1
0
mirror of https://github.com/TomHarte/CLK.git synced 2025-08-13 00:25:26 +00:00

Switched to postfix underscores and gave this class ownership of a texture builder and an array builder, though it presently uses neither.

This commit is contained in:
Thomas Harte
2016-11-17 11:00:11 +08:00
parent 57f0648742
commit 0f3b02edb7
2 changed files with 117 additions and 117 deletions

View File

@@ -16,7 +16,7 @@ using namespace Outputs::CRT;
void CRT::set_new_timing(unsigned int cycles_per_line, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator) void CRT::set_new_timing(unsigned int cycles_per_line, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator)
{ {
_openGL_output_builder->set_colour_format(colour_space, colour_cycle_numerator, colour_cycle_denominator); openGL_output_builder_.set_colour_format(colour_space, colour_cycle_numerator, colour_cycle_denominator);
const unsigned int syncCapacityLineChargeThreshold = 2; const unsigned int syncCapacityLineChargeThreshold = 2;
const unsigned int millisecondsHorizontalRetraceTime = 7; // source: Dictionary of Video and Television Technology, p. 234 const unsigned int millisecondsHorizontalRetraceTime = 7; // source: Dictionary of Video and Television Technology, p. 234
@@ -28,24 +28,21 @@ void CRT::set_new_timing(unsigned int cycles_per_line, unsigned int height_of_di
// a TV picture tube or camera tube to the starting point of a line or field. It is about 7 µs // a TV picture tube or camera tube to the starting point of a line or field. It is about 7 µs
// for horizontal retrace and 500 to 750 µs for vertical retrace in NTSC and PAL TV." // for horizontal retrace and 500 to 750 µs for vertical retrace in NTSC and PAL TV."
_time_multiplier = IntermediateBufferWidth / cycles_per_line; time_multiplier_ = IntermediateBufferWidth / cycles_per_line;
unsigned int multiplied_cycles_per_line = cycles_per_line * time_multiplier_;
// store fundamental display configuration properties
_height_of_display = height_of_display;
_cycles_per_line = cycles_per_line * _time_multiplier;
// generate timing values implied by the given arbuments // generate timing values implied by the given arbuments
_sync_capacitor_charge_threshold = (int)(syncCapacityLineChargeThreshold * _cycles_per_line); sync_capacitor_charge_threshold_ = (int)(syncCapacityLineChargeThreshold * multiplied_cycles_per_line);
// create the two flywheels // create the two flywheels
_horizontal_flywheel.reset(new Flywheel(_cycles_per_line, (millisecondsHorizontalRetraceTime * _cycles_per_line) >> 6, _cycles_per_line >> 6)); horizontal_flywheel_.reset(new Flywheel(multiplied_cycles_per_line, (millisecondsHorizontalRetraceTime * multiplied_cycles_per_line) >> 6, multiplied_cycles_per_line >> 6));
_vertical_flywheel.reset(new Flywheel(_cycles_per_line * height_of_display, scanlinesVerticalRetraceTime * _cycles_per_line, (_cycles_per_line * height_of_display) >> 3)); vertical_flywheel_.reset(new Flywheel(multiplied_cycles_per_line * height_of_display, scanlinesVerticalRetraceTime * multiplied_cycles_per_line, (multiplied_cycles_per_line * height_of_display) >> 3));
// figure out the divisor necessary to get the horizontal flywheel into a 16-bit range // figure out the divisor necessary to get the horizontal flywheel into a 16-bit range
unsigned int real_clock_scan_period = (_cycles_per_line * height_of_display) / (_time_multiplier * _common_output_divisor); unsigned int real_clock_scan_period = (multiplied_cycles_per_line * height_of_display) / (time_multiplier_ * common_output_divisor_);
