_ptr<Disk> disk)
{
_disk = disk;
disk_ = disk;
}
bool Drive::has_disk()
{
return (bool)_disk;
return (bool)disk_;
}
bool Drive::get_is_track_zero()
{
return _head_position == 0;
return head_position_ == 0;
}
void Drive::step(int direction)
{
_head_position = std::max(_head_position + direction, 0);
head_position_ = std::max(head_position_ + direction, 0);
}
void Drive::set_head(unsigned int head)
{
_head = head;
head_ = head;
}
std::shared_ptr<Track> Drive::get_track()
{
if(_disk) return _disk->get_track_at_position(_head, (unsigned int)_head_position);
if(disk_) return disk_->get_track_at_position(head_, (unsigned int)head_position_);
return nullptr;
}

View File

@ -47,9 +47,9 @@ class Drive {
std::shared_ptr<Track> get_track();
private:
std::shared_ptr<Disk> _disk;
int _head_position;
unsigned int _head;
std::shared_ptr<Disk> disk_;
int head_position_;
unsigned int head_;
};

View File

@ -13,7 +13,7 @@ using namespace Storage::Disk;
PCMTrack::PCMTrack(std::vector<PCMSegment> segments)
{
_segments = std::move(segments);
segments_ = std::move(segments);
fix_length();
}
@ -21,7 +21,7 @@ PCMTrack::PCMTrack(PCMSegment segment)
{
segment.length_of_a_bit.length = 1;
segment.length_of_a_bit.clock_rate = 1;
_segments.push_back(std::move(segment));
segments_.push_back(std::move(segment));
fix_length();
}
@ -29,54 +29,54 @@ PCMTrack::Event PCMTrack::get_next_event()
{
// find the next 1 in the input stream, keeping count of length as we go, and assuming it's going
// to be a flux transition
_next_event.type = Track::Event::FluxTransition;
_next_event.length.length = 0;
while(_segment_pointer < _segments.size())
next_event_.type = Track::Event::FluxTransition;
next_event_.length.length = 0;
while(segment_pointer_ < segments_.size())
{
unsigned int clock_multiplier = _track_clock_rate / _segments[_segment_pointer].length_of_a_bit.clock_rate;
unsigned int bit_length = clock_multiplier * _segments[_segment_pointer].length_of_a_bit.length;
unsigned int clock_multiplier = track_clock_rate_ / segments_[segment_pointer_].length_of_a_bit.clock_rate;
unsigned int bit_length = clock_multiplier * segments_[segment_pointer_].length_of_a_bit.length;
const uint8_t *segment_data = &_segments[_segment_pointer].data[0];
while(_bit_pointer < _segments[_segment_pointer].number_of_bits)
const uint8_t *segment_data = &segments_[segment_pointer_].data[0];
while(bit_pointer_ < segments_[segment_pointer_].number_of_bits)
{
// for timing simplicity, bits are modelled as happening at the end of their window
// TODO: should I account for the converse bit ordering? Or can I assume MSB first?
int bit = segment_data[_bit_pointer >> 3] & (0x80 >> (_bit_pointer&7));
_bit_pointer++;
_next_event.length.length += bit_length;
int bit = segment_data[bit_pointer_ >> 3] & (0x80 >> (bit_pointer_&7));
bit_pointer_++;
next_event_.length.length += bit_length;
if(bit) return _next_event;
if(bit) return next_event_;
}
_bit_pointer = 0;
_segment_pointer++;
bit_pointer_ = 0;
segment_pointer_++;
}
// check whether we actually reached the index hole
if(_segment_pointer == _segments.size())
if(segment_pointer_ == segments_.size())
{
_segment_pointer = 0;
_next_event.type = Track::Event::IndexHole;
segment_pointer_ = 0;
next_event_.type = Track::Event::IndexHole;
}
return _next_event;
return next_event_;
}
Storage::Time PCMTrack::seek_to(Time time_since_index_hole)
{
_segment_pointer = 0;
segment_pointer_ = 0;