_vertical_flywheel_output_divider = (uint16_t)(ceilf(real_clock_scan_period / 65536.0f) * (_time_multiplier * _common_output_divisor)); vertical_flywheel_output_divider_ = (uint16_t)(ceilf(real_clock_scan_period / 65536.0f) * (time_multiplier_ * common_output_divisor_));
_openGL_output_builder->set_timing(cycles_per_line, _cycles_per_line, _height_of_display, _horizontal_flywheel->get_scan_period(), _vertical_flywheel->get_scan_period(), _vertical_flywheel_output_divider); openGL_output_builder_.set_timing(cycles_per_line, multiplied_cycles_per_line, height_of_display, horizontal_flywheel_->get_scan_period(), vertical_flywheel_->get_scan_period(), vertical_flywheel_output_divider_);
} }
void CRT::set_new_display_type(unsigned int cycles_per_line, DisplayType displayType) void CRT::set_new_display_type(unsigned int cycles_per_line, DisplayType displayType)
@@ -62,24 +59,27 @@ void CRT::set_new_display_type(unsigned int cycles_per_line, DisplayType display
} }
} }
CRT::CRT(unsigned int common_output_divisor) : CRT::CRT(unsigned int common_output_divisor, unsigned int buffer_depth) :
_sync_capacitor_charge_level(0), sync_capacitor_charge_level_(0),
_is_receiving_sync(false), is_receiving_sync_(false),
_sync_period(0), sync_period_(0),
_common_output_divisor(common_output_divisor), common_output_divisor_(common_output_divisor),
_is_writing_composite_run(false), is_writing_composite_run_(false),
_delegate(nullptr), delegate_(nullptr),
_frames_since_last_delegate_call(0) {} frames_since_last_delegate_call_(0),
openGL_output_builder_(buffer_depth),
array_builder_(SourceVertexBufferDataSize, OutputVertexBufferDataSize),
texture_builder_(buffer_depth) {}
CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, unsigned int buffer_depth) : CRT(common_output_divisor) CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, unsigned int height_of_display, ColourSpace colour_space, unsigned int colour_cycle_numerator, unsigned int colour_cycle_denominator, unsigned int buffer_depth) :
CRT(common_output_divisor, buffer_depth)
{ {
_openGL_output_builder.reset(new OpenGLOutputBuilder(buffer_depth));
set_new_timing(cycles_per_line, height_of_display, colour_space, colour_cycle_numerator, colour_cycle_denominator); set_new_timing(cycles_per_line, height_of_display, colour_space, colour_cycle_numerator, colour_cycle_denominator);
} }
CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, DisplayType displayType, unsigned int buffer_depth) : CRT(common_output_divisor) CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, DisplayType displayType, unsigned int buffer_depth) :
CRT(common_output_divisor, buffer_depth)
{ {
_openGL_output_builder.reset(new OpenGLOutputBuilder(buffer_depth));
set_new_display_type(cycles_per_line, displayType); set_new_display_type(cycles_per_line, displayType);
} }
@@ -87,12 +87,12 @@ CRT::CRT(unsigned int cycles_per_line, unsigned int common_output_divisor, Displ
Flywheel::SyncEvent CRT::get_next_vertical_sync_event(bool vsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced) Flywheel::SyncEvent CRT::get_next_vertical_sync_event(bool vsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced)
{ {
return _vertical_flywheel->get_next_event_in_period(vsync_is_requested, cycles_to_run_for, cycles_advanced); return vertical_flywheel_->get_next_event_in_period(vsync_is_requested, cycles_to_run_for, cycles_advanced);
} }
Flywheel::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced) Flywheel::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced)
{ {
return _horizontal_flywheel->get_next_event_in_period(hsync_is_requested, cycles_to_run_for, cycles_advanced); return horizontal_flywheel_->get_next_event_in_period(hsync_is_requested, cycles_to_run_for, cycles_advanced);
} }
#define output_x1() (*(uint16_t *)&next_run[OutputVertexOffsetOfHorizontal + 0]) #define output_x1() (*(uint16_t *)&next_run[OutputVertexOffsetOfHorizontal + 0])
@@ -112,7 +112,7 @@ Flywheel::SyncEvent CRT::get_next_horizontal_sync_event(bool hsync_is_requested,
void CRT::advance_cycles(unsigned int number_of_cycles, unsigned int source_divider, bool hsync_requested, bool vsync_requested, const bool vsync_charging, const Scan::Type type, uint16_t tex_x, uint16_t tex_y) void CRT::advance_cycles(unsigned int number_of_cycles, unsigned int source_divider, bool hsync_requested, bool vsync_requested, const bool vsync_charging, const Scan::Type type, uint16_t tex_x, uint16_t tex_y)
{ {
number_of_cycles *= _time_multiplier; number_of_cycles *= time_multiplier_;
bool is_output_run = ((type == Scan::Type::Level) || (type == Scan::Type::Data)); bool is_output_run = ((type == Scan::Type::Level) || (type == Scan::Type::Data));
@@ -129,23 +129,23 @@ void CRT::advance_cycles(unsigned int number_of_cycles, unsigned int source_divi
hsync_requested = false; hsync_requested = false;
vsync_requested = false; vsync_requested = false;
bool is_output_segment = ((is_output_run && next_run_length) && !_horizontal_flywheel->is_in_retrace() && !_vertical_flywheel->is_in_retrace()); bool is_output_segment = ((is_output_run && next_run_length) && !horizontal_flywheel_->is_in_retrace() && !vertical_flywheel_->is_in_retrace());
uint8_t *next_run = nullptr; uint8_t *next_run = nullptr;
if(is_output_segment && !_openGL_output_builder->composite_output_buffer_is_full()) if(is_output_segment && !openGL_output_builder_.composite_output_buffer_is_full())
{ {
next_run = _openGL_output_builder->get_next_source_run(); next_run = openGL_output_builder_.get_next_source_run();
} }
if(next_run) if(next_run)
{ {
source_input_position_x1() = tex_x; source_input_position_x1() = tex_x;
source_input_position_y() = tex_y; source_input_position_y() = tex_y;
source_output_position_x1() = (uint16_t)_horizontal_flywheel->get_current_output_position(); source_output_position_x1() = (uint16_t)horizontal_flywheel_->get_current_output_position();
// Don't write output_y now, write it later; we won't necessarily know what it is outside of the locked region // Don't write output_y now, write it later; we won't necessarily know what it is outside of the locked region
// source_output_position_y() = _openGL_output_builder->get_composite_output_y(); // source_output_position_y() = openGL_output_builder_->get_composite_output_y();
source_phase() = _colour_burst_phase; source_phase() = colour_burst_phase_;
source_amplitude() = _colour_burst_amplitude; source_amplitude() = colour_burst_amplitude_;
source_phase_time() = (uint8_t)_colour_burst_time; // assumption: burst was within the first 1/16 of the line source_phase_time() = (uint8_t)colour_burst_time_; // assumption: burst was within the first 1/16 of the line
} }
// decrement the number of cycles left to run for and increment the // decrement the number of cycles left to run for and increment the
@@ -154,23 +154,23 @@ void CRT::advance_cycles(unsigned int number_of_cycles, unsigned int source_divi
// either charge or deplete the vertical retrace capacitor (making sure it stops at 0) // either charge or deplete the vertical retrace capacitor (making sure it stops at 0)
if(vsync_charging) if(vsync_charging)
_sync_capacitor_charge_level += next_run_length; sync_capacitor_charge_level_ += next_run_length;
else else
_sync_capacitor_charge_level = std::max(_sync_capacitor_charge_level - (int)next_run_length, 0); sync_capacitor_charge_level_ = std::max(sync_capacitor_charge_level_ - (int)next_run_length, 0);
// react to the incoming event... // react to the incoming event...