// pick a common clock rate for counting time on this track and multiply up the time being sought appropriately
Time time_so_far;
time_so_far.clock_rate = NumberTheory::least_common_multiple(_next_event.length.clock_rate, time_since_index_hole.clock_rate);
time_so_far.clock_rate = NumberTheory::least_common_multiple(next_event_.length.clock_rate, time_since_index_hole.clock_rate);
time_since_index_hole.length *= time_so_far.clock_rate / time_since_index_hole.clock_rate;
time_since_index_hole.clock_rate = time_so_far.clock_rate;
while(_segment_pointer < _segments.size())
while(segment_pointer_ < segments_.size())
{
// determine how long this segment is in terms of the master clock
unsigned int clock_multiplier = time_so_far.clock_rate / _next_event.length.clock_rate;
unsigned int bit_length = ((clock_multiplier / _track_clock_rate) / _segments[_segment_pointer].length_of_a_bit.clock_rate) * _segments[_segment_pointer].length_of_a_bit.length;
unsigned int time_in_this_segment = bit_length * _segments[_segment_pointer].number_of_bits;
unsigned int clock_multiplier = time_so_far.clock_rate / next_event_.length.clock_rate;
unsigned int bit_length = ((clock_multiplier / track_clock_rate_) / segments_[segment_pointer_].length_of_a_bit.clock_rate) * segments_[segment_pointer_].length_of_a_bit.length;
unsigned int time_in_this_segment = bit_length * segments_[segment_pointer_].number_of_bits;
// if this segment goes on longer than the time being sought, end here
unsigned int time_remaining = time_since_index_hole.length - time_so_far.length;
@ -86,7 +86,7 @@ Storage::Time PCMTrack::seek_to(Time time_since_index_hole)
unsigned int time_found = time_remaining - (time_remaining % bit_length);
// resolve that into the stateful bit count
_bit_pointer = 1 + (time_remaining / bit_length);
bit_pointer_ = 1 + (time_remaining / bit_length);
// update and return the time sought to
time_so_far.length += time_found;
@ -95,7 +95,7 @@ Storage::Time PCMTrack::seek_to(Time time_since_index_hole)
// otherwise, accumulate time and keep moving
time_so_far.length += time_in_this_segment;
_segment_pointer++;
segment_pointer_++;
}
return time_since_index_hole;
}
@ -103,19 +103,19 @@ Storage::Time PCMTrack::seek_to(Time time_since_index_hole)
void PCMTrack::fix_length()
{
// find the least common multiple of all segment clock rates
_track_clock_rate = _segments[0].length_of_a_bit.clock_rate;
for(size_t c = 1; c < _segments.size(); c++)
track_clock_rate_ = segments_[0].length_of_a_bit.clock_rate;
for(size_t c = 1; c < segments_.size(); c++)
{
_track_clock_rate = NumberTheory::least_common_multiple(_track_clock_rate, _segments[c].length_of_a_bit.clock_rate);
track_clock_rate_ = NumberTheory::least_common_multiple(track_clock_rate_, segments_[c].length_of_a_bit.clock_rate);
}
// thereby determine the total length, storing it to next_event as the track-total divisor
_next_event.length.clock_rate = 0;
for(size_t c = 0; c < _segments.size(); c++)
next_event_.length.clock_rate = 0;
for(size_t c = 0; c < segments_.size(); c++)
{
unsigned int multiplier = _track_clock_rate / _segments[c].length_of_a_bit.clock_rate;
_next_event.length.clock_rate += _segments[c].length_of_a_bit.length * _segments[c].number_of_bits * multiplier;
unsigned int multiplier = track_clock_rate_ / segments_[c].length_of_a_bit.clock_rate;
next_event_.length.clock_rate += segments_[c].length_of_a_bit.length * segments_[c].number_of_bits * multiplier;
}
_segment_pointer = _bit_pointer = 0;
segment_pointer_ = bit_pointer_ = 0;
}