_horizontal_flywheel->apply_event(next_run_length, (next_run_length == time_until_horizontal_sync_event) ? next_horizontal_sync_event : Flywheel::SyncEvent::None); horizontal_flywheel_->apply_event(next_run_length, (next_run_length == time_until_horizontal_sync_event) ? next_horizontal_sync_event : Flywheel::SyncEvent::None);
_vertical_flywheel->apply_event(next_run_length, (next_run_length == time_until_vertical_sync_event) ? next_vertical_sync_event : Flywheel::SyncEvent::None); vertical_flywheel_->apply_event(next_run_length, (next_run_length == time_until_vertical_sync_event) ? next_vertical_sync_event : Flywheel::SyncEvent::None);
if(next_run) if(next_run)
{ {
// if this is a data run then advance the buffer pointer // if this is a data run then advance the buffer pointer
if(type == Scan::Type::Data && source_divider) tex_x += next_run_length / (_time_multiplier * source_divider); if(type == Scan::Type::Data && source_divider) tex_x += next_run_length / (time_multiplier_ * source_divider);
source_input_position_x2() = tex_x; source_input_position_x2() = tex_x;
source_output_position_x2() = (uint16_t)_horizontal_flywheel->get_current_output_position(); source_output_position_x2() = (uint16_t)horizontal_flywheel_->get_current_output_position();
_openGL_output_builder->complete_source_run(); openGL_output_builder_.complete_source_run();
} }
// if this is horizontal retrace then advance the output line counter and bookend an output run // if this is horizontal retrace then advance the output line counter and bookend an output run
@@ -178,62 +178,62 @@ void CRT::advance_cycles(unsigned int number_of_cycles, unsigned int source_divi
if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event != Flywheel::SyncEvent::None) honoured_event = next_vertical_sync_event; if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event != Flywheel::SyncEvent::None) honoured_event = next_vertical_sync_event;
if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event != Flywheel::SyncEvent::None) honoured_event = next_horizontal_sync_event; if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event != Flywheel::SyncEvent::None) honoured_event = next_horizontal_sync_event;
bool needs_endpoint = bool needs_endpoint =
(honoured_event == Flywheel::SyncEvent::StartRetrace && _is_writing_composite_run) || (honoured_event == Flywheel::SyncEvent::StartRetrace && is_writing_composite_run_) ||
(honoured_event == Flywheel::SyncEvent::EndRetrace && !_horizontal_flywheel->is_in_retrace() && !_vertical_flywheel->is_in_retrace()); (honoured_event == Flywheel::SyncEvent::EndRetrace && !horizontal_flywheel_->is_in_retrace() && !vertical_flywheel_->is_in_retrace());
if(needs_endpoint) if(needs_endpoint)
{ {
if( if(
_openGL_output_builder->composite_output_run_has_room_for_vertex() && openGL_output_builder_.composite_output_run_has_room_for_vertex() &&
!_openGL_output_builder->composite_output_buffer_is_full()) !openGL_output_builder_.composite_output_buffer_is_full())
{ {
if(!_is_writing_composite_run) if(!is_writing_composite_run_)
{ {
_output_run.x1 = (uint16_t)_horizontal_flywheel->get_current_output_position(); output_run_.x1 = (uint16_t)horizontal_flywheel_->get_current_output_position();
_output_run.y = (uint16_t)(_vertical_flywheel->get_current_output_position() / _vertical_flywheel_output_divider); output_run_.y = (uint16_t)(vertical_flywheel_->get_current_output_position() / vertical_flywheel_output_divider_);
} }
else else
{ {
_openGL_output_builder->lock_output(); openGL_output_builder_.lock_output();
// Get and write all those previously unwritten output ys // Get and write all those previously unwritten output ys
uint16_t output_y = _openGL_output_builder->get_composite_output_y(); uint16_t output_y = openGL_output_builder_.get_composite_output_y();
size_t size; size_t size;
uint8_t *buffered_lines = _openGL_output_builder->get_buffered_source_runs(size); uint8_t *buffered_lines = openGL_output_builder_.get_buffered_source_runs(size);
for(size_t position = 0; position < size; position += SourceVertexSize) for(size_t position = 0; position < size; position += SourceVertexSize)
{ {
(*(uint16_t *)&buffered_lines[position + SourceVertexOffsetOfOutputStart + 2]) = output_y; (*(uint16_t *)&buffered_lines[position + SourceVertexOffsetOfOutputStart + 2]) = output_y;
} }
// Construct the output run // Construct the output run
uint8_t *next_run = _openGL_output_builder->get_next_output_run(); uint8_t *next_run = openGL_output_builder_.get_next_output_run();
output_x1() = _output_run.x1; output_x1() = output_run_.x1;
output_position_y() = _output_run.y; output_position_y() = output_run_.y;