View File

@ -52,21 +52,21 @@ class PCMTrack: public Track {
private:
// storage for the segments that describe this track
std::vector<PCMSegment> _segments;
std::vector<PCMSegment> segments_;
// a helper to determine the overall track clock rate and it's length
void fix_length();
// the event perpetually returned; impliedly contains the length of the entire track
// as its clock rate, per the need for everything on a Track to sum to a length of 1
PCMTrack::Event _next_event;
PCMTrack::Event next_event_;
// contains the master clock rate
unsigned int _track_clock_rate;
unsigned int track_clock_rate_;
// a pointer to the first bit to consider as the next event
size_t _segment_pointer;
size_t _bit_pointer;
size_t segment_pointer_;
size_t bit_pointer_;
};
}

View File

@ -13,12 +13,12 @@
using namespace Storage;
TimedEventLoop::TimedEventLoop(unsigned int input_clock_rate) :
_input_clock_rate(input_clock_rate) {}
input_clock_rate_(input_clock_rate) {}
void TimedEventLoop::run_for_cycles(int number_of_cycles)
{
_cycles_until_event -= number_of_cycles;
while(_cycles_until_event <= 0)
cycles_until_event_ -= number_of_cycles;
while(cycles_until_event_ <= 0)
{
process_next_event();
}
@ -26,13 +26,13 @@ void TimedEventLoop::run_for_cycles(int number_of_cycles)
unsigned int TimedEventLoop::get_cycles_until_next_event()
{
return (unsigned int)std::max(_cycles_until_event, 0);
return (unsigned int)std::max(cycles_until_event_, 0);
}
void TimedEventLoop::reset_timer()
{
_subcycles_until_event.set_zero();
_cycles_until_event = 0;
subcycles_until_event_.set_zero();
cycles_until_event_ = 0;
}
void TimedEventLoop::reset_timer_to_offset(Time offset)
@ -49,10 +49,10 @@ void TimedEventLoop::jump_to_next_event()
void TimedEventLoop::set_next_event_time_interval(Time interval)
{
// Calculate [interval]*[input clock rate] + [subcycles until this event].
int64_t denominator = (int64_t)interval.clock_rate * (int64_t)_subcycles_until_event.clock_rate;
int64_t denominator = (int64_t)interval.clock_rate * (int64_t)subcycles_until_event_.clock_rate;
int64_t numerator =
(int64_t)_subcycles_until_event.clock_rate * (int64_t)_input_clock_rate * (int64_t)interval.length +
(int64_t)interval.clock_rate * (int64_t)_subcycles_until_event.length;
(int64_t)subcycles_until_event_.clock_rate * (int64_t)input_clock_rate_ * (int64_t)interval.length +
(int64_t)interval.clock_rate * (int64_t)subcycles_until_event_.length;
// Simplify now, to prepare for stuffing into possibly 32-bit quantities
int64_t common_divisor = NumberTheory::greatest_common_divisor(numerator % denominator, denominator);
@ -61,9 +61,9 @@ void TimedEventLoop::set_next_event_time_interval(Time interval)
// So this event will fire in the integral number of cycles from now, putting us at the remainder
// number of subcycles
_cycles_until_event = (int)(numerator / denominator);
_subcycles_until_event.length = (unsigned int)(numerator % denominator);
_subcycles_until_event.clock_rate = (unsigned int)denominator;
cycles_until_event_ = (int)(numerator / denominator);
subcycles_until_event_.length = (unsigned int)(numerator % denominator);
subcycles_until_event_.clock_rate = (unsigned int)denominator;
}
Time TimedEventLoop::get_time_into_next_event()

View File

@ -90,10 +90,9 @@ namespace Storage {
Time get_time_into_next_event();
private:
unsigned int _input_clock_rate;
int _cycles_until_event;
Time _subcycles_until_event;
Time _event_interval;
unsigned int input_clock_rate_;
int cycles_until_event_;
Time subcycles_until_event_;
};
}