output_tex_y() = output_y; output_tex_y() = output_y;
output_x2() = (uint16_t)_horizontal_flywheel->get_current_output_position(); output_x2() = (uint16_t)horizontal_flywheel_->get_current_output_position();
_openGL_output_builder->complete_output_run(); openGL_output_builder_.complete_output_run();
_openGL_output_builder->unlock_output(); openGL_output_builder_.unlock_output();
} }
_is_writing_composite_run ^= true; is_writing_composite_run_ ^= true;
} }
} }
if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace) if(next_run_length == time_until_horizontal_sync_event && next_horizontal_sync_event == Flywheel::SyncEvent::StartRetrace)
{ {
_openGL_output_builder->increment_composite_output_y(); openGL_output_builder_.increment_composite_output_y();
} }
// if this is vertical retrace then adcance a field // if this is vertical retrace then adcance a field
if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event == Flywheel::SyncEvent::EndRetrace) if(next_run_length == time_until_vertical_sync_event && next_vertical_sync_event == Flywheel::SyncEvent::EndRetrace)
{ {
if(_delegate) if(delegate_)
{ {
_frames_since_last_delegate_call++; frames_since_last_delegate_call_++;
if(_frames_since_last_delegate_call == 20) if(frames_since_last_delegate_call_ == 20)
{ {
_delegate->crt_did_end_batch_of_frames(this, _frames_since_last_delegate_call, _vertical_flywheel->get_and_reset_number_of_surprises()); delegate_->crt_did_end_batch_of_frames(this, frames_since_last_delegate_call_, vertical_flywheel_->get_and_reset_number_of_surprises());
_frames_since_last_delegate_call = 0; frames_since_last_delegate_call_ = 0;
} }
} }
} }
@@ -260,31 +260,31 @@ void CRT::advance_cycles(unsigned int number_of_cycles, unsigned int source_divi
void CRT::output_scan(const Scan *const scan) void CRT::output_scan(const Scan *const scan)
{ {
const bool this_is_sync = (scan->type == Scan::Type::Sync); const bool this_is_sync = (scan->type == Scan::Type::Sync);
const bool is_trailing_edge = (_is_receiving_sync && !this_is_sync); const bool is_trailing_edge = (is_receiving_sync_ && !this_is_sync);
const bool is_leading_edge = (!_is_receiving_sync && this_is_sync); const bool is_leading_edge = (!is_receiving_sync_ && this_is_sync);
_is_receiving_sync = this_is_sync; is_receiving_sync_ = this_is_sync;
// This introduces a blackout period close to the expected vertical sync point in which horizontal syncs are not // This introduces a blackout period close to the expected vertical sync point in which horizontal syncs are not
// recognised, effectively causing the horizontal flywheel to freewheel during that period. This attempts to seek // recognised, effectively causing the horizontal flywheel to freewheel during that period. This attempts to seek
// the problem that vertical sync otherwise often starts halfway through a scanline, which confuses the horizontal // the problem that vertical sync otherwise often starts halfway through a scanline, which confuses the horizontal
// flywheel. I'm currently unclear whether this is an accurate solution to this problem. // flywheel. I'm currently unclear whether this is an accurate solution to this problem.
const bool hsync_requested = is_leading_edge && !_vertical_flywheel->is_near_expected_sync(); const bool hsync_requested = is_leading_edge && !vertical_flywheel_->is_near_expected_sync();
const bool vsync_requested = is_trailing_edge && (_sync_capacitor_charge_level >= _sync_capacitor_charge_threshold); const bool vsync_requested = is_trailing_edge && (sync_capacitor_charge_level_ >= sync_capacitor_charge_threshold_);
// simplified colour burst logic: if it's within the back porch we'll take it // simplified colour burst logic: if it's within the back porch we'll take it
if(scan->type == Scan::Type::ColourBurst) if(scan->type == Scan::Type::ColourBurst)
{ {
if(_horizontal_flywheel->get_current_time() < (_horizontal_flywheel->get_standard_period() * 12) >> 6) if(horizontal_flywheel_->get_current_time() < (horizontal_flywheel_->get_standard_period() * 12) >> 6)
{ {
_colour_burst_time = (uint16_t)_horizontal_flywheel->get_current_time(); colour_burst_time_ = (uint16_t)horizontal_flywheel_->get_current_time();
_colour_burst_phase = scan->phase; colour_burst_phase_ = scan->phase;
_colour_burst_amplitude = scan->amplitude; colour_burst_amplitude_ = scan->amplitude;
} }
} }
// TODO: inspect raw data for potential colour burst if required // TODO: inspect raw data for potential colour burst if required
_sync_period = _is_receiving_sync ? (_sync_period + scan->number_of_cycles) : 0; sync_period_ = is_receiving_sync_ ? (sync_period_ + scan->number_of_cycles) : 0;
advance_cycles(scan->number_of_cycles, scan->source_divider, hsync_requested, vsync_requested, this_is_sync, scan->type, scan->tex_x, scan->tex_y); advance_cycles(scan->number_of_cycles, scan->source_divider, hsync_requested, vsync_requested, this_is_sync, scan->type, scan->tex_x, scan->tex_y);
} }
@@ -311,13 +311,13 @@ void CRT::output_blank(unsigned int number_of_cycles)
void CRT::output_level(unsigned int number_of_cycles) void CRT::output_level(unsigned int number_of_cycles)
{ {
if(!_openGL_output_builder->input_buffer_is_full()) if(!openGL_output_builder_.input_buffer_is_full())
{ {
Scan scan { Scan scan {
.type = Scan::Type::Level, .type = Scan::Type::Level,
.number_of_cycles = number_of_cycles, .number_of_cycles = number_of_cycles,
.tex_x = _openGL_output_builder->get_last_write_x_posititon(), .tex_x = openGL_output_builder_.get_last_write_x_posititon(),
.tex_y = _openGL_output_builder->get_last_write_y_posititon() .tex_y = openGL_output_builder_.get_last_write_y_posititon()
}; };
output_scan(&scan); output_scan(&scan);
} }
@@ -344,14 +344,14 @@ void CRT::output_colour_burst(unsigned int number_of_cycles, uint8_t phase, uint
void CRT::output_data(unsigned int number_of_cycles, unsigned int source_divider) void CRT::output_data(unsigned int number_of_cycles, unsigned int source_divider)
{ {
if(!_openGL_output_builder->input_buffer_is_full()) if(!openGL_output_builder_.input_buffer_is_full())
{ {
_openGL_output_builder->reduce_previous_allocation_to(number_of_cycles / source_divider); openGL_output_builder_.reduce_previous_allocation_to(number_of_cycles / source_divider);
Scan scan { Scan scan {
.type = Scan::Type::Data, .type = Scan::Type::Data,
.number_of_cycles = number_of_cycles, .number_of_cycles = number_of_cycles,
.tex_x = _openGL_output_builder->get_last_write_x_posititon(), .tex_x = openGL_output_builder_.get_last_write_x_posititon(),
.tex_y = _openGL_output_builder->get_last_write_y_posititon(), .tex_y = openGL_output_builder_.get_last_write_y_posititon(),
.source_divider = source_divider .source_divider = source_divider
}; };
output_scan(&scan); output_scan(&scan);
@@ -368,15 +368,15 @@ void CRT::output_data(unsigned int number_of_cycles, unsigned int source_divider
Outputs::CRT::Rect CRT::get_rect_for_area(int first_line_after_sync, int number_of_lines, int first_cycle_after_sync, int number_of_cycles, float aspect_ratio) Outputs::CRT::Rect CRT::get_rect_for_area(int first_line_after_sync, int number_of_lines, int first_cycle_after_sync, int number_of_cycles, float aspect_ratio)
{ {
first_cycle_after_sync *= _time_multiplier; first_cycle_after_sync *= time_multiplier_;
number_of_cycles *= _time_multiplier; number_of_cycles *= time_multiplier_;
first_line_after_sync -= 2; first_line_after_sync -= 2;
number_of_lines += 4; number_of_lines += 4;
// determine prima facie x extent // determine prima facie x extent
unsigned int horizontal_period = _horizontal_flywheel->get_standard_period(); unsigned int horizontal_period = horizontal_flywheel_->get_standard_period();
unsigned int horizontal_scan_period = _horizontal_flywheel->get_scan_period(); unsigned int horizontal_scan_period = horizontal_flywheel_->get_scan_period();
unsigned int horizontal_retrace_period = horizontal_period - horizontal_scan_period; unsigned int horizontal_retrace_period = horizontal_period - horizontal_scan_period;
// make sure that the requested range is visible // make sure that the requested range is visible
@@ -387,8 +387,8 @@ Outputs::CRT::Rect CRT::get_rect_for_area(int first_line_after_sync, int number_
float width = (float)number_of_cycles / (float)horizontal_scan_period; float width = (float)number_of_cycles / (float)horizontal_scan_period;
// determine prima facie y extent // determine prima facie y extent
unsigned int vertical_period = _vertical_flywheel->get_standard_period(); unsigned int vertical_period = vertical_flywheel_->get_standard_period();
unsigned int vertical_scan_period = _vertical_flywheel->get_scan_period(); unsigned int vertical_scan_period = vertical_flywheel_->get_scan_period();
unsigned int vertical_retrace_period = vertical_period - vertical_scan_period; unsigned int vertical_retrace_period = vertical_period - vertical_scan_period;
// make sure that the requested range is visible // make sure that the requested range is visible

View File

@@ -14,6 +14,8 @@
#include "CRTTypes.hpp" #include "CRTTypes.hpp"
#include "Internals/Flywheel.hpp" #include "Internals/Flywheel.hpp"
#include "Internals/CRTOpenGL.hpp" #include "Internals/CRTOpenGL.hpp"
#include "Internals/ArrayBuilder.hpp"
#include "Internals/TextureBuilder.hpp"
namespace Outputs { namespace Outputs {
namespace CRT { namespace CRT {
@@ -27,26 +29,22 @@ class Delegate {
class CRT { class CRT {
private: private:
CRT(unsigned int common_output_divisor); CRT(unsigned int common_output_divisor, unsigned int buffer_depth);
// the incoming clock lengths will be multiplied by something to give at least 1000 // the incoming clock lengths will be multiplied by something to give at least 1000
// sample points per line // sample points per line
unsigned int _time_multiplier; unsigned int time_multiplier_;
const unsigned int _common_output_divisor; const unsigned int common_output_divisor_;
// fundamental creator-specified properties
unsigned int _cycles_per_line;
unsigned int _height_of_display;
// the two flywheels regulating scanning // the two flywheels regulating scanning
std::unique_ptr<Flywheel> _horizontal_flywheel, _vertical_flywheel; std::unique_ptr<Flywheel> horizontal_flywheel_, vertical_flywheel_;
uint16_t _vertical_flywheel_output_divider; uint16_t vertical_flywheel_output_divider_;
// elements of sync separation // elements of sync separation
bool _is_receiving_sync; // true if the CRT is currently receiving sync (i.e. this is for edge triggering of horizontal sync) bool is_receiving_sync_; // true if the CRT is currently receiving sync (i.e. this is for edge triggering of horizontal sync)
int _sync_capacitor_charge_level; // this charges up during times of sync and depletes otherwise; needs to hit a required threshold to trigger a vertical sync int sync_capacitor_charge_level_; // this charges up during times of sync and depletes otherwise; needs to hit a required threshold to trigger a vertical sync
int _sync_capacitor_charge_threshold; // this charges up during times of sync and depletes otherwise; needs to hit a required threshold to trigger a vertical sync int sync_capacitor_charge_threshold_; // this charges up during times of sync and depletes otherwise; needs to hit a required threshold to trigger a vertical sync
unsigned int _sync_period; unsigned int sync_period_;
// each call to output_* generates a scan. A two-slot queue for scans allows edge extensions. // each call to output_* generates a scan. A two-slot queue for scans allows edge extensions.
struct Scan { struct Scan {
@@ -66,9 +64,9 @@ class CRT {
}; };
void output_scan(const Scan *scan); void output_scan(const Scan *scan);
uint8_t _colour_burst_phase, _colour_burst_amplitude; uint8_t colour_burst_phase_, colour_burst_amplitude_;
uint16_t _colour_burst_time; uint16_t colour_burst_time_;
bool _is_writing_composite_run; bool is_writing_composite_run_;
// the outer entry point for dispatching output_sync, output_blank, output_level and output_data // the outer entry point for dispatching output_sync, output_blank, output_level and output_data
void advance_cycles(unsigned int number_of_cycles, unsigned int source_divider, bool hsync_requested, bool vsync_requested, const bool vsync_charging, const Scan::Type type, uint16_t tex_x, uint16_t tex_y); void advance_cycles(unsigned int number_of_cycles, unsigned int source_divider, bool hsync_requested, bool vsync_requested, const bool vsync_charging, const Scan::Type type, uint16_t tex_x, uint16_t tex_y);
@@ -78,17 +76,19 @@ class CRT {
Flywheel::SyncEvent get_next_vertical_sync_event(bool vsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced); Flywheel::SyncEvent get_next_vertical_sync_event(bool vsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced);
Flywheel::SyncEvent get_next_horizontal_sync_event(bool hsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced); Flywheel::SyncEvent get_next_horizontal_sync_event(bool hsync_is_requested, unsigned int cycles_to_run_for, unsigned int *cycles_advanced);
// OpenGL state, kept behind an opaque pointer to avoid inclusion of the GL headers here. // OpenGL state
std::unique_ptr<OpenGLOutputBuilder> _openGL_output_builder; OpenGLOutputBuilder openGL_output_builder_;
ArrayBuilder array_builder_;
TextureBuilder texture_builder_;
// temporary storage used during the construction of output runs // temporary storage used during the construction of output runs
struct { struct {
uint16_t x1, y; uint16_t x1, y;
} _output_run; } output_run_;
// The delegate // The delegate
Delegate *_delegate; Delegate *delegate_;
unsigned int _frames_since_last_delegate_call; unsigned int frames_since_last_delegate_call_;
public: public:
/*! Constructs the CRT with a specified clock rate, height and colour subcarrier frequency. /*! Constructs the CRT with a specified clock rate, height and colour subcarrier frequency.
@@ -194,7 +194,7 @@ class CRT {
*/ */
inline uint8_t *allocate_write_area(size_t required_length) inline uint8_t *allocate_write_area(size_t required_length)
{ {
return _openGL_output_builder->allocate_write_area(required_length); return openGL_output_builder_.allocate_write_area(required_length);
} }
/*! Causes appropriate OpenGL or OpenGL ES calls to be issued in order to draw the current CRT state. /*! Causes appropriate OpenGL or OpenGL ES calls to be issued in order to draw the current CRT state.
@@ -202,7 +202,7 @@ class CRT {
*/ */
inline void draw_frame(unsigned int output_width, unsigned int output_height, bool only_if_dirty) inline void draw_frame(unsigned int output_width, unsigned int output_height, bool only_if_dirty)
{ {
_openGL_output_builder->draw_frame(output_width, output_height, only_if_dirty); openGL_output_builder_.draw_frame(output_width, output_height, only_if_dirty);
} }
/*! Tells the CRT that the next call to draw_frame will occur on a different OpenGL context than /*! Tells the CRT that the next call to draw_frame will occur on a different OpenGL context than
@@ -214,7 +214,7 @@ class CRT {
*/ */
inline void set_openGL_context_will_change(bool should_delete_resources) inline void set_openGL_context_will_change(bool should_delete_resources)
{ {
_openGL_output_builder->set_openGL_context_will_change(should_delete_resources); openGL_output_builder_.set_openGL_context_will_change(should_delete_resources);
} }
/*! Sets a function that will map from whatever data the machine provided to a composite signal. /*! Sets a function that will map from whatever data the machine provided to a composite signal.
@@ -226,7 +226,7 @@ class CRT {
*/ */
inline void set_composite_sampling_function(const char *shader) inline void set_composite_sampling_function(const char *shader)
{ {
_openGL_output_builder->set_composite_sampling_function(shader); openGL_output_builder_.set_composite_sampling_function(shader);
} }
/*! Sets a function that will map from whatever data the machine provided to an RGB signal. /*! Sets a function that will map from whatever data the machine provided to an RGB signal.
@@ -244,24 +244,24 @@ class CRT {
*/ */
inline void set_rgb_sampling_function(const char *shader) inline void set_rgb_sampling_function(const char *shader)
{ {
_openGL_output_builder->set_rgb_sampling_function(shader); openGL_output_builder_.set_rgb_sampling_function(shader);
} }
inline void set_output_device(OutputDevice output_device) inline void set_output_device(OutputDevice output_device)
{ {
_openGL_output_builder->set_output_device(output_device); openGL_output_builder_.set_output_device(output_device);
} }
inline void set_visible_area(Rect visible_area) inline void set_visible_area(Rect visible_area)
{ {
_openGL_output_builder->set_visible_area(visible_area); openGL_output_builder_.set_visible_area(visible_area);
} }
Rect get_rect_for_area(int first_line_after_sync, int number_of_lines, int first_cycle_after_sync, int number_of_cycles, float aspect_ratio); Rect get_rect_for_area(int first_line_after_sync, int number_of_lines, int first_cycle_after_sync, int number_of_cycles, float aspect_ratio);
inline void set_delegate(Delegate *delegate) inline void set_delegate(Delegate *delegate)
{ {
_delegate = delegate; delegate_ = delegate;
} }
}; };